
Analytic Algebraic Number Theory
September 23, 2019

Exercise sheet #1

Exercises marked with a Ò are to be handed in before Monday September 30 at noon, in the
mailbox at Spiegelgasse 1. Each of these is worth a number of points, as indicated.

Questions marked with a ? are more difficult.

Exercise 1 (Finite fields exist!) {Ò : 3 points} – Let q be the power of a prime number p. Show
that there exists a unique field with q elements, denoted by Fq, up to isomorphism.
Hint: Start by proving the statement when q = p. Given the existence of Fp, fix an algebraic closure
Fp of Fp and consider the set Fq := {x ∈ Fp : xq − x = 0}. Prove that Fq is a field with q elements.

Exercise 2 (Sums of two squares in Fq) {Ò : 3 points} – Let Fq be the finite field with q
elements. We let p denote the characteristic of Fq. The goal of the exercise if to prove that, for any
x ∈ Fq, there exist a, b ∈ Fq such that x = a2 + b2. I.e., that any element of Fq is the sum of two
squares.

2.1. Treat the case where q is a power of 2 (i.e., p = 2).

We now assume that p > 3 is odd.

2.2. Consider the map f : F×q → F×q given by a 7→ a2. Prove that f is a group morphism. Compute
# Ker(f) and # Im(f).

2.3. Compute #{a2, a ∈ Fq}. Given x ∈ Fq, compute the number of values taken by b 7→ x− b2.
In particular, some elements of Fq are not squares.

2.4. Deduce that, for any x ∈ Fq, the sets {a2, a ∈ Fq} and {x − b2, b ∈ Fq} cannot be disjoint.
Conclude that x is the sum of two squares.

Exercise 3 {Ò : 3 points} –

3.1. Let p be a prime. Show that (p− 1)! ≡ −1 mod p.
Hint: factor xp−1 − 1 ∈ Fp[x] and evaluate at a well-chosen point.

3.2. (Wilson’s theorem) Let n > 1 be an integer. Show that

n is prime ⇔ n divides (n− 1)! + 1.

3.3. Let p be an odd prime number. Prove that

(p− 1)! ≡ (−1)(p−1)/2 ·
(
(p−1

2 )!
)2

mod p.

Deduce that −1 is a square modulo p if and only if p ≡ 1 mod 4.
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Exercise 4 (Euclidean ⇒ PID ⇒ UFD) – In this exercise, rings are assumed to be commutative,
to admit a unit element, and to have at least two elements.

Recall the following definitions. A ring A is called a Euclidean domain if it is an integral domain,
and if there is a map N : Ar {0} → Z>0 satisfying the following property: for all a, b ∈ A with b 6= 0,
there exists a unique pair (q, r) ∈ A2 such that a = bq + r and either r = 0 or N(r) < N(b). A ring A
is called a principal ideal domain (PID) if it is an integral domain, and if any ideal I of A is principal.
A ring A is called a unique factorisation domain (UFD) if it is an integral domain, and if the following
property holds: for any given a ∈ A, one can decompose a = u · p1 . . . pr where u ∈ A× is a unit and
p1, . . . , pr ∈ A are prime elements. Moreover, up to multiplication by a unit or changing the order of
the factors, this decomposition is unique.

4.1. Show that a Euclidean domain is a principal ideal domain.

4.2. Show that a principal ideal domain is a unique factorisation domain.

4.3.(?) Is a UFD necessarily a PID? Prove or give a counterexample.

4.4.(??) Is a PID necessarily Euclidean? Prove or give a counterexample.

Exercise 5 (Chevalley–Warning theorem) – Let q > 1 be a power of a prime p, and let Fq denote
the finite field with q elements. Fix integers s, n > 1. Consider a set of s homogeneous polynomials
fi(X1, . . . ,Xn) ∈ Fq[X1, . . . ,Xn] in n variables with coefficients in Fq. For any i ∈ {1, . . . , s}, write
di := deg fi. Let V := {(x1, . . . , xn) ∈ (Fq)n | fi(x1, . . . , xn) = 0 ∀i ∈ {1, . . . , s}} ⊂ (Fq)n denote the
set of common zeros of the fi’s. For any polynomial f ∈ Fq[X1, . . . ,Xn], let

σ(f) :=
∑

(x1,...,xn)∈(Fq)n

f(x1, . . . , xn) ∈ Fq.

5.1. Prove that yq−1 = 1 for all y ∈ F×q . For any integer k > 1, deduce that
∑

x∈Fq

xk =
{
−1 if q − 1 | k,
0 otherwise.

For non-negative integers a1, . . . , an, compute σ(Xa1
1 · · ·Xan

n ) when
∑n

j=1 aj < n(q − 1).

5.2. Let P(X1, . . . ,Xn) =
∏s

i=1
(
1 − fi(X1, . . . ,Xn)q−1) ∈ Fq[X1, . . . ,Xn]. Check that P is a lin-

ear combination of monomials Xa1
1 · · ·Xan

n with
∑n

j=1 aj 6 (q − 1)
∑s

i=1 di. Secondly, given

(x1, . . . , xn) ∈ (Fq)n, show that P(x1, . . . , xn) =
{

1 if x /∈ V,
0 if x ∈ V.

5.3. Deduce that σ(P) ≡ #V mod p.

5.4. Assume that
∑n

i=1 di < n. Show that σ(P) = 0.

5.5. Conclude that, if
∑n

i=1 di < n, then #V > p. In particular, under the same assumption, there
exists at least one element (x1, . . . , xn) ∈ V with (x1, . . . , xn) 6= (0, . . . , 0).

5.6. Application: a homogeneous polynomial of degree 2 (i.e., a conic) in n > 3 variables has at least
one non trivial zero in (Fq)n.
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