

EXERCISE SHEET #3

Exercises marked with a are to be handed in before Monday October 14 at noon, in the mailbox at Spiegelgasse 1. Each of these is worth a number of points, as indicated. Questions marked with a ★ are more difficult.

Exercise 1 (Dedekind's lemma and non-degeneracy of the trace) – Let G be a group, and C be a field. Let $\sigma_1, \ldots, \sigma_n$ be distinct group homomorphism $G \to C^{\times}$. We will say that $\sigma_1, \ldots, \sigma_n$ are linearly independent over C if the following holds: the only *n*-tuple $(\lambda_1, \ldots, \lambda_n) \in C^n$ such that $\sum_{i=1}^n \lambda_i \cdot \sigma_i(g) = 0$ for all $g \in G$, is the trivial one $(\lambda_1, \ldots, \lambda_n) = (0, \ldots, 0)$.

1.1. Prove that $\sigma_1, \ldots, \sigma_n$ are linearly independent over C.

Now, let K be field of characteristic 0 or a finite field, and C be an algebraic closure of K. Let L/K be a finite extension of degree n. As we've seen in an earlier exercise, there are n distinct K-embeddings $\sigma_i : L \to C$. Let x_1, \ldots, x_n be a base for L over K.

- **1.2.** Prove that $D(x_1, \ldots, x_n) = \left(\det \left[\sigma_i(x_j)\right]_{1 \leq i, j \leq n}\right)^2$.
- **1.3.** Prove that $D(x_1, \ldots, x_n)$ is non-zero. *Hint: assume for a contradiction that* $D(x_1, \ldots, x_n) = 0$, and show that there would then exist $(\lambda_1, \ldots, \lambda_n) \in \mathbb{C}^n$ such that $\sum_{i=1}^n \lambda_i \sigma_i(x_j) = 0$ for all j.

Exercise 2 (Explicit computation of the discriminant) – Let K be a field of characteristic 0, and C be an algebraic closure of K. Let $\alpha \in C$ be an algebraic element: we let $L = K[\alpha]$, n be the degree of α over K, and let $f(x) \in K[x]$ denote the minimal polynomial of α over K.

Let $\sigma_1, \ldots, \sigma_n$ denote the *n* distinct K-embeddings $L \to C$. Let $\alpha_1, \ldots, \alpha_n$ denote the (distinct) roots of *f* in C.

- **2.1.** Consider the matrix $A := [\alpha_i^j]_{1 \le i,j \le n}$. Prove that det $A = \prod_{i < j} (\alpha_i \alpha_j)$.
- **2.2.** Show that, up to renumbering the α_i 's, we have $\sigma_i(\alpha) = \alpha_i$ for all $i \in \{1, \ldots, n\}$.
- **2.3.** Deduce that $D(1, \alpha, \alpha^2, ..., \alpha^{n-1}) = (-1)^{n(n-1)/2} \cdot N_{L/K}(f'(\alpha)).$

We now assume that $f(x) \in K[x]$ is of the following form: $f(x) = x^n + ax + b$ for some $a, b \in K$.

2.4. Deduce from the previous question that

$$D(1, \alpha, \dots, \alpha^{n-1}) = (-1)^{n(n-1)/2} \cdot (n^n b^{n-1} + (-1)^{n-1} (n-1)^{n-1} a^n).$$

- **2.5.** Specialise the above formula in the case where n = 2. What do you notice?
- **2.6.** In the case where n = 3, give a general formula for $D(1, \alpha, \alpha^2)$ in terms of the coefficients of f.

Exercise 3 – Let A be a ring, and M be an A-module. Given a sub-A-module M' of M, prove that M is noetherian \iff M' and M/M' are noetherian. **Exercise 4 (A PID which is not Euclidean)** $\{\mathscr{P}: 5 \text{ points}\}$ – Let $\alpha := \frac{1+i\sqrt{19}}{2} \in \mathbb{C}$, and consider the subring $\mathbb{R} := \mathbb{Z}[\alpha]$ of \mathbb{C} . We've proved in the second exercise class that \mathbb{R} is not a Euclidean domain. The goal of this exercise is to prove that \mathbb{R} is a PID. Since \mathbb{R} is a subring of \mathbb{C} , it is clear that \mathbb{R} is an integral domain: it remains to prove that all ideals in \mathbb{R} are principal.

We say that a pair $(a, b) \in \mathbb{R} \times \mathbb{R} \setminus \{0\}$ has division with remainder in R (DWR) if there exists a pair $q, r \in \mathbb{R}$ with a = bq + r and |r| < |b| (here |.| denotes the usual absolute value on \mathbb{C} , restricted to $\mathbb{R} \subset \mathbb{C}$). We let

$$\mathbf{U} := \{ r + z, \ r \in \mathbf{R}, \ z \in \mathbb{C} \text{ s.t. } |z| < 1 \} \subset \mathbb{C}$$

denote the union of the open disks of radius 1 centred at elements of R.

4.1. Let $z \in \mathbb{C} \setminus U$. Prove that $\left| \operatorname{Im}(z) - \frac{\sqrt{19}}{2}n \right| \ge \frac{\sqrt{3}}{2}$, for all integers n.

4.2. Show that the sum of two elements in $\mathbb{C} \setminus U$ lies in U.

4.3. Prove the following assertions:

- (a, b) has DWR in R if and only if $a/b \in \mathbb{C}$ lies in U.
- If (a, b) does not have DWR in R, then (2a, b) has DWR in R.
- If (a, b) does not have DWR in R then one of $(\alpha a, b)$ or $((1 \alpha)a, b)$ has DWR in R.
- **4.4.** Show that 2 is coprime to α in R. Show that 2 is also coprime to 1α in R.
- **4.5.** Conclude that R is a PID. *Hint: If* $I \subset R$ *is a proper ideal, consider* $g \in I \setminus \{0\}$ *such that* |g| *is minimal. Prove that* g generates I.

Exercise 5 (A Diophantine equation) $\{\mathscr{O} : 5 \text{ points}\}$ – In this exercise, we determine the solutions $(x, y) \in \mathbb{Z}^2$ to

$$x^2 + 1 = y^3.$$

- **5.1.** Let A be a principal ideal domain, and $n \ge 2$ be an integer. Let $u, v \in A$ be two coprime elements whose product is an *n*-th power in A. Show that, up to multiplication by units, both u and v are *n*-th powers in A.
- Let $R = \mathbb{Z}[i]$ denote the ring of Gaussian integers. Recall that R is a PID, and that $R^{\times} = \{\pm 1, \pm i\}$.
- **5.2.** Prove that, up to multiplication by units, the only prime divisors of 2 in R are 1 + i and 1 i.
- **5.3.** Let $x \in \mathbb{Z}$ be an odd integer. Can $x^2 + 1$ be a cube in \mathbb{Z} ? *Hint* : what are the cubes modulo 4?
- Now let $(x, y) \in \mathbb{Z}^2$ be a solution to the equation $x^2 + 1 = y^3$. In R, we have $y^3 = (x + i)(x i)$.
- **5.4.** Prove that x + i and x i are coprime in R. *Hint* : let $q \in \mathbb{R}$ be a prime element dividing them both, then q divides their sum and difference.
- **5.5.** Deduce from question **5.1** that there exist integers $a, b \in \mathbb{Z}$ such that $x + i = (a + ib)^3$. Deduce that

$$x = a(a^2 - 3b^2)$$
 and $1 = (3a^2 - b^2)b$

5.6. Conclude that the only solution $(x, y) \in \mathbb{Z}^2$ to the equation $x^2 + 1 = y^3$ is (x, y) = (0, 1).

Hence, a non-zero square in \mathbb{Z} is never followed by a cube.