

EXERCISE SHEET #9

Exercises marked with a 𝖋 are to be handed in before Monday November 25 at noon, in the mailbox at Spiegelgasse 1. Each of these is worth a number of points, as indicated. Questions marked with a ★ are more difficult.

Exercise 1 – Let $q \ge 2$ be an integer such that both q and 4q - 1 are squarefree. We let $K_q := \mathbb{Q}(\sqrt{1-4q}), \mathcal{O}_q$ be the ring of integers in K_q , and $\theta_q := \frac{1+\sqrt{1-4q}}{2}$. Define $P_q(X) := X^2 + X + q \in \mathbb{Z}[X]$.

- **1.1.** For this question only, we assume that q = 41. Compute $P_q(a)$ for all $a \in \{0, \ldots, 39\}$. What do you notice? Prove that \mathcal{O}_q is principal.
- **1.2.** For any $x, y \in \mathbb{Q}$, compute $N_{K_q/\mathbb{Q}}(x + y\theta)$ as a polynomial in x, y. Deduce that, if $N_{K_q/\mathbb{Q}}(z)$ is prime for some $z \in \mathcal{O}_q$, then $N_{K_q/\mathbb{Q}}(z) \ge q$.
- **1.3.** Let $a \in \{0, \ldots, q-2\}$ be such that $P_q(a)$ is not prime. Prove that there exists a prime $p \leq q-1$ such that $P_q(a) \equiv 0 \mod p$.
- **1.4.** Assume that \mathcal{O}_q is principal. Prove that $P_q(a)$ is prime for all $a \in \{0, \ldots, q-2\}$. *Hint:* $P_q(a) = N_{K_q/\mathbb{Q}}(a + \theta)$.
- **1.5.** Conversely, assume that $P_q(a)$ is prime for all $a \in \{0, \ldots, q-2\}$. Prove that every prime number p < q is inert in K_q . Using Minkowski's bound, deduce that \mathcal{O}_q is principal.

Exercise 2 (The hyperbola method) – Let $\tau : \mathbb{N} \to \mathbb{N}$ denote the arithmetic function counting the number of positive divisors. For any $x \in \mathbb{R}_{>0}$, we let $D(x) = \sum_{1 \leq n \leq x} \tau(n)$. We denote by $\delta_{\Box} : \mathbb{N} \to \{0, 1\}$

the characteristic function of squares.

2.1. Let $n \ge 1$ be an integer and $D_n := \{d \in \mathbb{N} : d \mid n\}$ be the set of its divisors. By exhibiting a bijection $D_n \to D_n$, prove that $\tau(n) = \delta_{\Box}(n) + 2 \sum_{n \in \mathbb{N}} d$.

$$1 \le d \le \sqrt{n}$$

2.2. Prove that $D(x) = \sum_{\substack{k,d \ge 1 \\ kd \le x}} 1 = \sum_{n \le x} \left\lfloor \frac{x}{n} \right\rfloor.$

2.3. Deduce from the above that $D(x) = -\lfloor \sqrt{x} \rfloor^2 + 2 \sum_{1 \le d \le \sqrt{x}} \lfloor \frac{x}{d} \rfloor$.

2.4. Deduce that there is a constant C > 0 such that $D(x) = x \log x + C \cdot x + O(\sqrt{x})$, as $x \to \infty$.

We now give a more geometric proof of **2.3**. For $x \ge 2$, consider the region

$$\mathbf{R}_x := \{ (u_1, u_2) \in \mathbb{R}^2 : u_1 \ge 1, \ u_2 \ge 1 \text{ and } u_1 \cdot u_2 \le x \}.$$

- **2.5.** Make a picture, and prove that $D(x) = #(R_x \cap \mathbb{Z}^2)$.
- **2.6.** Recover the identity **2.3** by writing R_x as the union of the three subregions of \mathbb{R}^2 defined by $S_i = \{(u_1, u_2) \in R_x : u_i \leq \sqrt{x}\}$ for i = 1, 2 and $S_3 = \{(u_1, u_2) \in R_x : u_1 \leq \sqrt{x} \text{ and } u_2 \leq \sqrt{x}\}$.

Exercise 3 (Quadratic Gauss sums) $\{\mathscr{O} : \mathbf{8} \text{ points}\}$ – Let p be an odd prime number, and write $\zeta_p = \exp(2i\pi/p) \in \mathbb{C}$. Recall the definition of the Legendre symbol $a \mapsto \left(\frac{a}{p}\right)$ from Sheet #7.

3.1. For any integer *a*, show that $\sum_{s=0}^{p-1} \zeta_p^{as} = \begin{cases} p & \text{if } a \equiv 0 \mod p, \\ 0 & \text{otherwise.} \end{cases}$

3.2. Prove that $\sum_{s=0}^{p-1} \left(\frac{s}{p}\right) = 0.$

For any $a \in \mathbb{Z}$, define the quadratic Gauss sum

$$G_p(a) := \sum_{s=0}^{p-1} \left(\frac{s}{p}\right) \zeta_p^{as} \in \mathbb{C}.$$

- **3.3.** Prove that $G_p(a) = 0$ if p divides a.
- **3.4.** For any integer $a \in \mathbb{Z}$, check that $G_p(a) = \left(\frac{a}{p}\right) \cdot G_p(1)$.
- **3.5.** For any $a \in \mathbb{Z}$ which is coprime to p, prove that $|G_p(a)| = \sqrt{p}$. *Hint: compute* $G_p(a) \cdot \overline{G_p(a)}$
- **3.6.** By evaluating the sum $S = \sum_{a=0}^{p-1} G_p(a) G_p(-a)$ in two different ways, prove that $G_p(a)^2 = (-1)^{(p-1)/2} p$.

3.7. For any integers $n \leq m$, and any $a \in \mathbb{Z} \setminus \{0\}$, prove that $\left|\sum_{s=m}^{n} \zeta_p^{as}\right| \leq |\sin(\pi a/p)|^{-1}$.

3.8. For any $n \leq m$, prove the Pòlya–Vinogradov inequality for the Legendre symbol:

$$\left|\sum_{a=m}^{n} \left(\frac{a}{p}\right)\right| < \sqrt{p}\log p.$$

Hint: Sum **3.4** over $a \in \{m, \ldots, n\}$. You may use the inequality: $|\sin(x)| \ge 2|x|/\pi$ for $|x| \le \pi/2$.

3.9. (*) Assume that p is a large enough prime. Let I be a set of consecutive integers. If $\#I \ge 3\sqrt{p} \log p$, deduce from the previous question that there is at least one element $a \in I$ with $\left(\frac{a}{p}\right) = 1$.