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EXERCISE SHEET #9

Exercises marked with a ¢ are to be handed in before Monday November 25 at noon, in the
mailbox at Spiegelgasse 1. Each of these is worth a number of points, as indicated.
Questions marked with a x are more difficult.

Exercise 1 — Let ¢ > 2 be an integer such that both ¢ and 4¢ — 1 are squarefree. We let K, :=
Q(v/T—4q), O, be the ring of integers in K, and 6, := Fv1=1 V2174q. Define P,(X) := X2 + X + ¢ € Z[X].

1.1. For this question only, we assume that ¢ = 41. Compute P,(a) for all a € {0,...,39}. What do
you notice? Prove that O, is principal.

1.2. For any z,y € Q, compute Nk _p(z + yf) as a polynomial in z,y. Deduce that, if Nk ,q(z) is
prime for some z € Oy, then Ng_/q(2) = ¢.

1.3. Let a € {0,...,q — 2} be such that Py(a) is not prime. Prove that there exists a prime p < ¢ —1
such that Py(a) = 0 mod p.

1.4. Assume that O, is principal. Prove that P,(a) is prime for all a € {0,...,q — 2}.
Hint: Pq(a) = NKq/@(a +6).

1.5. Conversely, assume that P,(a) is prime for all @ € {0,...,¢q — 2}. Prove that every prime number
p < ¢ is inert in K. Using Minkowski’s bound, deduce that O, is principal.

Exercise 2 (The hyperbola method) — Let 7 : N — N denote the arithmetic function counting the
number of positive divisors. For any =z € R, we let D(z) = Z 7(n). We denote by d5: N — {0,1}

1<n<x
the characteristic function of squares.

2.1. Let n > 1 be an integer and D,, := {d € N : d | n} be the set of its divisors. By exhibiting a
bijection D,, — D,,, prove that 7(n) = dg(n)+ 2 Z d.
din

1<d</n
x
2.2. P - —N ]
rove that D(z) Z 1 Z {nJ
k,d>1 n<e
kd<z
2.3. Deduce from the above that D(z) = —|v/z]? 4+ 2 Z V;J
1<d<v/z

2.4. Deduce that there is a constant C > 0 such that D(z) = zlogz + C -z 4+ O(y/z), as  — 0.
We now give a more geometric proof of 2.3. For x > 2, consider the region

Ry = {(u1,u2) € R?:u; > 1, upg >1and ug - ug < x}.
2.5. Make a picture, and prove that D(x) = # (R, N Z?).

2.6. Recover the identity 2.3 by writing R, as the union of the three subregions of R? defined by
Si = {(u1,u2) € Ryt u; < y/x} for i = 1,2 and Sg = {(u1,u2) € Ry : ug < /o and ug < \/z}.
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Exercise 3 (Quadratic Gauss sums) {¢* : 8 points}— Let p be an odd prime number, and write
(p = exp(2im/p) € C. Recall the definition of the Legendre symbol a — (%) from Sheet #7.

3.1.

3.2.

p—1 . _
. p if a =0 mod p,
For any integer a, show that E as —
Y B —0 “ {0 otherwise.

p—1 s
Prove that Z () =0.
s=0

— \p

For any a € Z, define the quadratic Gauss sum

3.3.

3.4.

3.5.

3.6.

3.7.

3.8.

Prove that G,(a) = 0 if p divides a.

For any integer a € Z, check that Gp(a) = (%) - Gp(1).

For any a € Z which is coprime to p, prove that |G,(a)| = /p. Hint: compute Gy(a) - Gp(a)

By evaluating the sum S = Zﬁ;é Gp(a)Gp(—a) in two different ways, prove that G,(a)? =
(—1)P=1/2p,

> ¢°| < |sin(wa/p)| .

S=m

For any integers n < m, and any a € Z ~ {0}, prove that

For any n < m, prove the Polya—Vinogradov inequality for the Legendre symbol:

> (%)

Hint: Sum 3.4 over a € {m,...,n}. You may use the inequality: |sin(x)| = 2|z|/7 for |x| < w/2.

< /plogp.

3.9. (x) Assume that p is a large enough prime. Let I be a set of consecutive integers. If #I > 3,/plogp,

deduce from the previous question that there is at least one element a € I with <%) =1.
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