

EXERCISE SHEET #6

Exercises marked with a are to be handed in before Monday November 4 at noon, in the mailbox at Spiegelgasse 1. Each of these is worth a number of points, as indicated. Questions marked with a ★ are more difficult.

Exercise 1 (An upper bound on the class number) $\{ \mathscr{O} : 6 \text{ points} \}$ – Let K be a number field of degree n.

1.1. Let $X \ge 2$. Prove that there are only finitely many ideals \mathfrak{b} of \mathcal{O}_{K} with $\mathrm{N}\mathfrak{b} \le \mathrm{X}$. Moreover, prove that the number of such ideals can be bounded only in terms of n and X . *Hint: you may prove that, for* $m \ge 1$, $\#\{\mathfrak{b} \subset \mathcal{O}_{\mathrm{K}} : \mathrm{N}\mathfrak{b} = m\} \le \#\{(x_1, \ldots, x_n) \in \mathbb{Z}_{\ge 1}^n : \prod_{i=1}^n x_i = m\}.$

For any non-zero integral ideal of $\mathfrak{a} \subset \mathcal{O}_{K}$, define $\tau(\mathfrak{a})$ to be the number of non-zero ideals $\mathfrak{b} \subset \mathcal{O}_{K}$ which divide \mathfrak{a} .

1.2. Prove that $\tau(\mathfrak{a})$ is well-defined, and that $\tau(\mathfrak{a}) = \prod_{\mathfrak{p}} (v_{\mathfrak{p}}(\mathfrak{a}) + 1)$, where the product is over all non-zero prime ideals $\mathfrak{p} \subset \mathcal{O}_{\mathrm{K}}$, and $v_{\mathfrak{p}}$ denotes the \mathfrak{p} -adic valuation.

Let us first prove the so-called "divisor bound" for ideals of K: For all $\delta > 0$, there is a constant c > 0, depending at most on n and δ , such that $\tau(\mathfrak{a}) \leq c \cdot (N\mathfrak{a})^{\delta}$ for all non-zero ideals $\mathfrak{a} \subset \mathcal{O}_{K}$.

Let $\delta > 0$ and $\mathfrak{p} \subset \mathcal{O}_K$ be a non-zero prime ideal.

1.3. If $N\mathfrak{p} \ge \exp(1/\delta)$, prove that $(N\mathfrak{p}^v)^\delta \ge v+1$ for all integers $v \ge 0$. *Hint*: $\forall u \in \mathbb{R}$, $\exp(u) \ge u+1$.

1.4. If $N\mathfrak{p} \leq \exp(1/\delta)$, prove that $\frac{v+1}{(N\mathfrak{p}^v)^{\delta}} \leq \frac{(N\mathfrak{p})^{\delta}}{\log\{(N\mathfrak{p})^{\delta}\}}$ for all integers $v \geq 0$.

Now, let \mathfrak{a} be a non-zero integral ideal of \mathcal{O}_{K} .

1.5. Writing $\tau(\mathfrak{a})/(N\mathfrak{a})^{\delta}$ as a finite product over prime ideals, show that

$$\frac{\tau(\mathfrak{a})}{(\mathrm{N}\mathfrak{a})^{\delta}} \leqslant \prod_{\mathrm{N}\mathfrak{p} \leqslant \exp(1/\delta)} \frac{(\mathrm{N}\mathfrak{p})^{\delta}}{\log\{(\mathrm{N}\mathfrak{p})^{\delta}\}},$$

where the product runs over non-zero prime ideals $\mathfrak{p} \subset \mathcal{O}_{\mathrm{K}}$ such that $\mathrm{N}\mathfrak{p} \leq \exp(1/\delta)$.

1.6. Conclude the proof of the divisor bound.

Let $\Delta_{\rm K}$ be the discriminant of K, $h_{\rm K}$ be the class number of $\mathcal{O}_{\rm K}$, and $M_{\rm K} = (4/\pi)^{r_2} \cdot n! \cdot n^{-n} \cdot |\Delta_{\rm K}|^{1/2}$ denote the Minkowski constant of K.

- **1.7.** Prove that $h_{\mathrm{K}} \leq \sum_{1 \leq n \leq \mathrm{M}_{\mathrm{K}}} \# \{ \text{ideals } \mathfrak{b} \subset \mathcal{O}_{\mathrm{K}} : \mathrm{N}\mathfrak{b} = n \} \leq \sum_{1 \leq n \leq \mathrm{M}_{\mathrm{K}}} \tau(n\mathcal{O}_{\mathrm{K}}).$
- **1.8.** Deduce from the above the following upper bound on $h_{\rm K}$: For all $\delta > 0$, there exists a constant c' > 0, depending at most on n and δ , such that $h_{\rm K} \leq c' \cdot |\Delta_{\rm K}|^{1/2+\delta}$.

Exercise 2 (Fundamental units in real quadratic fields) { \mathscr{E} : 3 points} – Let d > 1 be a squarefree integer.

If $d \equiv 2, 3 \mod 4$, we let $b_d \ge 0$ denote the smallest integer such that one of $db_d^2 + 1$ or $db_d^2 - 1$ is the square of an integer $a_d \ge 0$. We let $\varepsilon_d := a_d + b_d \sqrt{d} \in \mathbb{Q}(\sqrt{d})$.

- **2.1.** Check that ε_d is well-defined.
- **2.2.** Prove that ε_d is the fundamental unit in the ring of integers of $\mathbb{Q}(\sqrt{d})$.

If $d \equiv 1 \mod 4$, we let $b_d \ge 0$ denote the smallest integer such that one of $db_d^2 + 4$ or $db_d^2 - 4$ is the square of an integer $a_d \ge 0$. We let $\varepsilon_d := \frac{a_d + b_d \sqrt{d}}{4} \in \mathbb{Q}(\sqrt{d})$.

- **2.3.** Prove that ε_d is the fundamental unit in the ring of integers of $\mathbb{Q}(\sqrt{d})$.
- **2.4.** Write a table of the fundamental units in $\mathbb{Q}(\sqrt{d})$ for $d \in \{2, 3, 6, 7, 10, 11\}$. Same question for $d \in \{5, 13, 17, 21\}$.
- **2.5.** The fundamental unit in $\mathbb{Q}(\sqrt{67})$ is $48842 + 5967\sqrt{67}$. What is the drawback of this method to compute the fundamental unit of $\mathbb{Q}(\sqrt{d})$?

Exercise 3 (Counting units in real quadratic fields) – For any squarefree integer $d \ge 2$, we let $\varepsilon_d > 1$ denote the fundamental unit of $\mathbb{Q}(\sqrt{d})$. Consider the following two subsets of \mathbb{R} :

 $U_{fun} := \{ \varepsilon_d, \ d \ge 2 \text{ squarefree} \}, \text{ and } U_{all} := \{ \varepsilon_d^k, \ d \ge 2 \text{ squarefree}, \ k \ge 1 \}.$

Thus, U_{fun} contains all fundamental units of real quadratic fields.

- **3.1.** For any $X \ge 2$, prove that $U_{fun} \cap (1, X]$ is a finite set. We write f(X) for its cardinality.
- **3.2.** Let d > 1 be a squarefree integer and u be a unit in $\mathbb{Q}(\sqrt{d}) \subset \mathbb{R}$. We write $u = a + b\sqrt{d}$ for some half-integers $a, b \in \frac{1}{2}\mathbb{Z}$. Prove that 1 < u < X if and only if $1 < a < (X^2 \pm 1)/(2X)$.
- **3.3.** Given $a \in \frac{1}{2}\mathbb{Z}$ satisfying the above inequalities and a sign $\sigma \in \{\pm 1\}$, prove that there is a unique choice of $b \in \frac{1}{2}\mathbb{Z}$ and squarefree d > 1 such that $a + b\sqrt{d}$ is a unit of norm σ . *Hint:* $a^2 + \sigma = b^2 d$.
- **3.4.** Counting the number of possibilities for a and σ , deduce that $\#U_{all} \cap (1, X] = 2X + O(1)$ as $X \to \infty$. We write a(X) for $\#U_{all} \cap (1, X]$.
- **3.5.** Prove that $a(X) = \sum_{k=1}^{\infty} f(X^{1/k})$ for X large enough, where the sum is actually finite.

The Möbius function $\mu : \mathbb{Z}_{\geq 1} \to \{-1, 0, 1\}$ satisfies $\sum_{d|n} \mu(d) = \begin{cases} 1 & \text{if } n = 1\\ 0 & \text{if } n > 1. \end{cases}$

- **3.6.** Deduce from the previous question that $f(X) = \sum_{j=1}^{\infty} \mu(j) \cdot a(X^{1/j})$ for X large enough.
- **3.7.** Conclude that f(X) = 2X + o(X) as $X \to \infty$. In particular, we have $\lim_{X\to\infty} \frac{1}{X} \# U_{fun} \cap (1, X] = \frac{1}{2}$.

Exercise 4 (Localisation of ideals) – Let A be an integral domain, and $S \subset A \setminus \{0\}$ be a multiplicatively stable subset which contains 1. We denote the localisation of A at S by $A' := S^{-1}A$.

- **4.1.** Let I' be an ideal of A'. Prove that $(I' \cap A) \cdot A' = I'$.
- **4.2.** Deduce that the map $r: I' \mapsto I' \cap A$ is a non-decreasing injective map from the set of ideals of A' to the set of ideals of A.
- **4.3.** Let P' be a prime ideal of A'. Prove that $r(P') = P' \cap A$ is a prime ideal of A, and that $r(P') \cap S = \emptyset$.
- **4.4.** Deduce that the map $s : P' \mapsto P' \cap A$ provides a bijection from the set of prime ideals of A' to the set of prime ideals of A which are disjoint from S. You may show that the map $P \mapsto P \cdot A'$ is the inverse of s.