

EXERCISE SHEET #7

Exercises marked with a are to be handed in before Monday November 11 at noon, in the mailbox at Spiegelgasse 1. Each of these is worth a number of points, as indicated. Questions marked with a ★ are more difficult.

Exercise 1 (Dedekind–Kummer) $\{\mathscr{O}: 8 \text{ points}\}$ – Let K be a number field of degree n, with ring of integers \mathcal{O}_{K} . Fix an algebraic integer $\alpha \in \mathcal{O}_{K}$ so that $K = \mathbb{Q}(\alpha)$, and let $R := \mathbb{Z}[\alpha]$ be the subring of \mathcal{O}_{K} generated by α . Denote by $f \in \mathbb{Z}[X]$ the monic minimal polynomial of α .

The goal of the exercise is show that, for all but finitely many primes p, the decomposition of $p\mathcal{O}_{\mathrm{K}}$ as a product of prime ideals of \mathcal{O}_{K} can be determined by factoring f modulo p.

1.1. Prove that the quotient group \mathcal{O}_{K}/R is finite.

Let p be a prime number. We assume that (*) p does not divide the order of the group $\mathcal{O}_{\mathrm{K}}/\mathrm{R}$.

1.2. If condition (*) is satisfied, prove that the inclusion $j : \mathbb{Z}[\alpha] \hookrightarrow \mathcal{O}_{\mathrm{K}}$ induces an isomorphism $\mathrm{R}/p\mathrm{R} \simeq \mathcal{O}_{\mathrm{K}}/p\mathcal{O}_{\mathrm{K}}$. *Hint: you may start by proving that* $p\mathcal{O}_{\mathrm{K}} \cap \mathrm{R} = p\mathrm{R}$.

For a polynomial $g \in \mathbb{Z}[X]$, we write \bar{g} for the polynomial in $\mathbb{F}_p[X]$ obtained by reducing the coefficients of g modulo p. Note that the map $g \mapsto \bar{g}$ is a surjective ring morphism $\mathbb{Z}[X] \to \mathbb{F}_p[X]$. Let us factor \bar{f} in $\mathbb{F}_p[X]$ as $\bar{f} = \bar{f_i}^{e_i} \cdot \bar{f_2}^{e_2} \cdot \cdots \cdot \bar{f_r}^{e_r}$, where $f_1, \ldots, f_r \in \mathbb{Z}[X]$ are monic polynomials

Let us factor f in $\mathbb{F}_p[X]$ as $f = f_i^{o_i} \cdot f_2^{o_2} \cdot \cdots \cdot f_r^{o_r}$, where $f_1, \ldots, f_r \in \mathbb{Z}[X]$ are monic polynomials such that the \bar{f}_i 's are distinct irreducible polynomials in $\mathbb{F}_p[X]$, and $e_1, \ldots, e_r \in \mathbb{Z}_{\geq 1}$. For all $i = 1, \ldots, r$, let $\mathfrak{p}_i := p\mathcal{O}_K + f_i(\alpha)\mathcal{O}_K$ be the ideal of \mathcal{O}_K generated by p and $f_i(\alpha)$.

- **1.3.** For i = 1, ..., r, consider the ideal $\mathfrak{m}_i := p\mathbf{R} + f_i(\alpha)\mathbf{R} \subset \mathbf{R}$. Prove that \mathfrak{m}_i is a maximal ideal of \mathbf{R} , and that the quotient $\mathbf{R}/\mathfrak{m}_i$ has order $p^{\deg f_i}$.
- **1.4.** Deduce that \mathfrak{p}_i is a prime ideal of \mathcal{O}_{K} , that \mathfrak{p}_i lies above p and that $f(\mathfrak{p}_i/p) = \deg f_i$.
- **1.5.** Prove that $\mathfrak{p}_i + \mathfrak{p}_j = \mathcal{O}_K$ for all $i \neq j$. Hint: \overline{f}_i and \overline{f}_j are coprime in $\mathbb{F}_p[X]$.
- **1.6.** By showing that $\prod_{i=1}^{r} f_i(\alpha)^{e_i} \in p\mathcal{O}_K$, prove that $p\mathcal{O}_K \supset \prod_{i=1}^{r} \mathfrak{p}_i^{e_i}$.
- **1.7.** Comparing norms, deduce that $p\mathcal{O}_{\mathrm{K}} = \prod_{i} \mathfrak{p}_{i}^{e_{i}}$.

Therefore, for any prime p satisfying condition (*), the decomposition of $p\mathcal{O}_{\mathrm{K}}$ can be read off from the the decomposition of \bar{f} as a product of irreducible polynomials in $\mathbb{F}_p[\mathrm{X}]$.

- **1.8.** Let α be as above. We let $D_{\alpha} = D(1, \alpha, \dots, \alpha^{n-1})$ and Δ_K be the discriminant of K. Prove that $D_{\alpha} = (\#\mathcal{O}_K/\mathbb{Z}[\alpha])^2 \cdot \Delta_K$ in \mathbb{Z} .
- **1.9.** Deduce that a prime p such that p^2 does not divide D_{α} satisfies (*).

As an application, consider the following example. Let $\beta \in \mathbb{C}$ be a root of $f(X) := X^3 - X - 1 \in \mathbb{Z}[X]$, and $K := \mathbb{Q}(\beta)$ be the corresponding number field.

- **1.10.** Prove that $f(\mathbf{X})$ is irreducible.
- **1.11.** In the ring of integers of K, describe the factorisation of primes $p \in \{2, 3, ..., 23\}$.

Exercise 2 – Let $d \neq 0, 1$ be a square free integer, and $K = \mathbb{Q}(\sqrt{d})$ be the corresponding quadratic field. We let \mathcal{O}_K denote the ring of integers of K.

- **2.1.** For a prime p, what are the possible types of decomposition of $p\mathcal{O}_{\mathrm{K}}$ as a product of prime ideals?
- **2.2.** Depending on the value of $d \mod 4$, make a list of the primes that ramify in \mathcal{O}_{K} . Deduce that there are only finitely many primes that ramify in K.

For any integer $a \in \mathbb{Z}$, and any prime number p, define the Legendre symbol

$$\begin{pmatrix} \frac{a}{p} \end{pmatrix} := \begin{cases} 0 & \text{if } p \mid a, \\ +1 & \text{if } p \nmid a \text{ and } a \text{ is a square modulo } p, \\ -1 & \text{if } p \nmid a \text{ and } a \text{ is not a square modulo } p. \end{cases}$$

2.3. Prove that the map $a \mapsto \left(\frac{a}{p}\right)$ is multiplicative.

- **2.4.** Let p be an odd prime. Describe the splitting behaviour of $p\mathcal{O}_{\mathrm{K}}$ in terms of $\left(\frac{d}{p}\right)$. *Hint: you may use the previous exercise.*
- **2.5.** Prove that 2 ramifies in K if and only if $d \equiv 2, 3 \mod 4$.
- **2.6.** Prove that 2 splits in K if and only if $d \equiv 1 \mod 8$. When is 2 inert in K?
- **2.7.** (*) Let $f \in \mathbb{Z}[X]$ be a non-constant polynomial with integral coefficients. Prove that there are infinitely many primes p such that the equation $f(x) \equiv 0 \mod p$ has a solution.
- 2.8. Deduce from the preceding question that there are infinitely many primes that split in K.

Exercise 3 – Let A be a Dedekind ring of characteristic 0, with field of fractions K. Let L/K be a finite field extension of degree n, and B denote the integral closure of A in L. Let \mathfrak{p} be a non zero prime ideal of A. Since B is a Dedekind ring, one can decompose the ideal $\mathfrak{p}B$ as $\mathfrak{p}B = \mathfrak{P}_1^{e_1} \cdots \mathfrak{P}_r^{e_r}$ for some distinct non zero prime ideals \mathfrak{P}_i of B and positive integers e_i .

As in the lecture notes, for all $i \in \{1, ..., r\}$, we let $f(\mathfrak{P}_i/\mathfrak{p}) := [B/\mathfrak{P}_i : A/\mathfrak{p}]$ denote the residual degree of \mathfrak{P}_i over \mathfrak{p} and $e(\mathfrak{P}_i/\mathfrak{p}) := e_i$ denote the ramification index.

3.1. Prove that

$$\sum_{i=1}^{r} e(\mathfrak{P}_i/\mathfrak{p}) \cdot f(\mathfrak{P}_i/\mathfrak{p}) = \dim_{\mathrm{A}/\mathfrak{p}}(\mathrm{B}/\mathfrak{p}\mathrm{B}) = [\mathrm{L}:\mathrm{K}].$$

Exercise 4 – Let A be a ring. Let B_1, \ldots, B_r be rings containing A which, as A-modules, are free and finitely generated. Let $B := \prod_{i=1}^{r} B_i$ denote the product ring. For any ring R containing A, we denote by D(R/A) the discriminant of R over A.

4.1. Prove that we have $D(B/A) = \prod_{i=1}^{r} D(B_i/A)$.