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EXERCISE SHEET #6

Exercises marked with a #* are to be handed in before Monday November 4 at noon, in the
mailbox at Spiegelgasse 1. Each of these is worth a number of points, as indicated.
Questions marked with a x are more difficult.

Exercise 1 (An upper bound on the class number) {¢* : 6 points}— Let K be a number field
of degree n.

1.1. Let X > 2. Prove that there are only finitely many ideals b of Ok with Nb < X. Moreover, prove
that the number of such ideals can be bounded only in terms of n and X. Hint: you may prove
that, for m > 1, #{b C Ok : Nb = m} < #{(z1,....2,) € 22, : [Ty 21 = m}.

For any non-zero integral ideal of a C Ok, define 7(a) to be the number of non-zero ideals b C Ok
which divide a.

1.2. Prove that 7(a) is well-defined, and that 7(a) = [], (vp(a) + 1), where the product is over all
non-zero prime ideals p C Ok, and v, denotes the p-adic valuation.

Let us first prove the so-called “divisor bound” for ideals of K: For all § > 0, there is a constant ¢ > 0,
depending at most on n and §, such that 7(a) < c- (Na)? for all non-zero ideals a C Ox.
Let 0 > 0 and p C Ok be a non-zero prime ideal.

1.3. If Np > exp(1/6), prove that (Np¥)? > v + 1 for all integers v > 0. Hint: Yu € R, exp(u) > u + 1.

v+l (Np)
(Npv)? = log{(Np)°’}

Now, let a be a non-zero integral ideal of Ok.

1.4. If Np < exp(1/4), prove that for all integers v > 0.

1.5. Writing 7(a)/(Na)? as a finite product over prime ideals, show that

r(a) (Np)’
map < AL ey

where the product runs over non-zero prime ideals p C Ok such that Np < exp(1/9).
1.6. Conclude the proof of the divisor bound.

Let Ak be the discriminant of K, hx be the class number of Ok, and Mg = (4/7)™ - n!-n~" - |Ag|"/?
denote the Minkowski constant of K.

1.7. Prove that hx < Z #{ideals b C Ok : Nb =n} < Z 7(nOk).

1<n<Mg 1<n<Mg

1.8. Deduce from the above the following upper bound on hx: For all § > 0, there exists a constant
d >0, depending at most on n and 8, such that hx < ¢ - |Ag|Y/?T9.

Exercise 2 (Fundamental units in real quadratic fields) {¢* : 3 points} - Let d > 1 be a
squarefree integer.

If d = 2,3 mod 4, we let by > 0 denote the smallest integer such that one of db?l +1or dbfl — 1 is the
square of an integer ag > 0. We let g4 := ag + bgVd € Q(\/E)
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2.1. Check that ¢4 is well-defined.

2.2. Prove that ¢4 is the fundamental unit in the ring of integers of Q(\/&)

If d =1 mod 4, we let by > 0 denote the smallest integer such that one of dbfi +4 or dbfl —4 is the square
of an integer ag > 0. We let g4 := %‘d‘/& € Q(V4d).
2.3. Prove that e4 is the fundamental unit in the ring of integers of Q(v/d).

2.4. Write a table of the fundamental units in Q(v/d) for d € {2,3,6,7,10,11}. Same question for
d e {5,13,17,21}.

2.5. The fundamental unit in Q(1/67) is 48842 + 59671/67. What is the drawback of this method to
compute the fundamental unit of Q(v/d)?

Exercise 3 (Counting units in real quadratic fields) — For any squarefree integer d > 2, we let
€4 > 1 denote the fundamental unit of Q(v/d). Consider the following two subsets of R:

U fun = {€4, d > 2 squarefree}, and Uy = {63, d > 2 squarefree, k > 1}.
Thus, Uy, contains all fundamental units of real quadratic fields.

3.1. For any X > 2, prove that Ug,, N (1,X] is a finite set. We write f(X) for its cardinality.

3.2. Let d > 1 be a squarefree integer and u be a unit in Q(\/&) C R. We write u = a + bv/d for some
half-integers a,b € 2Z. Prove that 1 < u < X if and only if 1 < a < (X2 £ 1)/(2X).

3.3. Given a € %Z satisfying the above inequalities and a sign o € {£1}, prove that there is a unique
choice of b € %Z and squarefree d > 1 such that a + bv/d is a unit of norm o. Hint: a® 4+ o = b%d.

3.4. Counting the number of possibilities for a and o, deduce that #Uq;N(1, X] = 2X+0(1) as X — oo.
We write a(X) for #Uq; N (1, X].

3.5. Prove that a(X) = Y2, f(X!/*) for X large enough, where the sum is actually finite.

1 ifn=1
The Mébius function p : Z>1 — {—1,0,1} satisfies Zu(d) = 1 "
din 0 ifn>1.

3.6. Deduce from the previous question that f(X) = 3272, u(j) - a(X'7) for X large enough.

3.7. Conclude that f(X) = 2X+o0(X) as X — oco. In particular, we have limx_,oo +#U fyn N (1,X] = 3.

Exercise 4 (Localisation of ideals) — Let A be an integral domain, and S C A \ {0} be a multi-
plicatively stable subset which contains 1. We denote the localisation of A at S by A’ := S~!A.

4.1. Let I’ be an ideal of A’. Prove that (I'NA)- A’ =T'.

4.2. Deduce that the map 7 : I’ — I’ N A is a non-decreasing injective map from the set of ideals of A’
to the set of ideals of A.

4.3. Let P/ be a prime ideal of A’. Prove that r(P’) = P'/NA is a prime ideal of A, and that »(P")NS = @.

4.4. Deduce that the map s : P’ — P’ N A provides a bijection from the set of prime ideals of A’ to the
set of prime ideals of A which are disjoint from S. You may show that the map P+~ P - A’ is the
inverse of s.
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