
Analytic Algebraic Number Theory
October 7, 2019

Exercise sheet #3

Exercises marked with a Ò are to be handed in before Monday October 14 at noon, in the
mailbox at Spiegelgasse 1. Each of these is worth a number of points, as indicated.

Questions marked with a ? are more difficult.

Exercise 1 (Dedekind’s lemma and non-degeneracy of the trace) – Let G be a group, and
C be a field. Let σ1, . . . , σn be distinct group homomorphism G → C×. We will say that σ1, . . . , σn

are linearly independent over C if the following holds: the only n-tuple (λ1, . . . , λn) ∈ Cn such that∑n
i=1 λi · σi(g) = 0 for all g ∈ G, is the trivial one (λ1, . . . , λn) = (0, . . . , 0).

1.1. Prove that σ1, . . . , σn are linearly independent over C.

Now, let K be field of characteristic 0 or a finite field, and C be an algebraic closure of K. Let L/K be
a finite extension of degree n. As we’ve seen in an earlier exercise, there are n distinct K-embeddings
σi : L→ C. Let x1, . . . , xn be a base for L over K.

1.2. Prove that D(x1, . . . , xn) =
(
det

[
σi(xj)

]
16i,j6n

)2
.

1.3. Prove that D(x1, . . . , xn) is non-zero. Hint: assume for a contradiction that D(x1, . . . , xn) = 0,
and show that there would then exist (λ1, . . . , λn) ∈ Cn such that

∑n
i=1 λiσi(xj) = 0 for all j.

Exercise 2 (Explicit computation of the discriminant) – Let K be a field of characteristic 0,
and C be an algebraic closure of K. Let α ∈ C be an algebraic element: we let L = K[α], n be the
degree of α over K, and let f(x) ∈ K[x] denote the minimal polynomial of α over K.

Let σ1, . . . , σn denote the n distinct K-embeddings L → C. Let α1, . . . , αn denote the (distinct)
roots of f in C.

2.1. Consider the matrix A := [αj
i ]16i,j6n. Prove that det A = ∏

i<j(αi − αj).

2.2. Show that, up to renumbering the αi’s, we have σi(α) = αi for all i ∈ {1, . . . , n}.

2.3. Deduce that D(1, α, α2, . . . , αn−1) = (−1)n(n−1)/2 ·NL/K (f ′(α)).

We now assume that f(x) ∈ K[x] is of the following form: f(x) = xn + ax+ b for some a, b ∈ K.

2.4. Deduce from the previous question that

D(1, α, . . . , αn−1) = (−1)n(n−1)/2 ·
(
nnbn−1 + (−1)n−1(n− 1)n−1an).

2.5. Specialise the above formula in the case where n = 2. What do you notice?

2.6. In the case where n = 3, give a general formula for D(1, α, α2) in terms of the coefficients of f .

Exercise 3 – Let A be a ring, and M be an A-module. Given a sub-A-module M′ of M, prove that

M is noetherian ⇐⇒ M′ and M/M′ are noetherian.
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Exercise 4 (A PID which is not Euclidean) {Ò : 5 points} – Let α := 1+i
√

19
2 ∈ C, and consider

the subring R := Z[α] of C. We’ve proved in the second exercise class that R is not a Euclidean domain.
The goal of this exercise is to prove that R is a PID. Since R is a subring of C, it is clear that R is an
integral domain: it remains to prove that all ideals in R are principal.

We say that a pair (a, b) ∈ R×R r {0} has division with remainder in R (DWR) if there exists a
pair q, r ∈ R with a = bq + r and |r| < |b| (here |.| denotes the usual absolute value on C, restricted
to R ⊂ C). We let

U := {r + z, r ∈ R, z ∈ C s.t. |z| < 1} ⊂ C

denote the union of the open disks of radius 1 centred at elements of R.

4.1. Let z ∈ Cr U. Prove that
∣∣∣Im(z)−

√
19
2 n

∣∣∣ > √
3

2 , for all integers n.

4.2. Show that the sum of two elements in Cr U lies in U.

4.3. Prove the following assertions:

• (a, b) has DWR in R if and only if a/b ∈ C lies in U.
• If (a, b) does not have DWR in R, then (2a, b) has DWR in R.
• If (a, b) does not have DWR in R then one of (αa, b) or ((1− α)a, b) has DWR in R.

4.4. Show that 2 is coprime to α in R. Show that 2 is also coprime to 1− α in R.

4.5. Conclude that R is a PID. Hint: If I ⊂ R is a proper ideal, consider g ∈ I r {0} such that |g| is
minimal. Prove that g generates I.

Exercise 5 (A Diophantine equation) {Ò : 5 points} – In this exercise, we determine the solu-
tions (x, y) ∈ Z2 to

x2 + 1 = y3.

5.1. Let A be a principal ideal domain, and n > 2 be an integer. Let u, v ∈ A be two coprime elements
whose product is an n-th power in A. Show that, up to multiplication by units, both u and v
are n-th powers in A.

Let R = Z[i] denote the ring of Gaussian integers. Recall that R is a PID, and that R× = {±1,±i}.

5.2. Prove that, up to multiplication by units, the only prime divisors of 2 in R are 1 + i and 1− i.

5.3. Let x ∈ Z be an odd integer. Can x2 + 1 be a cube in Z? Hint : what are the cubes modulo 4?

Now let (x, y) ∈ Z2 be a solution to the equation x2 + 1 = y3. In R, we have y3 = (x+ i)(x− i).

5.4. Prove that x+ i and x− i are coprime in R. Hint : let q ∈ R be a prime element dividing them
both, then q divides their sum and difference.

5.5. Deduce from question 5.1 that there exist integers a, b ∈ Z such that x+ i = (a+ ib)3. Deduce
that

x = a(a2 − 3b2) and 1 = (3a2 − b2)b.

5.6. Conclude that the only solution (x, y) ∈ Z2 to the equation x2 + 1 = y3 is (x, y) = (0, 1).

Hence, a non-zero square in Z is never followed by a cube.
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