
Analytic Algebraic Number Theory
November 25, 2019

Exercise sheet #10

Exercises marked with a Ò are to be handed in before Monday December 2 at noon, in the mailbox
at Spiegelgasse 1. Each of these is worth a number of points, as indicated.

Questions marked with a ? are more difficult.

Exercise 1 (Wielandt uniqueness theorem) – Recall that the Gamma function s 7→ Γ(s) is defined
on C by the Weierstrass product

1
Γ(s) = seγs ·

∞∏
n=1

(
1 + s

n

)
e−s/n.

Let F be a holomorphic function on Re(s) > 0. We assume that

(i) F is bounded in the vertical strip 1 6 Re(s) 6 2.

(ii) F(s+ 1) = sF(s) for all s in Re(s) > 0, and F(1) = 1.

The goal of the exercise is to show that F has a meromorphic continuation to C which coincides with Γ.

1.1. Prove that F has a meromorphic continuation to C. Describe the location of the possible poles of
the continuation of F.

1.2. Let G(s) := F(s)−Γ(s) for all s ∈ C. Prove that G is holomorphic at s = 0, and deduce that G is
entire.

1.3. Let H(s) = G(s)G(1−s) for all s ∈ C. Prove that H is entire and that H is bounded in the vertical
strip 0 6 Re(s) 6 1.

1.4. Show that H(s+ 1) = −H(s), and compute H(0).

1.5. Deduce that H is entire and bounded. Conclude that F = Γ.

Exercise 2 (Reflection formula for Γ) – Recall that, for all Re(s) > 0, we have

Γ(s) =
∫ ∞

0
e−uus−1 du.

Let s = σ be such that 0 < σ < 1, and consider the function fσ defined on C r {0,−1} by fσ(z) =
zσ−1/(z + 1). Here z 7→ zσ−1 denotes z 7→ exp((σ − 1) · log z), where log is the principal determination
of the logarithm.

2.1. Prove that Γ(σ)Γ(1− σ) =
∫ ∞

0
fσ(x) dx.

Let 0 < r < 1 < R be real numbers. Denote by Cr,R the path that starts
at x = r on the positive real axis, runs along the real axis to x = R,
follows the circle |z| = R counterclockwise to x = R, runs down the real
axis to x = r, and follows the circle |z| = r clockwise to x = r.

Rr

Cr,R
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2.2. Prove that fσ is holomorphic on Cr,R and inside that contour with the exception of a simple pole
at z = −1.

2.3. By computing the residue of fσ at z = −1, deduce that
∮

Cr,R
fσ(z) dz = −2πieiπσ.

2.4. Prove that
∣∣∣∣∣
∫
|z|=R

fσ(z) dz
∣∣∣∣∣ tends to 0 as R →∞. Prove that

∣∣∣∣∣
∫
|z|=r

fσ(z) dz
∣∣∣∣∣ tends to 0 as r → 0+.

2.5. Deduce from the previous questions that, for all s = σ such that 0 < σ < 1, we have

(1) Γ(s)Γ(1− s) = π

sin(πs) .

2.6. Conclude that (1) holds for all s ∈ Cr Z.

2.7. Prove Euler’s formula: for all s ∈ Cr Z,

(2) sin(πs) = πs ·
∞∏
n=1

(
1− s2

n2

)
.

Exercise 3 {Ò : 4 points} – For any x > 1, let F(x) be defined by

F(x) =
∑
n6x

µ(n) log(x/n),

where µ denotes Möbius function.

3.1. Prove that, for any x > 1, we have
∑
n6x

F(x/n) = log x.

3.2. Show that, for any s with Re(s) > 1, we have 1
ζ(s) =

∑
n>1

µ(n)n−s.

3.3. Prove that, for any s = σ + it with σ > 1, we have |ζ(s)|−1 6 ζ(σ)
ζ(2σ) .

3.4. For a given c > 1, deduce that the integral
∫ c+i∞

c−i∞
ζ(s)−1 · xs · ds

s2 is absolutely convergent.

3.5. Using Perron’s formula, prove that for any c > 1, and any x > 1 which is not an integer,

F(x) = 1
2πi

∫ c+i∞

c−i∞

1
ζ(s) · x

s · ds
s2 .

Exercise 4 (Primes in arithmetic progression) {Ò : 10 points} – Let q > 1 be an integer. A
group morphism χq : (Z/qZ)× → C× can be extended into a map χ : Z→ C by setting

χ(a) :=
{

0 if gcd(q, a) > 1,
χq(a mod q) otherwise.

The resulting map χ : Z → C is called a Dirichlet character modulo q. We let Xq denote the set of
Dirichlet characters modulo q. We say that χ is the trivial Dirichlet character if the underlying character
χq is the trivial group morphism x 7→ 1.

4.1. Prove that a Dirichlet character modulo q is multiplicative. For χ ∈ Xq, show that |χ(a)| is 0 or 1
for all a ∈ Z.

4.2. Let a ∈ Z be coprime to q, and n > 1. Compute the value of
∑
χ∈Xq

χ(a) · χ(n).
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4.3. Let χ ∈ Xq be a Dirichlet character. Consider the Dirichlet series

L(χ, s) =
∞∑
n=1

χ(n)
ns

.

Show that the Dirichlet series converges for Re(s) > 1, and give the Euler product for L(χ, s).

4.4. If χ = χ0 is the trivial Dirichlet character modulo q, relate L(χ0, s) to ζ(s). Prove that L(χ0, s)
extends into a meromorphic function on Re(s) > 0 with a single simple pole at s = 1.

4.5. If χ ∈ Xq is non-trivial, show that L(χ, s) extends into a holomorphic function on Re(s) > 0. Hint:
use partial summation.

4.6. Let χ ∈ Xq be non-trivial. Define the series

F(χ, s) :=
∑
p

∞∑
k=1

χ(pk)
k
· p−ks,

where the first sum runs over prime numbers p. Show that the series converges on Re(s) > 0, and
that exp(F(χ, s)) = L(χ, s).

4.7. Prove that Rχ : s 7→ F(χ, s) −
∑
p χ(p)p−s defines a holomorphic function on Re(s) > 1, which is

bounded when s→ 1+.

One can prove that L(χ, 1) 6= 0 for any non-trivial Dirichlet character χ ∈ Xq. In what follows, you may
use this fact.

4.8. Consider the product Gq(s) :=
∏
χ∈Xq

L(χ, s). For all s = σ > 1, prove that Gq(s) is real and
Gq(s) > 1.

4.9. Let s be such that Re(s) > 1. Prove that, for any a ∈ Z with gcd(q, a) = 1, we have

1
φ(q)

∑
χ∈Xq

χ(a) · F(χ, s) =
∑

p≡a mod q
p−s + Ra(s),

where the sum on the right-hand side is over prime numbers which are congruent to a modulo q,
and the function Ra(s) is holomorphic and remains bounded when s→ 1+.

4.10. Deduce Dirichlet’s theorem: for any a ∈ Z such that gcd(a, q) = 1, there are infinitely many prime
numbers p with p ≡ a mod q.
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