

Modules over PID

Let A be a ring, and M be an A-module. Recall that M is called *free* over A if it admits a (finite) basis over A. In other words M is free if and only if there exists a finite set (v_1, \ldots, v_r) of elements of M such that the natural A-linear map $A^r \to M$ defined by $(a_1, \ldots, a_r) \mapsto \sum_{k=1}^r a_k v_k$ is a bijection (i.e., an isomorphism of A-modules). Such a set (v_1, \ldots, v_r) is called a basis for M over A. One can define freeness without references to elements: a module M is free if and only if there exist an integer $r \ge 1$ and an isomorphism of A-modules $A^r \to M$.

Be aware that some (most) modules are not free. The most simple is example to bear in mind is the following: let $A = \mathbb{Z}$ be the ring of integers, and $n \ge 1$ be an integer. Then the A-module $M := \mathbb{Z}/n\mathbb{Z}$ is finitely generated over A (by 1_M) but cannot be free over A (otherwise, M would be isomorphic to A^m for some $m \ge 1...$ but, as sets, M is finite while A is not).

Here is a more elaborate example. Let k be a field, consider A := k[X, Y] be the ring of polynomials in two variables with coefficients in k. One can view M = A as a module over itself. It is clear that M is a free A-module of rank 1 (a basis of M over A is given by (1_A)). Let N denote the sub-Amodule of M generated by X and Y. This means that N consists of all polynomials of the form $P(X, Y) \cdot X + Q(X, Y) \cdot Y$ with $P, Q \in A$. Then N is finitely generated: the A-linear map $\phi : A^2 \to N$ given by $(P, Q) \mapsto PX + QY$ is surjective. But N is not free! Indeed, one can check that Ker ϕ is non zero (it contains (-Y, X) for instance), so that ϕ is not an isomorphism.

That being said, modules over PIDs are a bit more well-behaved:

Theorem 1. Let A be a principal ideal domain, and let M be a free A-module of rank m. Let N be a sub-A-module of M. Then N is free, and the rank n of N satisfies $0 \le n \le m$.

Proof. The proof requires a lemma.

Lemma 2. Let M be a module over a principal ideal domain A. Let $u : M \to A$ be an A-linear map. Then there is an A-linear isomorphism

$\mathbf{M} \simeq \operatorname{Ker} u \times \operatorname{Im} u.$

Proof. If u is the zero map $m \mapsto 0$, there is nothing to prove (since then $\operatorname{Im} u = \{0\}$ and $\operatorname{Ker} u = M$). So we can assume that $u \neq 0$. The image $\operatorname{Im} u$ is then a non-zero submodule of A i.e., a non-zero ideal of A. Since A is principal, there exists $a \in A \setminus \{0\}$ such that $\operatorname{Im} u = A \cdot a$. Note that, as an A-module, $A \cdot a \simeq A$ (because A is integral). Hence, any element $b \in A \cdot a$ can be written in a unique way as $b = r \cdot a$ with $r \in A$. Since $a \in \operatorname{Im} u$, there exists $m_0 \in M$ such that $u(m_0) = a$.

Consider the map λ : Ker $u \times \text{Im } u \to M$ defined by $\lambda(m, r \cdot a) \mapsto m + r \cdot m_0$. It is clear that λ is a morphism of A-modules. Let us now check that λ is bijective. This will provide the desired isomorphism.

Let $x = (m, r \cdot a) \in \text{Ker } u \times \text{Im } u$ be such that $\lambda(m, r \cdot a) = 0$. Then $m + r \cdot m_0 = 0$ in M. Suppose for a moment that $r \neq 0$, then we deduce that $u(m) = -r \cdot u(m_0)$. Since $m \in \text{Ker } u$ and $u(m_0) = a \neq 0$, this contradicts the fact that A is integral. Hence r = 0 and $m = -rm_0 = 0$. Thus x = 0 and λ is injective.

Now let $m \in M$ be an arbitrary element. Since $a = u(m_0)$ generates Im u as an A-module, we have $u(m) = r \cdot u(m_0)$ for some $r \in A$. We write $m = (m - r \cdot m_0) + r \cdot m_0$, and let $m_1 := m - r \cdot m_0$. We have $u(m_1) = u(m) - u(r \cdot m_0) = u(m) - ru(m_0) = 0$ so that $m_1 \in \text{Ker } u$. Hence $m = \lambda(m_1, r)$. Therefore λ is surjective.

We can now prove the Theorem by induction on the rank m of M. If m = 0, there is nothing to prove so we assume that $m \ge 1$.

Suppose that the Theorem holds for all free A-modules M' of rank m. Let us prove that the Theorem then holds for all free A-modules of rank m + 1. Let M be an arbitrary free A-module of rank m + 1, and let N be a submodule of M. By definition, we can find an A-linear isomorphism $\phi : M \to A^{m+1}$. Through ϕ , the submodule N of M is isomorphic to the submodule $\phi(N)$ of A^{m+1} . Hence, there is no loss of generality in assuming that $M = A^{m+1}$ and that N is a sub-A-module of A^{m+1} . Write $\pi' : A^{m+1} \to A$ for the projection on the last coordinate (defined by $(a_1, \ldots, a_{m+1}) \mapsto a_{m+1}$). The map π' is clearly A-linear. We restrict π' to N and write π for the resulting map. We apply the Lemma to the A-linear map $\pi : N \to A$. We have an isomorphism $N \simeq \text{Ker } \pi \times \text{Im } \pi$. It is clear that $\text{Ker } \pi = N \cap (A^m \times \{0\})$ and that $A^m \times \{0\} \simeq A^m$. Hence $\text{Ker } \pi$ is isomorphic to a sub-A-module of A^m . Since A^m is free of rank m, we may use our induction hypothesis: this yields that $\text{Ker } \pi$, being a submodule of a free module of rank m, is a free A-module of rank n with $n \leq m$. Thus, there exists an isomorphism of A-modules $\text{Ker } \pi \simeq A^n$.

On the other hand, $\operatorname{Im} \pi$ is a submodule of A (which means that $\operatorname{Im} \pi$ is an ideal in A). Since A is a PID, $\operatorname{Im} \pi$ is principal: we can find $a \in A$ such that $\operatorname{Im} \pi = A \cdot a$. If a = 0, it is clear that $\operatorname{Im} \pi = \{0\}$ is free of rank 0. If $a \neq 0$, we have an isomorphism $\operatorname{Im} \pi \simeq A$ which shows that $\operatorname{Im} \pi$ is free of rank 1.

Putting these ingredients together, we conclude that N is isomorphic, as an A-module, to either $A^n \times \{0\}$ or $A^n \times A \simeq A^{n+1}$. In any case, N is free and its rank r satisfies $r \leq n+1 \leq m+1$. This completes the induction step, and concludes the proof of the Theorem.

Theorem 3. Let A be a principal ideal domain and M be a free A-module of rank m. Let N be a non-zero submodule of N. By the previous theorem, N is free, and the rank n of N satisfies $1 \le n \le m$. There exist

- a basis (e_1, \ldots, e_m) of M over A,
- and non-zero elements a_1, \ldots, a_n in A,

such that

- (a_1e_1,\ldots,a_ne_n) is a basis of N over A,
- and, for all $i \in \{1, ..., n-1\}$, a_i divides a_{i+1} .

This theorem proves that there exists a basis of M which is "adapted to N". The ideals $A \cdot a_1, \ldots, A \cdot a_n$ are called the invariant factors of M in N. One can show that they are uniquely determined by M and N (warning: the elements a_1, \ldots, a_n are only determined up to multiplication by units in A).

Proof. We prove the Theorem by induction on the rank of M. The induction step requires the following construction.

Let M be a free A-module of rank $m \ge 1$, and $N \ne 0$ be a submodule of M. The set Hom_A(M, A) of A-linear maps $u : M \to A$ can be equipped with an A-module structure. We denote this A-module by M^{\vee} (we could call it the "dual of M").

For any $u \in M^{\vee}$, the image u(N) of u restricted to N is a sub-A-module of A i.e., u(N) is an ideal of A. Since A is a principal ideal domain, we may find a generator $a_u \in A$ of u(N). Consider the family $\mathcal{F} := \{u(N), u \in M^{\vee}\}$ of ideals of A. The family \mathcal{F} is non-empty since it contains the ideal 0 (the 0-map $v \mapsto 0$ is an element of M^{\vee}). Now, by a corollary of Theorem 1.3.1, any non-empty family of ideals in a principal ideal domain admits a maximal element.

This means that there exist $u_{\rm N} \in {\rm M}^{\vee}$ and an element $a_{\rm N} \in {\rm A}$ with $u_{\rm N}({\rm N}) = {\rm A} \cdot a_n$ such that, for all $v \in {\rm M}^{\vee}$, $v({\rm N}) \subset u_{\rm N}({\rm N})$. In other words, for all $v \in {\rm M}^{\vee}$, $a_{\rm N}$ divides a_v in A (or ${\rm A} \cdot a_v \subseteq {\rm A} \cdot a_{\rm N}$). By construction, we may find $e \in {\rm N}$ such that $u_{\rm N}(e) = a_{\rm N}$.

• Fact 1 : the element a_N is non-zero.

Proof. Let us choose a basis (g_1, \ldots, g_m) of M over A (such a basis exists by hypothesis), and denote by $p_i : M \to A$ the *i*-th coordinate function. This map is characterised by $p_i(g_j) = \delta_{ij}$ for all $1 \leq i, j \leq m$ and the fact that it is A-linear. We have $p_i \in M^{\vee} \setminus \{0\}$. Since $N \neq 0$, there is an index *i* such that $p_i(N) \neq 0$. For this index *i*, we have $0 \subsetneq p_i(N) \subset u_N(N)$, by maximality of $u_N(N)$. In particular, the element a_N cannot be zero since the ideal it generates contains a non-zero ideal $p_i(N)$.

• Fact 2 : for all $v \in M^{\vee}$, a_N divides v(e) in A.

Proof. Let $v \in M^{\vee}$. The ring A is principal, so we may introduce $d := \gcd(a_N, v(e))$. It suffices to show that $d = a_N$, up to a unit of A. By Bézout's theorem, there exist $\alpha, \beta \in A$ such that $d = \alpha a_N + \beta v(e)$. By construction $a_N = u_N(e)$, so that $d = \alpha u_N(e) + \beta v(e) = (\alpha u_N + \beta v)(e)$. Since M^{\vee} is an A-module, the map $w := \alpha u_N + \beta v$ belongs to M^{\vee} , and the identity we have just proved shows that $d \in w(N)$. Therefore $A \cdot d \subset w(N)$ because w(N) is an ideal in A. We have $A \cdot a_n \subset A \cdot d$ because d divides a_n . Moreover, the maximality of $u_N(N)$ implies that $w(N) \subset u_N(N)$. We thus have a chain of inclusions: $A \cdot a_N \subset A \cdot d \subset w(N) \subset u_N(N) = A \cdot a_N$. Hence $A \cdot a_n = A \cdot d$, so that a_N and d differ by a unit in A.

Let us now choose a basis (g_1, \ldots, g_m) for M over A and write, as above, $p_i : M \to A$ for the *i*-th coordinate function $(1 \leq i \leq m)$. Applying Fact 2 to $v = p_i$ yields that a_N divides $p_i(e)$ in A: hence there exists $b_i \in A$ such that $p_i(e) = b_i \cdot a_N$. We let $f := \sum_{i=1}^m b_i \cdot g_i \in M$. We have $e = \sum p_i(e) \cdot g_i = a_N \cdot f$. Moreover, $u_N(f) = 1$ since $u_N(e) = a_N$ and A is integral.

• Fact 3 : we have $M = \text{Ker } u_n + A \cdot f$, the sum being direct (i.e. $(\text{Ker } u_n) \cap A \cdot f = 0$).

Proof. It is clear that $\operatorname{Ker} u_n + A \cdot f \subset M$. For any $x \in M$, we can write $x = u_N(x) \cdot f + (x - u_N(x) \cdot f)$. One readily checks that $u_N(x) \cdot f \in A \cdot f$ and that $x - u_N(x) \cdot f \in \operatorname{Ker} u_N$. Hence $M = \operatorname{Ker} u_N + A \cdot f$. It is also clear that $(\operatorname{Ker} u_N) \cap A \cdot f = 0$, since $u_N(f) = 1 \neq 0$ in A. \Box

• Fact 4 : we have $N = (Ker u_n \cap N) + A \cdot a_N f$, the sum being direct.

Proof. The proof is very similar to that of the previous fact. Here, one decomposes any $y \in \mathbb{N}$ as $y = b \cdot a_{\mathbb{N}} f + (y - u_{\mathbb{N}}(y) \cdot f)$, where $b \in \mathbb{A}$ is such that $u_{\mathbb{N}}(y) = ba_{\mathbb{N}}$.

We can now prove the Theorem. Assume that, for some $m \ge 1$, the statement holds for free A-modules of rank m. Let us prove that the theorem holds for free A-modules of rank m + 1.

Let M be a free A-module of rank m + 1, and let $N \subset M$ be a non-zero submodule of M. Consider the submodule $M' = \text{Ker } u_N$ of M which we constructed above. By the previous Theorem, M' is a free A-module. And Fact 3 shows that M' has rank m (a slight reformulation of Fact 3 indeed shows that $M \simeq M' \times A$). The construction also provides $a_1 := a_N \in A \setminus \{0\}$ and a $e_1 := f \in M$.

We are now in a position to apply the induction hypothesis: M' is a free A-module of rank m, and N' := N \cap M' is a submodule of M'. The induction hypothesis then yields that there exist a basis (e_2, \ldots, e_m) of M' over A and non-zero elements a_2, \ldots, a_n of A such that

- (a_2e_2,\ldots,a_ne_n) is a basis for N over A,
- and a_i divides a_{i+1} for all $2 \leq i \leq n-1$.

Fact 3 above shows that (e_1, e_2, \ldots, e_m) is a basis for M over A. Fact 4 proves that $(a_1e_1, a_2e_2, \ldots, a_ne_n)$ is a basis for N over A. It remains to prove that a_1 divides a_2 in A.

Consider the A-linear map $v : \mathbf{M} \to \mathbf{A}$ defined by $v(e_1) = v(e_2) = 1$ and $v(e_i) = 0$ for $i \ge 3$. Then we have $a_1 = a_N = a_N v(e_1) = v(a_N e_1) = v(f)$ so $a_1 \in v(\mathbf{N})$. Therefore, by maximality of $u_N(\mathbf{N})$, we have $\mathbf{A} \cdot a_N = \mathbf{A} \cdot a_1 \subset v(\mathbf{N}) \subset u_N(\mathbf{N}) \subset \mathbf{A} \cdot a_N$. Hence $v(\mathbf{N}) = \mathbf{A} \cdot a_1$. We also have $a_2 = v(a_2 e_2) \in v(\mathbf{N})$. Thus $\mathbf{A} \cdot a_2 \subset \mathbf{A} \cdot a_1$, which exactly means that a_1 divides a_2 in \mathbf{A} .

This concludes the proof of the second theorem.