
Analytic Algebraic Number Theory
November 18, 2019

Exercise sheet #9

Exercises marked with a Ò are to be handed in before Monday November 25 at noon, in the
mailbox at Spiegelgasse 1. Each of these is worth a number of points, as indicated.

Questions marked with a ? are more difficult.

Exercise 1 – Let q > 2 be an integer such that both q and 4q − 1 are squarefree. We let Kq :=
Q(
√

1− 4q), Oq be the ring of integers in Kq, and θq := 1+
√

1−4q
2 . Define Pq(X) := X2 + X + q ∈ Z[X].

1.1. For this question only, we assume that q = 41. Compute Pq(a) for all a ∈ {0, . . . , 39}. What do
you notice? Prove that Oq is principal.

1.2. For any x, y ∈ Q, compute NKq/Q(x + yθ) as a polynomial in x, y. Deduce that, if NKq/Q(z) is
prime for some z ∈ Oq, then NKq/Q(z) > q.

1.3. Let a ∈ {0, . . . , q − 2} be such that Pq(a) is not prime. Prove that there exists a prime p 6 q − 1
such that Pq(a) ≡ 0 mod p.

1.4. Assume that Oq is principal. Prove that Pq(a) is prime for all a ∈ {0, . . . , q − 2}.
Hint: Pq(a) = NKq/Q(a+ θ).

1.5. Conversely, assume that Pq(a) is prime for all a ∈ {0, . . . , q − 2}. Prove that every prime number
p < q is inert in Kq. Using Minkowski’s bound, deduce that Oq is principal.

Exercise 2 (The hyperbola method) – Let τ : N→ N denote the arithmetic function counting the
number of positive divisors. For any x ∈ R>0, we let D(x) =

∑
16n6x

τ(n). We denote by δ� : N→ {0, 1}

the characteristic function of squares.

2.1. Let n > 1 be an integer and Dn := {d ∈ N : d | n} be the set of its divisors. By exhibiting a
bijection Dn → Dn, prove that τ(n) = δ�(n) + 2

∑
d|n

16d<
√

n

d.

2.2. Prove that D(x) =
∑

k,d>1
kd6x

1 =
∑
n6x

⌊
x

n

⌋
.

2.3. Deduce from the above that D(x) = −b
√
xc2 + 2

∑
16d6

√
x

⌊
x

d

⌋
.

2.4. Deduce that there is a constant C > 0 such that D(x) = x log x+ C · x+ O(
√
x), as x→∞.

We now give a more geometric proof of 2.3. For x > 2, consider the region

Rx := {(u1, u2) ∈ R2 : u1 > 1, u2 > 1 and u1 · u2 6 x}.

2.5. Make a picture, and prove that D(x) = #
(
Rx ∩ Z2).

2.6. Recover the identity 2.3 by writing Rx as the union of the three subregions of R2 defined by
Si = {(u1, u2) ∈ Rx : ui 6

√
x} for i = 1, 2 and S3 = {(u1, u2) ∈ Rx : u1 6

√
x and u2 6

√
x}.
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Exercise 3 (Quadratic Gauss sums) {Ò : 8 points} – Let p be an odd prime number, and write
ζp = exp(2iπ/p) ∈ C. Recall the definition of the Legendre symbol a 7→

(
a
p

)
from Sheet #7.

3.1. For any integer a, show that
p−1∑
s=0

ζas
p =

{
p if a ≡ 0 mod p,
0 otherwise.

3.2. Prove that
p−1∑
s=0

(
s

p

)
= 0.

For any a ∈ Z, define the quadratic Gauss sum

Gp(a) :=
p−1∑
s=0

(
s

p

)
ζas

p ∈ C.

3.3. Prove that Gp(a) = 0 if p divides a.

3.4. For any integer a ∈ Z, check that Gp(a) =
(

a
p

)
·Gp(1).

3.5. For any a ∈ Z which is coprime to p, prove that |Gp(a)| = √p. Hint: compute Gp(a) ·Gp(a)

3.6. By evaluating the sum S =
∑p−1

a=0 Gp(a)Gp(−a) in two different ways, prove that Gp(a)2 =
(−1)(p−1)/2p.

3.7. For any integers n 6 m, and any a ∈ Z r {0}, prove that
∣∣∣∣∣

n∑
s=m

ζas
p

∣∣∣∣∣ 6 | sin(πa/p)|−1.

3.8. For any n 6 m, prove the Pòlya–Vinogradov inequality for the Legendre symbol:∣∣∣∣∣
n∑

a=m

(
a

p

)∣∣∣∣∣ < √p log p.

Hint: Sum 3.4 over a ∈ {m, . . . , n}. You may use the inequality: | sin(x)| > 2|x|/π for |x| 6 π/2.

3.9.(?) Assume that p is a large enough prime. Let I be a set of consecutive integers. If #I > 3√p log p,
deduce from the previous question that there is at least one element a ∈ I with

(
a
p

)
= 1.
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