

EXERCISE SHEET #10

Exercises marked with a are to be handed in before Monday December 2 at noon, in the mailbox at Spiegelgasse 1. Each of these is worth a number of points, as indicated. Questions marked with a ★ are more difficult.

lestions marked with a * are more dim

Exercise 1 (Wielandt uniqueness theorem) – Recall that the Gamma function $s \mapsto \Gamma(s)$ is defined on \mathbb{C} by the Weierstrass product

$$\frac{1}{\Gamma(s)} = s \mathrm{e}^{\gamma s} \cdot \prod_{n=1}^{\infty} \left(1 + \frac{s}{n}\right) \mathrm{e}^{-s/n}.$$

Let F be a holomorphic function on $\operatorname{Re}(s) > 0$. We assume that

- (i) F is bounded in the vertical strip $1 \leq \operatorname{Re}(s) \leq 2$.
- (ii) F(s+1) = sF(s) for all s in Re(s) > 0, and F(1) = 1.

The goal of the exercise is to show that F has a meromorphic continuation to \mathbb{C} which coincides with Γ .

- **1.1.** Prove that F has a meromorphic continuation to \mathbb{C} . Describe the location of the possible poles of the continuation of F.
- **1.2.** Let $G(s) := F(s) \Gamma(s)$ for all $s \in \mathbb{C}$. Prove that G is holomorphic at s = 0, and deduce that G is entire.
- **1.3.** Let H(s) = G(s)G(1-s) for all $s \in \mathbb{C}$. Prove that H is entire and that H is bounded in the vertical strip $0 \leq \operatorname{Re}(s) \leq 1$.
- **1.4.** Show that H(s+1) = -H(s), and compute H(0).
- **1.5.** Deduce that H is entire and bounded. Conclude that $F = \Gamma$.

Exercise 2 (Reflection formula for Γ) – Recall that, for all Re(s) > 0, we have

$$\Gamma(s) = \int_0^\infty e^{-u} u^{s-1} \, \mathrm{d}u.$$

Let $s = \sigma$ be such that $0 < \sigma < 1$, and consider the function f_{σ} defined on $\mathbb{C} \setminus \{0, -1\}$ by $f_{\sigma}(z) = z^{\sigma-1}/(z+1)$. Here $z \mapsto z^{\sigma-1}$ denotes $z \mapsto \exp((\sigma-1) \cdot \log z)$, where log is the principal determination of the logarithm.

2.1. Prove that $\Gamma(\sigma)\Gamma(1-\sigma) = \int_0^\infty f_\sigma(x) \, \mathrm{d}x.$

Let $0 < r < 1 < \mathbb{R}$ be real numbers. Denote by $C_{r,\mathbb{R}}$ the path that starts at x = r on the positive real axis, runs along the real axis to $x = \mathbb{R}$, follows the circle $|z| = \mathbb{R}$ counterclockwise to $x = \mathbb{R}$, runs down the real axis to x = r, and follows the circle |z| = r clockwise to x = r.

- **2.2.** Prove that f_{σ} is holomorphic on $C_{r,R}$ and inside that contour with the exception of a simple pole at z = -1.
- **2.3.** By computing the residue of f_{σ} at z = -1, deduce that $\oint_{C_{r,R}} f_{\sigma}(z) dz = -2\pi i e^{i\pi\sigma}$.
- **2.4.** Prove that $\left| \int_{|z|=R} f_{\sigma}(z) \, \mathrm{d}z \right|$ tends to 0 as $R \to \infty$. Prove that $\left| \int_{|z|=r} f_{\sigma}(z) \, \mathrm{d}z \right|$ tends to 0 as $r \to 0^+$.
- **2.5.** Deduce from the previous questions that, for all $s = \sigma$ such that $0 < \sigma < 1$, we have

(1)
$$\Gamma(s)\Gamma(1-s) = \frac{\pi}{\sin(\pi s)}$$

- **2.6.** Conclude that (1) holds for all $s \in \mathbb{C} \setminus \mathbb{Z}$.
- **2.7.** Prove Euler's formula: for all $s \in \mathbb{C} \setminus \mathbb{Z}$,

(2)
$$\sin(\pi s) = \pi s \cdot \prod_{n=1}^{\infty} \left(1 - \frac{s^2}{n^2} \right)$$

Exercise 3 $\{ \mathscr{P} : 4 \text{ points} \}$ – For any $x \ge 1$, let F(x) be defined by

$$\mathbf{F}(x) = \sum_{n \leqslant x} \mu(n) \log(x/n),$$

where μ denotes Möbius function.

3.1. Prove that, for any $x \ge 1$, we have $\sum_{n \le x} F(x/n) = \log x$.

3.2. Show that, for any s with $\operatorname{Re}(s) > 1$, we have $\frac{1}{\zeta(s)} = \sum_{n \ge 1} \mu(n) n^{-s}$.

3.3. Prove that, for any $s = \sigma + it$ with $\sigma > 1$, we have $|\zeta(s)|^{-1} \leq \frac{\zeta(\sigma)}{\zeta(2\sigma)}$.

3.4. For a given c > 1, deduce that the integral $\int_{c-i\infty}^{c+i\infty} \zeta(s)^{-1} \cdot x^s \cdot \frac{\mathrm{d}s}{s^2}$ is absolutely convergent.

3.5. Using Perron's formula, prove that for any c > 1, and any $x \ge 1$ which is not an integer,

$$\mathbf{F}(x) = \frac{1}{2\pi i} \int_{c-i\infty}^{c+i\infty} \frac{1}{\zeta(s)} \cdot x^s \cdot \frac{\mathrm{d}s}{s^2}.$$

Exercise 4 (Primes in arithmetic progression) $\{\mathscr{P} : 10 \text{ points}\}$ – Let q > 1 be an integer. A group morphism $\chi_q : (\mathbb{Z}/q\mathbb{Z})^{\times} \to \mathbb{C}^{\times}$ can be extended into a map $\chi : \mathbb{Z} \to \mathbb{C}$ by setting

$$\chi(a) := \begin{cases} 0 & \text{if } \gcd(q, a) > 1, \\ \chi_q(a \mod q) & \text{otherwise.} \end{cases}$$

The resulting map $\chi : \mathbb{Z} \to \mathbb{C}$ is called a Dirichlet character modulo q. We let X_q denote the set of Dirichlet characters modulo q. We say that χ is the trivial Dirichlet character if the underlying character χ_q is the trivial group morphism $x \mapsto 1$.

- **4.1.** Prove that a Dirichlet character modulo q is multiplicative. For $\chi \in X_q$, show that $|\chi(a)|$ is 0 or 1 for all $a \in \mathbb{Z}$.
- **4.2.** Let $a \in \mathbb{Z}$ be coprime to q, and $n \ge 1$. Compute the value of $\sum_{\chi \in X_q} \overline{\chi(q)} \cdot \chi(n)$.

4.3. Let $\chi \in X_q$ be a Dirichlet character. Consider the Dirichlet series

$$\mathcal{L}(\chi,s) = \sum_{n=1}^\infty \frac{\chi(n)}{n^s}$$

Show that the Dirichlet series converges for $\operatorname{Re}(s) > 1$, and give the Euler product for $L(\chi, s)$.

- **4.4.** If $\chi = \chi_0$ is the trivial Dirichlet character modulo q, relate $L(\chi_0, s)$ to $\zeta(s)$. Prove that $L(\chi_0, s)$ extends into a meromorphic function on $\operatorname{Re}(s) > 0$ with a single simple pole at s = 1.
- **4.5.** If $\chi \in X_q$ is non-trivial, show that $L(\chi, s)$ extends into a holomorphic function on $\operatorname{Re}(s) > 0$. *Hint:* use partial summation.
- **4.6.** Let $\chi \in X_q$ be non-trivial. Define the series

$$\mathbf{F}(\chi,s) := \sum_{p} \sum_{k=1}^{\infty} \frac{\chi(p^k)}{k} \cdot p^{-ks},$$

where the first sum runs over prime numbers p. Show that the series converges on $\operatorname{Re}(s) > 0$, and that $\exp(\operatorname{F}(\chi, s)) = \operatorname{L}(\chi, s)$.

4.7. Prove that $R_{\chi} : s \mapsto F(\chi, s) - \sum_{p} \chi(p) p^{-s}$ defines a holomorphic function on Re(s) > 1, which is bounded when $s \to 1^+$.

One can prove that $L(\chi, 1) \neq 0$ for any non-trivial Dirichlet character $\chi \in X_q$. In what follows, you may use this fact.

- **4.8.** Consider the product $G_q(s) := \prod_{\chi \in X_q} L(\chi, s)$. For all $s = \sigma > 1$, prove that $G_q(s)$ is real and $G_q(s) \ge 1$.
- **4.9.** Let s be such that $\operatorname{Re}(s) > 1$. Prove that, for any $a \in \mathbb{Z}$ with $\operatorname{gcd}(q, a) = 1$, we have

$$\frac{1}{\phi(q)}\sum_{\chi\in\mathbf{X}_q}\overline{\chi(a)}\cdot\mathbf{F}(\chi,s) = \sum_{p\equiv a \bmod q} p^{-s} + \mathbf{R}_a(s),$$

where the sum on the right-hand side is over prime numbers which are congruent to a modulo q, and the function $R_a(s)$ is holomorphic and remains bounded when $s \to 1^+$.

4.10. Deduce Dirichlet's theorem: for any $a \in \mathbb{Z}$ such that gcd(a,q) = 1, there are infinitely many prime numbers p with $p \equiv a \mod q$.