

EXERCISE SHEET #4

Exercises marked with a are to be handed in before Monday October 21 at noon, in the mailbox at Spiegelgasse 1. Each of these is worth a number of points, as indicated. Questions marked with a ★ are more difficult.

**Exercise 1 (Eisenstein's criterion)** – Let A be a principal ideal domain, with field of fractions K. Let  $F = \sum_{i=0}^{d} a_i X^i \in A[X]$  be a monic polynomial of degree  $d \ge 1$ . We assume that there exists a prime element p in A such that  $a_i \in pA$  for all  $0 \le i \le d-1$ , and such that  $a_0 \notin p^2A$ . The goal of the exercise is to prove that F is irreducible in A[X] (and in K[X]).

We let R denote the quotient ring A/pA, and  $r : A[X] \to R[X]$  denote the induced reduction map.

- **1.1.** Prove that r is a ring morphism. What does r(F) look like?
- Assume that  $F = G \cdot H$  with  $G, H \in K[X]$ . Since F is monic, we may assume that G, H are monic.
- **1.2.** Show that the roots of G, H in K are integral over A. Deduce that  $G, H \in A[X]$ .
- **1.3.** Prove that there exists  $d' \in \mathbb{Z}_{\geq 0}$  and  $G_1, H_1 \in A[X]$  with  $G = X^{d'} + p \cdot G_1$  and  $H = X^{d-d'} + p \cdot H_1$ , with deg  $G_1 < \deg G$  and deg  $H_1 < \deg H$ .
- **1.4.** Prove that one of G or H is constant. Conclude that F is irreducible in A[X].

**Exercise 2 (Cyclotomic polynomials)** – Let  $m \ge 2$  be an integer and let  $U_m^* \subset \mathbb{C}^{\times}$  denotes the set of primitive *m*-th roots of unity. Consider the *m*-th cyclotomic polynomial:

$$\Phi_m(\mathbf{X}) := \prod_{\zeta \in \mathbf{U}_m^*} (\mathbf{X} - \zeta) \in \mathbb{C}[\mathbf{X}].$$

- **2.1.** Show that  $\prod_{d|m} \Phi_d(\mathbf{X}) = \mathbf{X}^m 1$ , where the product is over positive divisors d of m.
- **2.2.** Prove that  $\Phi_m(X)$  is a monic polynomial of degree  $\varphi(m)$  (where  $\varphi$  is Euler's totient function).

For the rest of the exercise, we assume that  $m = p^k$ , for a prime number p and a certain  $k \ge 0$ .

- **2.4.** Prove that  $\Phi_m(1) = p$ .
- **2.5.** For  $k \ge 1$ , show that  $\Phi_m(\mathbf{X}) \equiv \Phi_p(\mathbf{X})^{p^{k-1}} \mod p$ .
- **2.6.** Prove that  $\Phi_m(X)$  is irreducible. *Hint: use Eisenstein's criterion on*  $\Phi_m(X+1)$ *, and the previous question. Start by treating the case* k = 1*.*

**Exercise 3** – Let K be a number field of degree n over  $\mathbb{Q}$ . We denote the ring of algebraic integers in K by  $\mathcal{O}_{K}$ . We let  $\sigma_{1}, \ldots, \sigma_{n}$  denote the  $\mathbb{Q}$ -embeddings of K in  $\mathbb{C}$ .

**3.1.** Prove the existence of a basis  $\alpha_1, \ldots, \alpha_n$  for K over  $\mathbb{Q}$  with  $\alpha_i \in \mathcal{O}_K$  for all  $i \in \{1, \ldots, n\}$ .

Given such a basis  $\alpha_1, \ldots, \alpha_n$ , we let  $\delta := \det (\sigma_i(\alpha_j))_{1 \le i,j \le n}$ . Note that  $\delta^2 = D(\alpha_1, \ldots, \alpha_n) := \Delta$ .

**3.2.** Explain why  $\delta$  is an algebraic integer, and why  $\Delta$  is a non-zero (rational) integer.

Let  $\beta \in \mathcal{O}_{\mathrm{K}}$ . There exists a unique *n*-tuple  $(x_1, \ldots, x_n) \in \mathbb{Q}^n$  such that  $\beta = \sum_{j=1}^n x_j \alpha_j$ .

- **3.3.** For  $1 \leq k \leq n$ , let  $\gamma_k$  denote the determinant of the matrix  $[b_{i,j}]_{1 \leq i,j \leq n}$  where  $b_{i,j} = \sigma_i(\alpha_j)$  for  $1 \leq i \leq n$  and  $j \neq k$ , and  $b_{i,k} = \sigma_i(\beta)$ . Prove that  $x_j = \gamma_j/\delta$  for all  $1 \leq j \leq n$ .
- **3.4.** Prove that  $\Delta x_j$  is an integer.
- **3.5.** Deduce that, for any  $\beta \in \mathcal{O}_{\mathrm{K}}$ , there exists a unique *n*-uple of integers  $m_1, \ldots, m_n \in \mathbb{Z}$  such that  $\beta = \frac{1}{\Delta} \sum_{i=1}^n m_i \cdot \alpha_i$ , and  $\Delta$  divides  $m_j^2$  in  $\mathbb{Z}$  for all *j*.
- **3.6.** Assume that  $\alpha_1, \ldots, \alpha_n$  are algebraic integers such that  $D(\alpha_1, \ldots, \alpha_n)$  is a square-free integer. Prove that  $\alpha_1, \ldots, \alpha_n$  is a  $\mathbb{Z}$ -basis of  $\mathcal{O}_K$ .

**Exercise 4 (Cyclotomic fields)**  $\{\mathscr{O} : \mathbf{6} \text{ points}\}$  – Let p be a prime number and  $k \ge 1$ . We let  $m := p^k$  and we fix a primitive m-th root of unity  $\zeta_m$  (in  $\mathbb{C}$  for example). We let  $\mathbf{K} = \mathbb{Q}(\zeta_m)$ , and  $\mathcal{O}_{\mathbf{K}}$  denote the ring of integers of K. The goal of the exercise is to prove that  $\mathcal{O}_{\mathbf{K}} = \mathbb{Z}[\zeta_m]$ .

**4.1.** What is the degree of K over  $\mathbb{Q}$ ? For brevity, we let  $n = [K : \mathbb{Q}]$ .

Write  $\lambda_m := 1 - \zeta_m \in \mathbb{Z}[\zeta_m]$ , and  $\Delta_m := D(1, \zeta_m, \dots, \zeta_m^{n-1})$ . It is clear that  $K = \mathbb{Q}(\lambda_m)$  and that we have  $\mathbb{Z}[\lambda_m] \subset \mathcal{O}_K$ .

- **4.2.** Prove that  $\Delta_m$  is an integer dividing  $m^n$  in  $\mathbb{Z}$ . *Hint: The minimal polynomial of*  $\zeta_m$  *is*  $\Phi_m(X)$ , we have  $X^m 1 = \Phi_m(X) \cdot f(X)$  for a certain  $f \in \mathbb{Z}[X]$  and we know that  $\Delta_m = N_{K/\mathbb{Q}}(\Phi'_m(\zeta_m))$ .
- **4.3.** Prove that  $\mathbb{Z}[\zeta_m] = \mathbb{Z}[\lambda_m]$  and that  $D(1, \lambda_m, \lambda_m^2, \dots, \lambda_m^{n-1}) = \Delta_m$ . *Hint:*  $\Delta_m$  can be expressed as a Vandermonde determinant.
- **4.4.** Show that  $N_{K/\mathbb{Q}}(\lambda_m) = p$ . For  $j \in \{1, \ldots, n-1\}$ , prove that  $\lambda_m$  divides  $1 \zeta_m^j$  in  $\mathbb{Z}[\zeta_m]$ . Deduce that  $p/\lambda_m^j$  lies in  $\mathbb{Z}[\lambda_m]$  for all  $0 \leq j \leq n-1$ .
- **4.5.** For any  $\beta \in \mathcal{O}_{\mathrm{K}}$ , for any  $j \in \{0, \ldots, n-1\}$ , prove that  $\beta p / \lambda_m^j$  lies in  $\mathcal{O}_{\mathrm{K}}$ .

The *n*-tuple  $(1, \lambda_m, \ldots, \lambda_m^{n-1})$  is a Q-basis of K composed of algebraic integers. By **3.5** above, any  $\beta \in \mathcal{O}_K$  can be written in a unique way as  $\beta = \Delta_m^{-1} \cdot (m_0 + m_1 \lambda + \cdots + m_{n-1} \lambda_m^{n-1})$ , where  $m_0, \ldots, m_{n-1}$  are integers such that  $\Delta_m$  divides  $m_j^2$ .

Assume for a contradiction that  $\mathbb{Z}[\lambda_m]$  is a strict submodule of  $\mathcal{O}_K$ .

- **4.7.** Prove that there exists  $\beta_0 \in \mathcal{O}_K$  of the form  $\beta_0 = p^{-1} \cdot (a_j \lambda_m^j + \cdots + a_{n-1} \lambda_m^{n-1})$  for some  $j \in \{1, \ldots, n-1\}$ , where  $a_j, \ldots, a_{n-1}$  are integers, and p does not divide  $m_j$ .
- **4.8.** Prove that  $a_j$  is divisible by  $\lambda_m$  in  $\mathcal{O}_{\mathrm{K}}$ . *Hint: multiply*  $\beta_0$  by  $p/\lambda_m^{j-1}$ .
- **4.9.** Comparing  $N_{K/\mathbb{Q}}(a_j)$  and  $N_{K/\mathbb{Q}}(\lambda_m)$ , obtain a contradiction. Conclude that  $\mathcal{O}_K = \mathbb{Z}[\zeta_m]$ .

**Exercise 5 (A Diophantine equation)**  $\{\mathscr{X} : 4 \text{ points}\}$  – In 1659, Fermat claimed that he could solve the following problem: Determine all solutions  $(x, y) \in \mathbb{Z}^2$  of the equation  $y^2 = x^3 - 2$ .

Solve the problem. *Hint: You may want to use*  $R = \mathbb{Z}[\sqrt{-2}]$ . *First prove that* R *is Euclidean for the norm map.*