

## EXERCISE SHEET #1

Exercises marked with a are to be handed in before Monday September 30 at noon, in the mailbox at Spiegelgasse 1. Each of these is worth a number of points, as indicated. Questions marked with a ★ are more difficult.

**Exercise 1 (Finite fields exist!)**  $\{ \mathscr{P} : 3 \text{ points} \}$  – Let q be the power of a prime number p. Show that there exists a unique field with q elements, denoted by  $\mathbb{F}_q$ , up to isomorphism.

*Hint:* Start by proving the statement when q = p. Given the existence of  $\mathbb{F}_p$ , fix an algebraic closure  $\overline{\mathbb{F}_p}$  of  $\mathbb{F}_p$  and consider the set  $\mathbb{F}_q := \{x \in \overline{\mathbb{F}_p} : x^q - x = 0\}$ . Prove that  $\mathbb{F}_q$  is a field with q elements.

**Exercise 2** (Sums of two squares in  $\mathbb{F}_q$ )  $\{\mathscr{P} : 3 \text{ points}\}$  – Let  $\mathbb{F}_q$  be the finite field with q elements. We let p denote the characteristic of  $\mathbb{F}_q$ . The goal of the exercise if to prove that, for any  $x \in \mathbb{F}_q$ , there exist  $a, b \in \mathbb{F}_q$  such that  $x = a^2 + b^2$ . *I.e.*, that any element of  $\mathbb{F}_q$  is the sum of two squares.

**2.1.** Treat the case where q is a power of 2 (*i.e.*, p = 2).

We now assume that  $p \ge 3$  is odd.

- **2.2.** Consider the map  $f : \mathbb{F}_q^{\times} \to \mathbb{F}_q^{\times}$  given by  $a \mapsto a^2$ . Prove that f is a group morphism. Compute  $\# \operatorname{Ker}(f)$  and  $\# \operatorname{Im}(f)$ .
- **2.3.** Compute  $\#\{a^2, a \in \mathbb{F}_q\}$ . Given  $x \in \mathbb{F}_q$ , compute the number of values taken by  $b \mapsto x b^2$ . In particular, some elements of  $\mathbb{F}_q$  are not squares.
- **2.4.** Deduce that, for any  $x \in \mathbb{F}_q$ , the sets  $\{a^2, a \in \mathbb{F}_q\}$  and  $\{x b^2, b \in \mathbb{F}_q\}$  cannot be disjoint. Conclude that x is the sum of two squares.

## Exercise 3 $\{ \mathscr{O} : 3 \text{ points} \}$ –

**3.1.** Let p be a prime. Show that  $(p-1)! \equiv -1 \mod p$ . Hint: factor  $x^{p-1} - 1 \in \mathbb{F}_p[x]$  and evaluate at a well-chosen point.

**3.2.** (Wilson's theorem) Let  $n \ge 1$  be an integer. Show that

 $n \text{ is prime} \Leftrightarrow n \text{ divides } (n-1)! + 1.$ 

**3.3.** Let p be an odd prime number. Prove that

$$(p-1)! \equiv (-1)^{(p-1)/2} \cdot \left(\left(\frac{p-1}{2}\right)!\right)^2 \mod p.$$

Deduce that -1 is a square modulo p if and only if  $p \equiv 1 \mod 4$ .

**Exercise 4 (Euclidean**  $\Rightarrow$  **PID**  $\Rightarrow$  **UFD**) – In this exercise, rings are assumed to be commutative, to admit a unit element, and to have at least two elements.

Recall the following definitions. A ring A is called a Euclidean domain if it is an integral domain, and if there is a map  $N : A \setminus \{0\} \to \mathbb{Z}_{\geq 0}$  satisfying the following property: for all  $a, b \in A$  with  $b \neq 0$ , there exists a unique pair  $(q, r) \in A^2$  such that a = bq + r and either r = 0 or N(r) < N(b). A ring A is called a principal ideal domain (PID) if it is an integral domain, and if any ideal I of A is principal. A ring A is called a unique factorisation domain (UFD) if it is an integral domain, and if the following property holds: for any given  $a \in A$ , one can decompose  $a = u \cdot p_1 \dots p_r$  where  $u \in A^{\times}$  is a unit and  $p_1, \dots, p_r \in A$  are prime elements. Moreover, up to multiplication by a unit or changing the order of the factors, this decomposition is unique.

- **4.1.** Show that a Euclidean domain is a principal ideal domain.
- 4.2. Show that a principal ideal domain is a unique factorisation domain.
- **4.3.**  $(\star)$  Is a UFD necessarily a PID? Prove or give a counterexample.
- **4.4.**  $(\star\star)$  Is a PID necessarily Euclidean? Prove or give a counterexample.

**Exercise 5 (Chevalley–Warning theorem)** – Let q > 1 be a power of a prime p, and let  $\mathbb{F}_q$  denote the finite field with q elements. Fix integers  $s, n \ge 1$ . Consider a set of s homogeneous polynomials  $f_i(X_1, \ldots, X_n) \in \mathbb{F}_q[X_1, \ldots, X_n]$  in n variables with coefficients in  $\mathbb{F}_q$ . For any  $i \in \{1, \ldots, s\}$ , write  $d_i := \deg f_i$ . Let  $V := \{(x_1, \ldots, x_n) \in (\mathbb{F}_q)^n \mid f_i(x_1, \ldots, x_n) = 0 \ \forall i \in \{1, \ldots, s\}\} \subset (\mathbb{F}_q)^n$  denote the set of common zeros of the  $f_i$ 's. For any polynomial  $f \in \mathbb{F}_q[X_1, \ldots, X_n]$ , let

$$\sigma(f) := \sum_{(x_1, \dots, x_n) \in (\mathbb{F}_q)^n} f(x_1, \dots, x_n) \in \mathbb{F}_q.$$

**5.1.** Prove that  $y^{q-1} = 1$  for all  $y \in \mathbb{F}_q^{\times}$ . For any integer  $k \ge 1$ , deduce that  $\sum_{x \in \mathbb{F}_q} x^k = \begin{cases} -1 & \text{if } q-1 \mid k, \\ 0 & \text{otherwise.} \end{cases}$ For non-negative integers  $a_1, \ldots, a_n$ , compute  $\sigma(X_1^{a_1} \cdots X_n^{a_n})$  when  $\sum_{j=1}^n a_j < n(q-1)$ .

- **5.2.** Let  $P(X_1, \ldots, X_n) = \prod_{i=1}^s \left(1 f_i(X_1, \ldots, X_n)^{q-1}\right) \in \mathbb{F}_q[X_1, \ldots, X_n]$ . Check that P is a linear combination of monomials  $X_1^{a_1} \cdots X_n^{a_n}$  with  $\sum_{j=1}^n a_j \leq (q-1) \sum_{i=1}^s d_i$ . Secondly, given  $(x_1, \ldots, x_n) \in (\mathbb{F}_q)^n$ , show that  $P(x_1, \ldots, x_n) = \begin{cases} 1 & \text{if } x \notin V, \\ 0 & \text{if } x \in V. \end{cases}$
- **5.3.** Deduce that  $\sigma(\mathbf{P}) \equiv \#\mathbf{V} \mod p$ .
- **5.4.** Assume that  $\sum_{i=1}^{n} d_i < n$ . Show that  $\sigma(\mathbf{P}) = 0$ .
- **5.5.** Conclude that, if  $\sum_{i=1}^{n} d_i < n$ , then  $\# V \ge p$ . In particular, under the same assumption, there exists at least one element  $(x_1, \ldots, x_n) \in V$  with  $(x_1, \ldots, x_n) \ne (0, \ldots, 0)$ .
- **5.6.** Application: a homogeneous polynomial of degree 2 (*i.e.*, a conic) in  $n \ge 3$  variables has at least one non trivial zero in  $(\mathbb{F}_q)^n$ .