

EXERCISE SHEET #11

Exercises marked with a 🌶 are to be handed in before Monday December 9 at noon, in the mailbox at Spiegelgasse 1. Each of these is worth a number of points, as indicated.

Questions marked with a \star are more difficult.

Exercise 1 $\{ \mathscr{S} : \mathbf{5} \text{ points} \}$ – For all $x \ge 1$, we let $\pi(x)$ denote the number of prime numbers p such that $p \le x$. We also let $\Pi(x) := \sum_{p^k \le x} \frac{1}{k}$, where the sum runs over prime powers with $p^k \le x$.

- **1.1.** Prove that $\Pi(x) = \sum_{1 \le k \le \log x / \log 2} \frac{\pi(x^{1/k})}{k}.$
- **1.2.** Prove that $\Pi(x) = \pi(x) + O(\sqrt{x} \log x)$ as $x \to \infty$.
- **1.3.** Denoting the Riemann zeta function by $\zeta(s)$, prove that $\log \zeta(s)$ is a Dirichlet series that converges absolutely on $\operatorname{Re}(s) > 1$. Here, $\log : \mathbb{C} \to \mathbb{C}$ denotes the principal determination of the complex logarithm (which is real positive on the positive real axis).
- **1.4.** For any c > 1 and any x > 1 which is not an integer, prove that $\Pi(x) = \frac{1}{2\pi i} \int_{c-i\infty}^{c+i\infty} \log \zeta(s) \cdot x^s \frac{\mathrm{d}s}{s}$.

Exercise 2 (The Dedekind zeta function of $\mathbb{Q}(i)$) – Let $K = \mathbb{Q}(i)$ and denote its Dedekind zeta function by $\zeta_K(s)$.

- **2.1.** Let p be a prime. Depending on the value of $p \pmod{4}$, recall the splitting behaviour of p in K.
- **2.2.** For any s with $\operatorname{Re}(s) > 1$, prove that

$$\zeta_{\mathrm{K}}(s) = \zeta(s) \cdot \prod_{\substack{\text{primes } p \\ p \equiv 1 \mod 4}} \left(1 - \frac{1}{p^s}\right)^{-1} \cdot \prod_{\substack{\text{primes } p \\ p \equiv 3 \mod 4}} \left(1 + \frac{1}{p^s}\right)^{-1}.$$

Hint: in the Euler product defining $\zeta_{K}(s)$ *, group the terms lying above a given rational prime.*

Let $\chi_4 : \mathbb{Z} \to \mathbb{C}$ denote the Dirichlet character modulo 4 defined by $\chi_4(3) = -1$.

2.3. Deduce from the above that $\zeta_{K}(s) = \zeta(s) \cdot L(\chi_{4}, s)$.

For any integer $m \ge 1$, we let r(m) denote the number of solutions $(u, v) \in \mathbb{Z}^2$ of the equation $m = u^2 + v^2$ *i.e.*, r(m) is the number of representations of m as a sum of two squares.

2.4. Prove that, for all s with $\operatorname{Re}(s) > 1$, we have

$$\zeta_{\mathcal{K}}(s) = \frac{1}{4} \sum_{(u,v)} \frac{1}{(u^2 + v^2)^s} = \frac{1}{4} \sum_{m=1}^{\infty} \frac{r(m)}{m^s},$$

where the sum over (u, v) is over pairs $(u, v) \in \mathbb{Z}^2 \setminus \{(0, 0)\}.$

2.5. Deduce that $r = 4 \star \chi_4$, where \star denotes the convolution and 4 is the constant function 4 on \mathbb{Z} .

Exercise 3 (Dedekind zeta functions of certain quadratic number fields) { \mathscr{P} : 5 points} – Let us fix an odd prime number q. We let $q^* := (-1)^{(q-1)/2}q$ and $K := \mathbb{Q}(\sqrt{q^*})$. Recall that

$$\zeta_{\mathrm{K}}(s) := \sum_{0 \neq \mathfrak{a} \subset \mathcal{O}_{\mathrm{K}}} \frac{1}{(\mathrm{N}\,\mathfrak{a})^{s}} = \prod_{\mathfrak{p}} \left(1 - \frac{1}{(\mathrm{N}\,\mathfrak{p})^{s}} \right)^{-1}.$$

Also recall the Quadratic Reciprocity Law: For any distinct odd primes $p \neq q$, $\left(\frac{p}{q}\right) \cdot \left(\frac{q}{p}\right) = (-1)^{(p-1)(q-1)/4}$. Moreover, $\left(\frac{2}{q}\right) = (-1)^{(q^2-1)/8}$ for any odd prime q, and $\left(\frac{-1}{q}\right) = (-1)^{(q-1)/2}$.

3.1. Prove that, for all primes p and suitable $s \in \mathbb{C}$, we have

$$\prod_{\mathfrak{p}|p} \left(1 - \frac{1}{(N\mathfrak{p})^s} \right)^{-1} = \begin{cases} (1 - p^{-s})^{-1} & \text{if } p \text{ ramifies in K,} \\ (1 - p^{-s})^{-2} & \text{if } p \text{ splits in K,} \\ (1 - p^{-2s})^{-1} & \text{if } p \text{ is inert in K,} \end{cases}$$

the product being over prime ideals \mathfrak{p} of K lying over p.

- **3.2.** Combine Dedekind-Kummer to the Quadratic Reciprocity Law to show that: for any prime p, p ramifies in $K \Leftrightarrow \left(\frac{p}{q}\right) = 0$, p splits in $K \Leftrightarrow \left(\frac{p}{q}\right) = +1$, p is inert in $K \Leftrightarrow \left(\frac{p}{q}\right) = -1$.
- **3.3.** Let χ_q denote the Dirichlet character modulo q defined by $a \mapsto \left(\frac{a}{q}\right)$. Deduce from the above that we have $\zeta_{\mathrm{K}}(s) = \zeta(s) \cdot \mathrm{L}(\chi_q, s)$ for all $s \in \mathbb{C}$.
- For any $m \ge 1$, let $I_K(m)$ denote the number of integral ideals of K with norm m.
- **3.4.** Prove that $I_K = 1 \star \chi_q$ where \star denotes convolution of arithmetic functions, and 1 is the constant function $n \mapsto 1$.

Exercise 4 (The Fourier transform of a Gaussian is a Gaussian) – For any $m \in \mathbb{R}_{>0}$, let $f_m : \mathbb{R} \to \mathbb{R}$ denote the function $x \mapsto e^{-mx^2}$.

4.1. Prove that f_m belongs to the Schwartz class, and that it is the unique solution of the differential equation $y'(x) + 2m\pi x \cdot y(x) = 0$ with y(0) = 1.

For any
$$h \in \mathbb{R}$$
, recall that $\widehat{f_m}(h) = \int_{\mathbb{R}} f_m(x) \cdot e^{-2i\pi \cdot hx} dx$.

- **4.2.** Prove that $\int_{\mathbb{R}} f_m(x) \, \mathrm{d}x = \widehat{f_m}(0) = \sqrt{\frac{\pi}{m}}.$
- **4.3.** Find a differential equation satisfied by $\widehat{f_m}$. Show that $\widehat{f_m} = \sqrt{\frac{\pi}{m}} \cdot f_{m'}$ where $m' = \pi^2/m$.
- Let $M \in \mathcal{M}_{n,n}(\mathbb{R})$ be a real symmetric positive definite $n \times n$ matrix. Define a function $f_M : \mathbb{R}^n \to \mathbb{R}$ by $\mathbf{x} = (x_1, \ldots, x_n) \mapsto \exp(-\mathbf{x}^T \cdot \mathbf{M} \cdot \mathbf{x}).$
- **4.3.** Prove that the Fourier transform $\mathbf{h} \mapsto \widehat{f_{\mathrm{M}}}(\mathbf{h}) = \int_{\mathbb{R}^n} f_{\mathrm{M}}(\mathbf{y}) \cdot \mathrm{e}^{-2i\pi \cdot \mathbf{h}^{\mathrm{T}} \cdot \mathbf{y}} \, \mathrm{d}\mathbf{y}$ is well-defined on \mathbb{R}^n .
- **4.4.** Show that there exist a diagonal matrix Λ with positive diagonal entries $\lambda_1, \ldots, \lambda_n$, and an orthogonal matrix P such that $P^T \cdot M \cdot P = \Lambda$.
- **4.5.** For any $\mathbf{h} \in \mathbb{R}^n$, we let $\mathbf{g} := \mathbf{P}^T \cdot \mathbf{h} = (g_1, \dots, g_n)$. Prove that

$$\int_{\mathbb{R}^n} f_{\mathrm{M}}(\mathbf{y}) \cdot \mathrm{e}^{-2i\pi \cdot \mathbf{h}^{\mathrm{T}} \cdot \mathbf{y}} \, \mathrm{d}\mathbf{y} = \prod_{j=1}^n \left(\int_{\mathbb{R}} \mathrm{e}^{-\lambda_j z_j^2} \cdot \mathrm{e}^{-2i\pi \cdot g_j z_j} \, \mathrm{d}z_j \right).$$

Hint: change variables via $\mathbf{y} = \mathbf{P} \cdot \mathbf{z}$ *.*

4.6. Conclude that $\widehat{f_{M}} = c(M) \cdot f_{M'}$, where $M' \in \mathcal{M}_{n,n}(\mathbb{R})$ and c(M) are to be computed in terms of M.