
Analytic Algebraic Number Theory
October 28, 2019

Exercise sheet #6

Exercises marked with a Ò are to be handed in before Monday November 4 at noon, in the
mailbox at Spiegelgasse 1. Each of these is worth a number of points, as indicated.

Questions marked with a ? are more difficult.

Exercise 1 (An upper bound on the class number) {Ò : 6 points} – Let K be a number field
of degree n.

1.1. Let X > 2. Prove that there are only finitely many ideals b of OK with Nb 6 X. Moreover, prove
that the number of such ideals can be bounded only in terms of n and X. Hint: you may prove
that, for m > 1, #{b ⊂ OK : N b = m} 6 #{(x1, . . . , xn) ∈ Zn>1 :

∏n
i=1 xi = m}.

For any non-zero integral ideal of a ⊂ OK, define τ(a) to be the number of non-zero ideals b ⊂ OK
which divide a.

1.2. Prove that τ(a) is well-defined, and that τ(a) =
∏

p

(
vp(a) + 1

)
, where the product is over all

non-zero prime ideals p ⊂ OK, and vp denotes the p-adic valuation.

Let us first prove the so-called “divisor bound” for ideals of K: For all δ > 0, there is a constant c > 0,
depending at most on n and δ, such that τ(a) 6 c · (Na)δ for all non-zero ideals a ⊂ OK.

Let δ > 0 and p ⊂ OK be a non-zero prime ideal.

1.3. If Np > exp(1/δ), prove that (Npv)δ > v + 1 for all integers v > 0. Hint: ∀u ∈ R, exp(u) > u+ 1.

1.4. If Np 6 exp(1/δ), prove that v + 1
(Npv)δ 6

(Np)δ

log{(Np)δ} for all integers v > 0.

Now, let a be a non-zero integral ideal of OK.

1.5. Writing τ(a)/(Na)δ as a finite product over prime ideals, show that

τ(a)
(Na)δ 6

∏
Np6exp(1/δ)

(Np)δ

log{(Np)δ} ,

where the product runs over non-zero prime ideals p ⊂ OK such that Np 6 exp(1/δ).

1.6. Conclude the proof of the divisor bound.

Let ∆K be the discriminant of K, hK be the class number of OK, and MK = (4/π)r2 · n! · n−n · |∆K|1/2

denote the Minkowski constant of K.

1.7. Prove that hK 6
∑

16n6MK

#{ideals b ⊂ OK : Nb = n} 6
∑

16n6MK

τ
(
nOK

)
.

1.8. Deduce from the above the following upper bound on hK: For all δ > 0, there exists a constant
c′ > 0, depending at most on n and δ, such that hK 6 c′ · |∆K|1/2+δ.

Exercise 2 (Fundamental units in real quadratic fields) {Ò : 3 points} – Let d > 1 be a
squarefree integer.

If d ≡ 2, 3 mod 4, we let bd > 0 denote the smallest integer such that one of db2
d + 1 or db2

d− 1 is the
square of an integer ad > 0. We let εd := ad + bd

√
d ∈ Q(

√
d).
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2.1. Check that εd is well-defined.

2.2. Prove that εd is the fundamental unit in the ring of integers of Q(
√
d).

If d ≡ 1 mod 4, we let bd > 0 denote the smallest integer such that one of db2
d+4 or db2

d−4 is the square
of an integer ad > 0. We let εd := ad+bd

√
d

4 ∈ Q(
√
d).

2.3. Prove that εd is the fundamental unit in the ring of integers of Q(
√
d).

2.4. Write a table of the fundamental units in Q(
√
d) for d ∈ {2, 3, 6, 7, 10, 11}. Same question for

d ∈ {5, 13, 17, 21}.

2.5. The fundamental unit in Q(
√

67) is 48842 + 5967
√

67. What is the drawback of this method to
compute the fundamental unit of Q(

√
d)?

Exercise 3 (Counting units in real quadratic fields) – For any squarefree integer d > 2, we let
εd > 1 denote the fundamental unit of Q(

√
d). Consider the following two subsets of R:

Ufun := {εd, d > 2 squarefree}, and Uall := {εkd, d > 2 squarefree, k > 1}.

Thus, Ufun contains all fundamental units of real quadratic fields.

3.1. For any X > 2, prove that Ufun ∩ (1,X] is a finite set. We write f(X) for its cardinality.

3.2. Let d > 1 be a squarefree integer and u be a unit in Q(
√
d) ⊂ R. We write u = a+ b

√
d for some

half-integers a, b ∈ 1
2Z. Prove that 1 < u < X if and only if 1 < a < (X2 ± 1)/(2X).

3.3. Given a ∈ 1
2Z satisfying the above inequalities and a sign σ ∈ {±1}, prove that there is a unique

choice of b ∈ 1
2Z and squarefree d > 1 such that a+ b

√
d is a unit of norm σ. Hint: a2 + σ = b2d.

3.4. Counting the number of possibilities for a and σ, deduce that #Uall∩(1,X] = 2X+O(1) as X→∞.
We write a(X) for #Uall ∩ (1,X].

3.5. Prove that a(X) =
∑∞
k=1 f(X1/k) for X large enough, where the sum is actually finite.

The Möbius function µ : Z>1 → {−1, 0, 1} satisfies
∑
d|n

µ(d) =
{

1 if n = 1
0 if n > 1.

3.6. Deduce from the previous question that f(X) =
∑∞
j=1 µ(j) · a(X1/j) for X large enough.

3.7. Conclude that f(X) = 2X + o(X) as X→∞. In particular, we have limX→∞
1
X#Ufun∩ (1,X] = 1

2 .

Exercise 4 (Localisation of ideals) – Let A be an integral domain, and S ⊂ A r {0} be a multi-
plicatively stable subset which contains 1. We denote the localisation of A at S by A′ := S−1A.

4.1. Let I′ be an ideal of A′. Prove that (I′ ∩A) ·A′ = I′.

4.2. Deduce that the map r : I′ 7→ I′ ∩ A is a non-decreasing injective map from the set of ideals of A′
to the set of ideals of A.

4.3. Let P′ be a prime ideal of A′. Prove that r(P′) = P′∩A is a prime ideal of A, and that r(P′)∩S = ∅.

4.4. Deduce that the map s : P′ 7→ P′ ∩A provides a bijection from the set of prime ideals of A′ to the
set of prime ideals of A which are disjoint from S. You may show that the map P 7→ P · A′ is the
inverse of s.
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