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XX Universitat ANALYTIC ALGEBRAIC NUMBER THEORY
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EXERCISE SHEET #3

Exercises marked with a #* are to be handed in before Monday October 14 at noon, in the
mailbox at Spiegelgasse 1. Each of these is worth a number of points, as indicated.
Questions marked with a x are more difficult.

Exercise 1 (Dedekind’s lemma and non-degeneracy of the trace) — Let G be a group, and
C be a field. Let oq,...,0, be distinct group homomorphism G — C*. We will say that o1,...,0,
are linearly independent over C if the following holds: the only n-tuple (A1,...,A,;) € C™ such that
YoirqiAi-oi(g) =0 for all g € G, is the trivial one (A1,...,A,) = (0,...,0).

1.1. Prove that o1, ..., 0, are linearly independent over C.

Now, let K be field of characteristic 0 or a finite field, and C be an algebraic closure of K. Let L/K be
a finite extension of degree n. As we’ve seen in an earlier exercise, there are n distinct K-embeddings
o;: L — C. Let z1,...,x, be a base for L. over K.

2
1.2. Prove that D(z1,...,2,) = (det [Ui(xj)]lgi,jgn) :

1.3. Prove that D(zy,...,x,) is non-zero. Hint: assume for a contradiction that D(z1,...,x,) = 0,
and show that there would then exist (A1,...,\p) € C™ such that i Nioi(x;) =0 for all j.

Exercise 2 (Explicit computation of the discriminant) - Let K be a field of characteristic 0,
and C be an algebraic closure of K. Let a € C be an algebraic element: we let L = K[a], n be the
degree of a over K, and let f(x) € K[z] denote the minimal polynomial of « over K.

Let o1,...,0, denote the n distinct K-embeddings L. — C. Let a,...,a;, denote the (distinct)
roots of f in C.

2.1. Consider the matrix A := [a?]1<; j<n. Prove that det A = [Lic;(ci — aj).

2.2. Show that, up to renumbering the «;’s, we have 0;(a) = «; for all i € {1,...,n}.

2.3. Deduce that D(1, o, 02, ...,a" 1) = (=1)"n=1/2. Np/k (f'(@)).

We now assume that f(x) € K[z] is of the following form: f(z) = 2™ + ax + b for some a,b € K.
2.4. Deduce from the previous question that

D(1,a,...,a" 1) = (=1)"= D2 ("t 4 (=1)" L (n — 1)" " ta").

2.5. Specialise the above formula in the case where n = 2. What do you notice?

2.6. In the case where n = 3, give a general formula for D(1, a, a?) in terms of the coefficients of f.

Exercise 3 — Let A be a ring, and M be an A-module. Given a sub-A-module M’ of M, prove that

M is noetherian <= M’ and M/M’ are noetherian.
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Exercise 4 (A PID which is not Euclidean) {¢* : 5 points} — Let a := LQ‘/E € C, and consider

the subring R := Z[a] of C. We’ve proved in the second exercise class that R is not a Euclidean domain.
The goal of this exercise is to prove that R is a PID. Since R is a subring of C, it is clear that R is an
integral domain: it remains to prove that all ideals in R are principal.

We say that a pair (a,b) € R x R\ {0} has division with remainder in R (DWR) if there exists a
pair ¢, € R with a = bg + r and |r| < |b| (here |.| denotes the usual absolute value on C, restricted
to R € C). We let

Ui={r+z reR, zeCs.t. |z|<1} CC

denote the union of the open disks of radius 1 centred at elements of R.
4.1. Let z € C\ U. Prove that ‘Im(z) - @n‘ > @, for all integers n.
4.2. Show that the sum of two elements in C \ U lies in U.

4.3. Prove the following assertions:

e (a,b) has DWR in R if and only if a/b € C lies in U.
o If (a,b) does not have DWR in R, then (2a,b) has DWR in R.
o If (a,b) does not have DWR in R then one of (aa,b) or ((1 — a)a,b) has DWR in R.

4.4. Show that 2 is coprime to « in R. Show that 2 is also coprime to 1 — « in R.

4.5. Conclude that R is a PID. Hint: If I C R is a proper ideal, consider g € 1~ {0} such that |g| is
minimal. Prove that g generates 1.

Exercise 5 (A Diophantine equation) {¢® : 5 points} — In this exercise, we determine the solu-
tions (x,y) € Z? to
P2 41= y3.

5.1. Let A be a principal ideal domain, and n > 2 be an integer. Let u,v € A be two coprime elements
whose product is an n-th power in A. Show that, up to multiplication by units, both « and v
are n-th powers in A.

Let R = Z[i] denote the ring of Gaussian integers. Recall that R is a PID, and that R* = {£1, %i}.
5.2. Prove that, up to multiplication by units, the only prime divisors of 2 in R are 1 4+ ¢ and 1 — 3.
5.3. Let € Z be an odd integer. Can 22 + 1 be a cube in Z? Hint : what are the cubes modulo 4%
Now let (z,y) € Z? be a solution to the equation 22 + 1 = y3. In R, we have y = (z +i)(z — 7).

5.4. Prove that x 4+ and x — ¢ are coprime in R. Hint : let ¢ € R be a prime element dividing them
both, then q divides their sum and difference.

5.5. Deduce from question 5.1 that there exist integers a,b € Z such that z + i = (a + ib)3. Deduce
that
x = a(a® — 3b%) and 1 = (3a® — b?)b.

5.6. Conclude that the only solution (z,y) € Z? to the equation 22 + 1 = y3 is (z,y) = (0, 1).

Hence, a non-zero square in Z is never followed by a cube.
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