
Analytic Algebraic Number Theory
October 14, 2019

Exercise sheet #4

Exercises marked with a Ò are to be handed in before Monday October 21 at noon, in the
mailbox at Spiegelgasse 1. Each of these is worth a number of points, as indicated.

Questions marked with a ? are more difficult.

Exercise 1 (Eisenstein’s criterion) – Let A be a principal ideal domain, with field of fractions K.
Let F =

∑d
i=0 aiXi ∈ A[X] be a monic polynomial of degree d > 1. We assume that there exists a

prime element p in A such that ai ∈ pA for all 0 6 i 6 d− 1, and such that a0 /∈ p2A. The goal of the
exercise is to prove that F is irreducible in A[X] (and in K[X]).

We let R denote the quotient ring A/pA, and r : A[X]→ R[X] denote the induced reduction map.

1.1. Prove that r is a ring morphism. What does r(F) look like?

Assume that F = G ·H with G,H ∈ K[X]. Since F is monic, we may assume that G,H are monic.

1.2. Show that the roots of G,H in K̄ are integral over A. Deduce that G,H ∈ A[X].

1.3. Prove that there exists d′ ∈ Z>0 and G1,H1 ∈ A[X] with G = Xd′+p ·G1 and H = Xd−d′+p ·H1,
with deg G1 < deg G and deg H1 < deg H.

1.4. Prove that one of G or H is constant. Conclude that F is irreducible in A[X].

Exercise 2 (Cyclotomic polynomials) – Let m > 2 be an integer and let U∗m ⊂ C× denotes the
set of primitive m-th roots of unity. Consider the m-th cyclotomic polynomial:

Φm(X) :=
∏
ζ∈U∗m

(X− ζ) ∈ C[X].

2.1. Show that
∏
d|m

Φd(X) = Xm − 1, where the product is over positive divisors d of m.

2.2. Prove that Φm(X) is a monic polynomial of degree ϕ(m) (where ϕ is Euler’s totient function).

2.3. Prove that Φm(X) has integral coefficients. Hint: You may argue by induction on m. For the
induction step, write down the Euclidean division of Xm − 1 by

∏
d|m
d<m

Φd(X) in Z[X] (why is

there such an Euclidean division?) and use uniqueness of the Euclidean division in C[X].

For the rest of the exercise, we assume that m = pk, for a prime number p and a certain k > 0.

2.4. Prove that Φm(1) = p.

2.5. For k > 1, show that Φm(X) ≡ Φp(X)pk−1 mod p.

2.6. Prove that Φm(X) is irreducible. Hint: use Eisenstein’s criterion on Φm(X+1), and the previous
question. Start by treating the case k = 1.
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Exercise 3 – Let K be a number field of degree n over Q. We denote the ring of algebraic integers
in K by OK. We let σ1, . . . , σn denote the Q-embeddings of K in C.

3.1. Prove the existence of a basis α1, . . . , αn for K over Q with αi ∈ OK for all i ∈ {1, . . . , n}.

Given such a basis α1, . . . , αn, we let δ := det
(
σi(αj)

)
16i,j6n. Note that δ2 = D(α1, . . . , αn) := ∆.

3.2. Explain why δ is an algebraic integer, and why ∆ is a non-zero (rational) integer.

Let β ∈ OK. There exists a unique n-tuple (x1, . . . , xn) ∈ Qn such that β =
∑n
j=1 xjαj .

3.3. For 1 6 k 6 n, let γk denote the determinant of the matrix
[
bi,j
]
16i,j6n where bi,j = σi(αj) for

1 6 i 6 n and j 6= k, and bi,k = σi(β). Prove that xj = γj/δ for all 1 6 j 6 n.

3.4. Prove that ∆xj is an integer.

3.5. Deduce that, for any β ∈ OK, there exists a unique n-uple of integers m1, . . . ,mn ∈ Z such that

β = 1
∆

n∑
i=1

mi · αi, and ∆ divides m2
j in Z for all j.

3.6. Assume that α1, . . . , αn are algebraic integers such that D(α1, . . . , αn) is a square-free integer.
Prove that α1, . . . , αn is a Z-basis of OK.

Exercise 4 (Cyclotomic fields) {Ò : 6 points} – Let p be a prime number and k > 1. We let
m := pk and we fix a primitive m-th root of unity ζm (in C for example). We let K = Q(ζm), and OK
denote the ring of integers of K. The goal of the exercise is to prove that OK = Z[ζm].

4.1. What is the degree of K over Q? For brevity, we let n = [K : Q].

Write λm := 1− ζm ∈ Z[ζm], and ∆m := D(1, ζm, . . . , ζn−1
m ). It is clear that K = Q(λm) and that we

have Z[λm] ⊂ OK.

4.2. Prove that ∆m is an integer dividing mn in Z. Hint: The minimal polynomial of ζm is Φm(X),
we have Xm− 1 = Φm(X) · f(X) for a certain f ∈ Z[X] and we know that ∆m = NK/Q(Φ′m(ζm)).

4.3. Prove that Z[ζm] = Z[λm] and that D(1, λm, λ2
m, . . . , λ

n−1
m ) = ∆m. Hint: ∆m can be expressed as

a Vandermonde determinant.

4.4. Show that NK/Q(λm) = p. For j ∈ {1, . . . n− 1}, prove that λm divides 1− ζjm in Z[ζm]. Deduce
that p/λjm lies in Z[λm] for all 0 6 j 6 n− 1.

4.5. For any β ∈ OK, for any j ∈ {0, . . . , n− 1}, prove that βp/λjm lies in OK.

The n-tuple (1, λm, . . . , λn−1
m ) is a Q-basis of K composed of algebraic integers. By 3.5 above, any

β ∈ OK can be written in a unique way as β = ∆−1
m ·

(
m0+m1λ+· · ·+mn−1λ

n−1
m

)
, wherem0, . . . ,mn−1

are integers such that ∆m divides m2
j .

Assume for a contradiction that Z[λm] is a strict submodule of OK.

4.7. Prove that there exists β0 ∈ OK of the form β0 = p−1 · (ajλjm + · · · + an−1λ
n−1
m ) for some

j ∈ {1, . . . , n− 1}, where aj , . . . , an−1 are integers, and p does not divide mj .

4.8. Prove that aj is divisible by λm in OK. Hint: multiply β0 by p/λj−1
m .

4.9. Comparing NK/Q(aj) and NK/Q(λm), obtain a contradiction. Conclude that OK = Z[ζm].

Exercise 5 (A Diophantine equation) {Ò : 4 points} – In 1659, Fermat claimed that he could
solve the following problem: Determine all solutions (x, y) ∈ Z2 of the equation y2 = x3 − 2.

Solve the problem. Hint: You may want to use R = Z[
√
−2]. First prove that R is Euclidean for

the norm map.
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