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MobUuULES OVER PID

Let A be a ring, and M be an A-module. Recall that M is called free over A if it admits a (finite)
basis over A. In other words M is free if and only if there exists a finite set (v1,...,v,) of elements
of M such that the natural A-linear map A" — M defined by (ai,...,a,) — > j—; arvk is a bijection
(i.e., an isomorphism of A-modules). Such a set (v1,...,v,) is called a basis for M over A. One can
define freeness without references to elements: a module M is free if and only if there exist an integer
r > 1 and an isomorphism of A-modules A™ — M.

Be aware that some (most) modules are not free. The most simple is example to bear in mind is the
following: let A = Z be the ring of integers, and n > 1 be an integer. Then the A-module M := Z/nZ
is finitely generated over A (by 1yr) but cannot be free over A (otherwise, M would be isomorphic to
A™ for some m > 1... but, as sets, M is finite while A is not).

Here is a more elaborate example. Let k be a field, consider A := k[X, Y] be the ring of polynomials
in two variables with coefficients in k. One can view M = A as a module over itself. It is clear that
M is a free A-module of rank 1 (a basis of M over A is given by (1)). Let N denote the sub-A-
module of M generated by X and Y. This means that N consists of all polynomials of the form
P(X,Y) - X+ Q(X,Y)-Y with P,Q € A. Then N is finitely generated: the A-linear map ¢ : A> =+ N
given by (P, Q) — PX + QY is surjective. But N is not free! Indeed, one can check that Ker ¢ is non
zero (it contains (=Y, X) for instance), so that ¢ is not an isomorphism.

That being said, modules over PIDs are a bit more well-behaved:

Theorem 1. Let A be a principal ideal domain, and let M be a free A-module of rank m. Let N be a
sub-A-module of M. Then N is free, and the rank n of N satisfies 0 < n < m.

Proof. The proof requires a lemma.

Lemma 2. Let M be a module over a principal ideal domain A. Let u: M — A be an A-linear map.
Then there is an A-linear isomorphism

M ~ Keru x Im .

Proof. 1f u is the zero map m +— 0, there is nothing to prove (since then Imu = {0} and Keru = M).
So we can assume that u # 0. The image Imu is then a non-zero submodule of A i.e., a non-zero
ideal of A. Since A is principal, there exists a € A ~\ {0} such that Imu = A - a. Note that, as an
A-module, A -a ~ A (because A is integral). Hence, any element b € A - a can be written in a unique
way as b =1 -a with » € A. Since a € Imu, there exists mo € M such that u(mp) = a.

Consider the map A : Keru x Imu — M defined by A(m,r - a) — m +r-mg. It is clear that
A is a morphism of A-modules. Let us now check that A is bijective. This will provide the desired
isomorphism.

Let x = (m,r-a) € KeruxImwu be such that A(m,r-a) = 0. Then m+r-mg = 0 in M. Suppose for
a moment that r # 0, then we deduce that u(m) = —r - u(myg). Since m € Keru and u(mg) = a # 0,
this contradicts the fact that A is integral. Hence r = 0 and m = —rmg = 0. Thus x = 0 and X is
injective.

Now let m € M be an arbitrary element. Since a = wu(mg) generates Imu as an A-module, we
have u(m) = r - u(myg) for some r € A. We write m = (m —r-mg) + - mo, and let my :=m —r - my.
We have u(mi) = u(m) — u(r - mg) = u(m) — ru(mp) = 0 so that m; € Keru. Hence m = A(mq,7).
Therefore X is surjective. O
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We can now prove the Theorem by induction on the rank m of M. If m = 0, there is nothing to
prove so we assume that m > 1.

Suppose that the Theorem holds for all free A-modules M’ of rank m. Let us prove that the
Theorem then holds for all free A-modules of rank m + 1. Let M be an arbitrary free A-module of
rank m + 1, and let N be a submodule of M. By definition, we can find an A-linear isomorphism
¢ : M — A™FL Through ¢, the submodule N of M is isomorphic to the submodule ¢(N) of A™*1,
Hence, there is no loss of generality in assuming that M = A™*! and that N is a sub-A-module of A™*1,
Write 7/ : A™*T!1 — A for the projection on the last coordinate (defined by (a1, ..., @mi1) = Gmi1).
The map 7’ is clearly A-linear. We restrict 7’ to N and write 7 for the resulting map. We apply the
Lemma to the A-linear map 7 : N — A. We have an isomorphism N ~ Ker 7 x Im 7. It is clear that
Kerm = NN (A™ x {0}) and that A™ x {0} ~ A™. Hence Ker 7 is isomorphic to a sub-A-module of
A™. Since A™ is free of rank m, we may use our induction hypothesis: this yields that Ker 7, being a
submodule of a free module of rank m, is a free A-module of rank n with n < m. Thus, there exists
an isomorphism of A-modules Ker m ~ A".

On the other hand, Im 7 is a submodule of A (which means that Im 7 is an ideal in A). Since A is
a PID, Im 7 is principal: we can find a € A such that Im7 = A-qa. If a = 0, it is clear that Im 7 = {0}
is free of rank 0. If a # 0, we have an isomorphism Im 7 ~ A which shows that Im 7 is free of rank 1.

Putting these ingredients together, we conclude that N is isomorphic, as an A-module, to either
A" x {0} or A" x A ~ A"l In any case, N is free and its rank r satisfies » <n +1 < m + 1. This
completes the induction step, and concludes the proof of the Theorem. ]

Theorem 3. Let A be a principal ideal domain and M be a free A-module of rank m. Let N be a
non-zero submodule of N. By the previous theorem, N is free, and the rank n of N satisfies 1 < n < m.
There exist

e a basis (e1,...,em) of M over A,
e and non-zero elements ai,...,a, in A,
such that
e (areq,...,anen) is a basis of N over A,
e and, for alli € {1,...,n— 1}, a; divides a;;+1.

This theorem proves that there exists a basis of M which is “adapted to N”. The ideals A-aq,...,A-
an are called the invariant factors of M in N. One can show that they are uniquely determined by M
and N (warning: the elements ay, ..., a, are only determined up to multiplication by units in A).

Proof. We prove the Theorem by induction on the rank of M. The induction step requires the following
construction.

Let M be a free A-module of rank m > 1, and N # 0 be a submodule of M. The set Homa (M, A)
of A-linear maps u : M — A can be equipped with an A-module structure. We denote this A-module
by MY (we could call it the “dual of M”).

For any u € MY, the image u(N) of u restricted to N is a sub-A-module of A i.e., u(N) is an ideal
of A. Since A is a principal ideal domain, we may find a generator a, € A of u(N). Consider the
family F := {u(N), u € MV} of ideals of A. The family F is non-empty since it contains the ideal 0
(the 0-map v ~ 0 is an element of MV). Now, by a corollary of Theorem 1.3.1, any non-empty family
of ideals in a principal ideal domain admits a maximal element.

This means that there exist uxy € MY and an element ay € A with ux(N) = A - a,, such that, for
all v € MY, v(N) C ux(N). In other words, for all v € MY, ay divides a, in A (or A-a, C A-an). By
construction, we may find e € N such that ux(e) = an.

e Fact 1 : the element ay is non-zero.
Proof. Let us choose a basis (g1,...,9m) of M over A (such a basis exists by hypothesis), and
denote by p; : M — A the i-th coordinate function. This map is characterised by p;(g;) = di;
for all 1 < 4,7 < m and the fact that it is A-linear. We have p; € MY \ {0}. Since N # 0, there
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is an index i such that p;(N) # 0. For this index i, we have 0 C p;(N) C ux(N), by maximality
of ux(N). In particular, the element ay cannot be zero since the ideal it generates contains a
non-zero ideal p;(N). O

o Fact 2: for all v € MY, ay divides v(e) in A.

Proof. Let v € MY. The ring A is principal, so we may introduce d := ged(an,v(e)). It suffices
to show that d = ay, up to a unit of A. By Bézout’s theorem, there exist «, 3 € A such that
d = aan + Pv(e). By construction anx = un(e), so that d = aun(e) + pv(e) = (aunx + fv)(e).
Since MY is an A-module, the map w := auy + Bv belongs to MY, and the identity we have
just proved shows that d € w(N). Therefore A - d C w(N) because w(N) is an ideal in A. We
have A - a, C A -d because d divides a,. Moreover, the maximality of ux(N) implies that
w(N) C unx(N). We thus have a chain of inclusions: A -ax C A-d C w(N) C un(N) = A - an.
Hence A - a, = A - d, so that ax and d differ by a unit in A. O

Let us now choose a basis (g1,...,9m) for M over A and write, as above, p; : M — A for the
i-th coordinate function (1 < ¢ < m). Applying Fact 2 to v = p; yields that ayx divides p;(e) in
A: hence there exists b; € A such that p;(e) = b; - an. We let f := > b; - g; € M. We have
e=> pi(e) - gi =an - f. Moreover, ux(f) = 1 since ux(e) = an and A is integral.

o Fact 3 : we have M = Keru,, + A - f, the sum being direct (i.e. (Keru,)NA-f=0).

Proof. Tt is clear that Keru, + A - f C M. For any x € M, we can write x = unx(x) - f + (x —
un(x) - f). One readily checks that ux(x) - f € A- f and that x — ux(x) - f € Kerun. Hence
M = Kerun + A - f. It is also clear that (Keruyx) N A - f =0, since ux(f) =1#0in A. O

o Fact 4 : we have N = (Keru, NN) + A - axf, the sum being direct.

Proof. The proof is very similar to that of the previous fact. Here, one decomposes any y € N
asy="b-anxf+ (y —ux(y) - f), where b € A is such that un(y) = bax. O

We can now prove the Theorem. Assume that, for some m > 1, the statement holds for free
A-modules of rank m. Let us prove that the theorem holds for free A-modules of rank m + 1.

Let M be a free A-module of rank m + 1, and let N C M be a non-zero submodule of M. Consider
the submodule M’ = Ker uy of M which we constructed above. By the previous Theorem, M’ is a free
A-module. And Fact 3 shows that M’ has rank m (a slight reformulation of Fact 3 indeed shows that
M ~ M’ x A). The construction also provides a; := axy € A\ {0} and a e; := f € M.

We are now in a position to apply the induction hypothesis: M’ is a free A-module of rank m,
and N’ := NN M’ is a submodule of M’. The induction hypothesis then yields that there exist a basis
(e2,...,em) of M' over A and non-zero elements as, ..., a, of A such that

o (ages,...,aney) is a basis for N over A,
e and a; divides a;41 for all 2 <i < n—1.

Fact 3 above shows that (eq, eo, . .., €,,) is a basis for M over A. Fact 4 proves that (aje1, ages, . .., anen)
is a basis for N over A. It remains to prove that a; divides as in A.

Consider the A-linear map v : M — A defined by v(e;) = v(e2) =1 and v(e;) = 0 for i > 3. Then
we have a1 = axy = anv(e1) = v(aner) = v(f) so a1 € v(N). Therefore, by maximality of unx(N), we
have A-ax = A-a; C v(N) C un(N) C A-an. Hence v(N) = A-a;. We also have ag = v(azez) € v(N).
Thus A - as C A - a1, which exactly means that a; divides as in A.

This concludes the proof of the second theorem. O
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