

EXERCISE SHEET #2

Exercises marked with a are to be handed in before Monday October 7 at noon, in the mailbox at Spiegelgasse 1. Each of these is worth a number of points, as indicated. Questions marked with a ★ are more difficult.

yuestions marked with a \star are more difficult

Exercise 1 – Let M be a free \mathbb{Z} -module of rank n, and consider a \mathbb{Z} -linear map $f : \mathbb{M} \to \mathbb{M}$.

- **1.1.** In a given \mathbb{Z} -basis $B = (e_1, \ldots, e_n)$ of M, the map f has a matrix $A \in M_n(\mathbb{Z})$. How do the matrices of f in two \mathbb{Z} -bases of M compare?
- **1.2.** Deduce from the previous question that the quantity $|\det f| \in \mathbb{Z}$ is defined unambiguously.
- **1.3.** Prove that there is an isomorphism of \mathbb{Z} -modules $M/\operatorname{Ker}(f) \cong \operatorname{Im}(f)$.
- **1.4.** Prove that the image Im(f) is a free \mathbb{Z} -module of rank $n' \leq n$.
- **1.5.** We assume here that the kernel of f is finite. Prove that $|\det f| = \#(M/\operatorname{Im}(f))$.

Now let K be a number field of degree n, and R be a subring of K which, as a \mathbb{Z} -module, is free of rank n. For any $\beta \in \mathbb{R} \setminus \{0\}$, the norm of β is the determinant, denoted by $\mathbb{N}(\beta)$, of the \mathbb{Z} -linear map $m_{\beta} : \mathbb{R} \to \mathbb{R}$ defined by $m_{\beta} : x \mapsto \beta x$.

- **1.6.** Show that $N(\beta) \in \mathbb{Z}$.
- **1.7.** Give a relation between $|N(\beta)|$ and the cardinality of the quotient ring $R/(R\beta)$.

Exercise 2 (Quadratic number fields) – Recall that a nonzero integer d is called squarefree if and only if, for any prime $p, p \mid d \Rightarrow p^2 \nmid d$. For any squarefree integer d, \sqrt{d} denotes the complex number \sqrt{d} (resp. $i\sqrt{-d}$) if d is positive (resp. negative).

Let K be a quadratic field extension of \mathbb{Q} (i.e., the extension K/ \mathbb{Q} has degree 2).

- **2.1.** Show that there exists a squarefree integer $d \neq 0$ such that $K = \mathbb{Q}(\sqrt{d})$.
- **2.2.** Prove that d is uniquely determined by K. In other words, for distinct nonzero squarefree integers d_1, d_2 , show that the fields $\mathbb{Q}(\sqrt{d_1})$ and $\mathbb{Q}(\sqrt{d_2})$ are not isomorphic.
- **2.3.** Make a list of the embeddings $K \hookrightarrow \mathbb{C}$.
- **2.4.** Let $x = a + b\sqrt{d} \in K$. Compute the trace $\operatorname{Tr}_{K/\mathbb{Q}}(x)$ and the norm $N_{K/\mathbb{Q}}(x)$, and deduce an expression of the minimal polynomial of x over \mathbb{Q} .

Exercise 3 (Integers in quadratic fields) $\{\mathscr{P} : \mathbf{5} \text{ points}\}$ – Let $d \neq 0$ be a squarefree integer and $\mathbf{K} = \mathbb{Q}(\sqrt{d})$ be the corresponding quadratic field. Let \mathcal{O}_d denote the set of algebraic integers in K. Recall that \mathcal{O}_d is a subring of K. We let \mathcal{O}_d^{\times} denote the group of units of \mathcal{O}_d .

3.1. Show that $x \in K$ belongs to \mathcal{O}_d if and only if $\operatorname{Tr}_{K/\mathbb{Q}}(x)$ and $\operatorname{N}_{K/\mathbb{Q}}(x)$ are integers.

3.2. Let $\mathbf{R} = \mathbb{Z}[\sqrt{d}]$. Prove that \mathbf{R} is a subring of \mathcal{O}_d .

If $d \equiv 2, 3 \mod 4$, we let $\alpha_d = \sqrt{d}$. If $d \equiv 1 \mod 4$, we set $\alpha_d := (1 + \sqrt{d})/2$.

3.3. Prove first that α_d is integral over \mathbb{Z} . Then show that $\mathcal{O}_d = \mathbb{Z}[\alpha_d]$.

3.4. Show that $x \in K$ is a unit of \mathcal{O}_d if and only if $N_{K/\mathbb{Q}}(x) = \pm 1$. *Hint:* $N_{K/\mathbb{Q}}$ *is multiplicative.*

3.5. If d < 0, determine \mathcal{O}_d^{\times} .

We now specialise to the case where $K = \mathbb{Q}(\sqrt{2})$ (i.e., d = 2), and we consider $\epsilon := 1 + \sqrt{2} \in \mathbb{Q}(\sqrt{2})$.

3.6. Show that ϵ is a unit in \mathcal{O}_2 , and that ϵ is not a root of unity. Deduce that \mathcal{O}_2^{\times} is infinite.

3.7. By using powers of ϵ , provide infinitely many solutions $(x, y) \in \mathbb{Z}^2$ to the equation $x^2 - 2y^2 = \pm 1$.

Exercise 4 – Let K be a field of characteristic 0 or a finite field. Fix an algebraic closure C of K. Assume that K'/K is a finite extension of degree n. Consider the set $S := \{\sigma : K' \to C : \sigma|_K = id\}$ of field morphisms $K' \to C$ whose restriction to K is trivial.

4.1. Show that S is finite and that #S = n.

Exercise 5 (Trace and norm in extensions) $\{\mathscr{P} : 5 \text{ points}\}$ – Let K be a field of characteristic 0 or a finite field, and L/K be a finite extension of degree n. Given $x \in L$, we let $m_x : L \to L$ denote the K-linear map "multiplication by x". We let $\operatorname{Tr}_{L/K}$ and $\operatorname{N}_{L/K}$ denote the trace and the norm (relative to the extension L/K), respectively.

- **5.1.** Prove that the trace $\operatorname{Tr}_{L/K} : L \to L$ is K-linear, and that $\operatorname{Tr}_{L/K}(y) \in K$ for all $y \in L$.
- **5.2.** Show that the norm $N_{L/K} : L \to L$ is multiplicative (that is to say, $N_{L/K}(yz) = N_{L/K}(y) N_{L/K}(z)$ for all $y, z \in L$), and that $N_{L/K}(y) \in K$ for all $y \in L$.
- **5.3.** Describe the restrictions to K of $Tr_{L/K} : L \to L$ and $N_{L/K} : L \to L$.
- **5.4.** Let M/L be an arbitrary extension, and $x \in M$ be algebraic over L. Show that x is algebraic over K, and relate the degree of x over L to its degree over K.
- **5.5.** Let M/L be a finite extension. Show that, for all $x \in M$, we have

$$\operatorname{Tr}_{L/K}(\operatorname{Tr}_{M/L}(x)) = \operatorname{Tr}_{M/K}(x)$$
, and $\operatorname{N}_{L/K}(\operatorname{N}_{M/L}(x)) = \operatorname{N}_{M/K}(x)$.

Let $\alpha \in L$. Assume that the minimal polynomial f_{α} of α over K has degree d. We denote the roots of f_{α} in \bar{K} by $\alpha_1, \ldots, \alpha_d$.

5.6. Prove that d divides [L:K] = n. Hint: consider the extension K(x) of K.

5.7. Prove that the characteristic polynomial of $m_{\alpha} : \mathcal{L} \to \mathcal{L}$ equals $f_{\alpha}^{[\mathcal{L}:\mathcal{K}]/d}$.

5.8. Deduce that
$$\operatorname{Tr}_{L/K}(\alpha) = \frac{[L:K]}{d} \sum_{i=1}^{d} \alpha_i$$
 and that $\operatorname{N}_{L/K}(\alpha) = \left(\prod_{i=1}^{d} \alpha_i\right)^{[L:K]/d}$.

Exercise 6 – Let K be a field of characteristic 0. Let A be a subring of K such that K is the field of fractions of A. Let L/K be a finite field extension of degree n. Fix an element $\alpha \in L$ which is integral over A.

- **6.1.** Prove that the coefficients of the characteristic polynomial of m_{α} are integral over A.
- **6.2.** Deduce that $Tr_{L/K}(\alpha)$ and $N_{L/K}(\alpha)$ are integral over A.