
Modules over PID

Let A be a ring, and M be an A-module. Recall that M is called free over A if it admits a (finite)
basis over A. In other words M is free if and only if there exists a finite set (v1, . . . , vr) of elements
of M such that the natural A-linear map Ar → M defined by (a1, . . . , ar) 7→ ∑r

k=1 akvk is a bijection
(i.e., an isomorphism of A-modules). Such a set (v1, . . . , vr) is called a basis for M over A. One can
define freeness without references to elements: a module M is free if and only if there exist an integer
r > 1 and an isomorphism of A-modules Ar → M.

Be aware that some (most) modules are not free. The most simple is example to bear in mind is the
following: let A = Z be the ring of integers, and n > 1 be an integer. Then the A-module M := Z/nZ
is finitely generated over A (by 1M) but cannot be free over A (otherwise, M would be isomorphic to
Am for some m > 1... but, as sets, M is finite while A is not).

Here is a more elaborate example. Let k be a field, consider A := k[X,Y] be the ring of polynomials
in two variables with coefficients in k. One can view M = A as a module over itself. It is clear that
M is a free A-module of rank 1 (a basis of M over A is given by (1A)). Let N denote the sub-A-
module of M generated by X and Y. This means that N consists of all polynomials of the form
P(X,Y) · X + Q(X,Y) · Y with P,Q ∈ A. Then N is finitely generated: the A-linear map φ : A2 → N
given by (P,Q) 7→ PX + QY is surjective. But N is not free! Indeed, one can check that Kerφ is non
zero (it contains (−Y,X) for instance), so that φ is not an isomorphism.

That being said, modules over PIDs are a bit more well-behaved:

Theorem 1. Let A be a principal ideal domain, and let M be a free A-module of rank m. Let N be a
sub-A-module of M. Then N is free, and the rank n of N satisfies 0 6 n 6 m.

Proof. The proof requires a lemma.

Lemma 2. Let M be a module over a principal ideal domain A. Let u : M→ A be an A-linear map.
Then there is an A-linear isomorphism

M ' Keru× Im u.

Proof. If u is the zero map m 7→ 0, there is nothing to prove (since then Im u = {0} and Keru = M).
So we can assume that u 6= 0. The image Im u is then a non-zero submodule of A i.e., a non-zero
ideal of A. Since A is principal, there exists a ∈ A r {0} such that Im u = A · a. Note that, as an
A-module, A · a ' A (because A is integral). Hence, any element b ∈ A · a can be written in a unique
way as b = r · a with r ∈ A. Since a ∈ Im u, there exists m0 ∈ M such that u(m0) = a.

Consider the map λ : Keru × Im u → M defined by λ(m, r · a) 7→ m + r · m0. It is clear that
λ is a morphism of A-modules. Let us now check that λ is bijective. This will provide the desired
isomorphism.

Let x = (m, r ·a) ∈ Keru×Im u be such that λ(m, r ·a) = 0. Then m+r ·m0 = 0 in M. Suppose for
a moment that r 6= 0, then we deduce that u(m) = −r · u(m0). Since m ∈ Keru and u(m0) = a 6= 0,
this contradicts the fact that A is integral. Hence r = 0 and m = −rm0 = 0. Thus x = 0 and λ is
injective.

Now let m ∈ M be an arbitrary element. Since a = u(m0) generates Im u as an A-module, we
have u(m) = r · u(m0) for some r ∈ A. We write m = (m− r ·m0) + r ·m0, and let m1 := m− r ·m0.
We have u(m1) = u(m) − u(r ·m0) = u(m) − ru(m0) = 0 so that m1 ∈ Keru. Hence m = λ(m1, r).
Therefore λ is surjective.
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We can now prove the Theorem by induction on the rank m of M. If m = 0, there is nothing to
prove so we assume that m > 1.

Suppose that the Theorem holds for all free A-modules M′ of rank m. Let us prove that the
Theorem then holds for all free A-modules of rank m + 1. Let M be an arbitrary free A-module of
rank m + 1, and let N be a submodule of M. By definition, we can find an A-linear isomorphism
φ : M → Am+1. Through φ, the submodule N of M is isomorphic to the submodule φ(N) of Am+1.
Hence, there is no loss of generality in assuming that M = Am+1 and that N is a sub-A-module of Am+1.
Write π′ : Am+1 → A for the projection on the last coordinate (defined by (a1, . . . , am+1) 7→ am+1).
The map π′ is clearly A-linear. We restrict π′ to N and write π for the resulting map. We apply the
Lemma to the A-linear map π : N→ A. We have an isomorphism N ' Kerπ × Im π. It is clear that
Kerπ = N ∩ (Am × {0}) and that Am × {0} ' Am. Hence Kerπ is isomorphic to a sub-A-module of
Am. Since Am is free of rank m, we may use our induction hypothesis: this yields that Kerπ, being a
submodule of a free module of rank m, is a free A-module of rank n with n 6 m. Thus, there exists
an isomorphism of A-modules Kerπ ' An.

On the other hand, Im π is a submodule of A (which means that Im π is an ideal in A). Since A is
a PID, Im π is principal: we can find a ∈ A such that Im π = A ·a. If a = 0, it is clear that Im π = {0}
is free of rank 0. If a 6= 0, we have an isomorphism Im π ' A which shows that Im π is free of rank 1.

Putting these ingredients together, we conclude that N is isomorphic, as an A-module, to either
An × {0} or An × A ' An+1. In any case, N is free and its rank r satisfies r 6 n + 1 6 m + 1. This
completes the induction step, and concludes the proof of the Theorem.

Theorem 3. Let A be a principal ideal domain and M be a free A-module of rank m. Let N be a
non-zero submodule of N. By the previous theorem, N is free, and the rank n of N satisfies 1 6 n 6 m.
There exist

• a basis (e1, . . . , em) of M over A,

• and non-zero elements a1, . . . , an in A,

such that

• (a1e1, . . . , anen) is a basis of N over A,

• and, for all i ∈ {1, . . . , n− 1}, ai divides ai+1.

This theorem proves that there exists a basis of M which is “adapted to N”. The ideals A·a1, . . . ,A·
an are called the invariant factors of M in N. One can show that they are uniquely determined by M
and N (warning: the elements a1, . . . , an are only determined up to multiplication by units in A).

Proof. We prove the Theorem by induction on the rank of M. The induction step requires the following
construction.

Let M be a free A-module of rank m > 1, and N 6= 0 be a submodule of M. The set HomA(M,A)
of A-linear maps u : M→ A can be equipped with an A-module structure. We denote this A-module
by M∨ (we could call it the “dual of M”).

For any u ∈ M∨, the image u(N) of u restricted to N is a sub-A-module of A i.e., u(N) is an ideal
of A. Since A is a principal ideal domain, we may find a generator au ∈ A of u(N). Consider the
family F := {u(N), u ∈ M∨} of ideals of A. The family F is non-empty since it contains the ideal 0
(the 0-map v 7→ 0 is an element of M∨). Now, by a corollary of Theorem 1.3.1, any non-empty family
of ideals in a principal ideal domain admits a maximal element.

This means that there exist uN ∈ M∨ and an element aN ∈ A with uN(N) = A · an such that, for
all v ∈ M∨, v(N) ⊂ uN(N). In other words, for all v ∈ M∨, aN divides av in A (or A · av ⊆ A · aN). By
construction, we may find e ∈ N such that uN(e) = aN.

• Fact 1 : the element aN is non-zero.

Proof. Let us choose a basis (g1, . . . , gm) of M over A (such a basis exists by hypothesis), and
denote by pi : M → A the i-th coordinate function. This map is characterised by pi(gj) = δij

for all 1 6 i, j 6 m and the fact that it is A-linear. We have pi ∈ M∨ r {0}. Since N 6= 0, there
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is an index i such that pi(N) 6= 0. For this index i, we have 0 ( pi(N) ⊂ uN(N), by maximality
of uN(N). In particular, the element aN cannot be zero since the ideal it generates contains a
non-zero ideal pi(N).

• Fact 2 : for all v ∈ M∨, aN divides v(e) in A.

Proof. Let v ∈ M∨. The ring A is principal, so we may introduce d := gcd(aN, v(e)). It suffices
to show that d = aN, up to a unit of A. By Bézout’s theorem, there exist α, β ∈ A such that
d = αaN + βv(e). By construction aN = uN(e), so that d = αuN(e) + βv(e) = (αuN + βv)(e).
Since M∨ is an A-module, the map w := αuN + βv belongs to M∨, and the identity we have
just proved shows that d ∈ w(N). Therefore A · d ⊂ w(N) because w(N) is an ideal in A. We
have A · an ⊂ A · d because d divides an. Moreover, the maximality of uN(N) implies that
w(N) ⊂ uN(N). We thus have a chain of inclusions: A · aN ⊂ A · d ⊂ w(N) ⊂ uN(N) = A · aN.
Hence A · an = A · d, so that aN and d differ by a unit in A.

Let us now choose a basis (g1, . . . , gm) for M over A and write, as above, pi : M → A for the
i-th coordinate function (1 6 i 6 m). Applying Fact 2 to v = pi yields that aN divides pi(e) in
A: hence there exists bi ∈ A such that pi(e) = bi · aN. We let f := ∑m

i=1 bi · gi ∈ M. We have
e = ∑

pi(e) · gi = aN · f . Moreover, uN(f) = 1 since uN(e) = aN and A is integral.

• Fact 3 : we have M = Kerun + A · f , the sum being direct (i.e. (Kerun) ∩A · f = 0).

Proof. It is clear that Kerun + A · f ⊂ M. For any x ∈ M, we can write x = uN(x) · f + (x −
uN(x) · f). One readily checks that uN(x) · f ∈ A · f and that x − uN(x) · f ∈ KeruN. Hence
M = KeruN + A · f . It is also clear that (KeruN) ∩A · f = 0, since uN(f) = 1 6= 0 in A.

• Fact 4 : we have N = (Kerun ∩N) + A · aNf , the sum being direct.

Proof. The proof is very similar to that of the previous fact. Here, one decomposes any y ∈ N
as y = b · aNf + (y − uN(y) · f), where b ∈ A is such that uN(y) = baN.

We can now prove the Theorem. Assume that, for some m > 1, the statement holds for free
A-modules of rank m. Let us prove that the theorem holds for free A-modules of rank m+ 1.

Let M be a free A-module of rank m+ 1, and let N ⊂ M be a non-zero submodule of M. Consider
the submodule M′ = KeruN of M which we constructed above. By the previous Theorem, M′ is a free
A-module. And Fact 3 shows that M′ has rank m (a slight reformulation of Fact 3 indeed shows that
M ' M′ ×A). The construction also provides a1 := aN ∈ A r {0} and a e1 := f ∈ M.

We are now in a position to apply the induction hypothesis: M′ is a free A-module of rank m,
and N′ := N∩M′ is a submodule of M′. The induction hypothesis then yields that there exist a basis
(e2, . . . , em) of M′ over A and non-zero elements a2, . . . , an of A such that

• (a2e2, . . . , anen) is a basis for N over A,

• and ai divides ai+1 for all 2 6 i 6 n− 1.

Fact 3 above shows that (e1, e2, . . . , em) is a basis for M over A. Fact 4 proves that (a1e1, a2e2, . . . , anen)
is a basis for N over A. It remains to prove that a1 divides a2 in A.

Consider the A-linear map v : M→ A defined by v(e1) = v(e2) = 1 and v(ei) = 0 for i > 3. Then
we have a1 = aN = aNv(e1) = v(aNe1) = v(f) so a1 ∈ v(N). Therefore, by maximality of uN(N), we
have A ·aN = A ·a1 ⊂ v(N) ⊂ uN(N) ⊂ A ·aN. Hence v(N) = A ·a1. We also have a2 = v(a2e2) ∈ v(N).
Thus A · a2 ⊂ A · a1, which exactly means that a1 divides a2 in A.

This concludes the proof of the second theorem.
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