

EXERCISE SHEET #12

Exercises marked with a are to be handed in before Tuesday December 17 at noon, in the mailbox at Spiegelgasse 1. Each of these is worth a number of points, as indicated. Questions marked with a ★ are more difficult.

Exercise 1 (Dirichlet density and Bauer's theorem) – Let S be a set of prime numbers. We say that S has a Dirichlet density if the limit

$$\lim_{\sigma \to 1^+} \left(\sum_{p \in \mathcal{S}} p^{-\sigma} \right) \cdot \left(\sum_p p^{-\sigma} \right)^{-1}.$$

exists. The sum in the denominator is over the set of all prime numbers. In case the limit exists, we denote it by $\delta(S)$ and call it the Dirichlet density of S.

Let K be a number field. For any prime number p, we let $\omega_{\rm K}(p)$ be the number of prime ideals \mathfrak{p} of K which lie above p and have residual degree $f_{\mathfrak{p}} = 1$.

1.1. For any
$$\sigma \in (1, +\infty)$$
, show that $\log \zeta_{\mathrm{K}}(\sigma) = \sum_{k=1}^{\infty} \sum_{p} \frac{p^{-k\sigma}}{k} \cdot \left(\sum_{\substack{\mathfrak{p} \mid p \\ f_{\mathfrak{p}} \mid k}} f_{\mathfrak{p}}\right).$

- **1.2.** Deduce that there exists a constant $c_0 > 0$ (which does not depend on K) such that, for all $\sigma > 1$, we have $\left| \log \zeta_{\mathrm{K}}(\sigma) \sum_{p} \frac{\omega_{\mathrm{K}}(p)}{p^{\sigma}} \right| \leq c_0 \cdot [\mathrm{K} : \mathbb{Q}].$
- **1.3.** Deduce that, as $\sigma > 1$ tends to 1^+ , we have $\frac{\log \zeta_{\mathrm{K}}(\sigma)}{\log \zeta(\sigma)} \sim \frac{\sum_p p^{-\sigma} \cdot \omega_{\mathrm{K}}(p)}{\sum_p p^{-\sigma}} \xrightarrow[\sigma \to 1^+]{} 1.$

Let $y \in \mathbb{Z}_{\geq 1}$ be given. Consider the set $S_{y,K}$ consisting of prime numbers p which have at least y distinct prime (ideal) divisors \mathfrak{p} in K with $f_{\mathfrak{p}} = 1$.

- **1.4.** Assuming that $S_{y,K}$ admits a Dirichlet density $\delta(S_{y,K})$, prove that $\delta(S_{y,K}) \leq 1/y$.
- **1.5.** Prove that K has infinitely many prime ideals with residual degree $f_{\mathfrak{p}} = 1$.

Assume now that the number field K/\mathbb{Q} is Galois. Let \mathcal{S}_K be the set of prime numbers p which split completely in K.

- **1.6.** Let p be a prime. Prove that p splits completely if and only if $\omega_{\rm K}(p) > 0$, if and only if $\omega_{\rm K}(p) = n$.
- **1.7.** Show that \mathcal{S}_{K} has a Dirichlet density and that $\delta(\mathcal{S}_{K}) = 1/[K : \mathbb{Q}]$. (In particular, \mathcal{S}_{K} is infinite.)

In the last questions, we prove Bauer's theorem. Let K and L be two Galois number fields. As in the previous questions, we write S_K and S_L for the set of prime numbers which are completely split in K and L, respectively. We assume that $S_K = S_L$, and we will deduce that K = L.

- **1.8.** Using the previous question, prove that $[K : \mathbb{Q}] = [L : \mathbb{Q}]$.
- **1.9.** Consider the compositum $M := K \cdot L$ (*i.e.* the smallest extension of \mathbb{Q} containing both K and L). Show that $\delta(\mathcal{S}_K) \leq [M : \mathbb{Q}]^{-1}$. *Hint: show that the primes in* \mathcal{S}_K *split completely in* M, *use* **2.4**.
- **1.10.** Conclude that M = K = L.

Exercise 2 (Closed formula for $L(\chi, 1)$) **{** \mathscr{C} : 8 points**}** – Let $q \ge 2$ be an integer, and let X_q denote the set of Dirichlet characters modulo q. Recall that, for each non-trivial $\chi \in X_q$, we have defined a Dirichlet series $L(\chi, s) = \sum_{n=1}^{\infty} \chi(n) n^{-s}$ which converges on $\operatorname{Re}(s) > 0$.

The goal of the exercise is to give a closed formula for $L(\chi, 1)$.

- **2.1.** For any $\theta \in (0, 2\pi)$, we put $L(\theta) = \sum_{n=1}^{\infty} \frac{\exp(in\theta)}{n}$. Prove that the series converges.
- **2.2.** Prove that $L(\theta) = -\log\left(2\sin\frac{\theta}{2}\right) + i\frac{\pi-\theta}{2}$. Here, log denotes the principal branch of the complex logarithm.

We now fix a non-trivial Dirichlet character $\chi \in \mathcal{X}_q$. Let $\mathcal{G}(\chi) := \sum_{x=1}^{q-1} \overline{\chi}(x) \cdot \exp\left(\frac{2\pi i \cdot x}{q}\right)$.

2.3. Show that, for all $n \in \mathbb{Z}$ which are coprime to q, we have:

(1)
$$\chi(n) = \frac{1}{\mathcal{G}(\chi)} \sum_{y \in (\mathbb{Z}/q\mathbb{Z})^{\times}} \overline{\chi}(y) \cdot \exp\left(\frac{2\pi i \cdot ny}{q}\right)$$

Hint : note that $\chi(y^{-1}) = \overline{\chi}(y)$ for all $y \in (\mathbb{Z}/q\mathbb{Z})^{\times}$.

For the rest of the exercise, we assume that $\chi \in X_q$ is *primitive* modulo q (*i.e.* χ is not induced by a Dirichlet character $\chi' \in X_{q'}$ modulo some strict divisor q' of q). Among other things, this implies that equality (1) holds for all $n \in \mathbb{Z}$. You don't have to prove this.

2.4. For a primitive character $\chi \in X_q$, prove by using (1) that

$$\mathcal{L}(\chi,1) = \frac{-1}{\mathcal{G}(\chi)} \cdot \left(\sum_{y=1}^{q-1} \overline{\chi}(y) \cdot \log \sin \frac{\pi y}{q} + \frac{\pi i}{q} \cdot \sum_{y=1}^{q-1} \overline{\chi}(y) \cdot y \right).$$

2.5. Assume moreover that $\chi(-1) = 1$ (one says that χ is *even*). Prove that $\sum_{y=1}^{q-1} \bar{\chi}(y) \cdot y = 0$ in this case, and deduce that

$$\mathcal{L}(\chi, 1) = \frac{-1}{\mathcal{G}(\chi)} \cdot \sum_{y=1}^{\mathcal{N}-1} \overline{\chi}(y) \cdot \log \sin \frac{\pi y}{q}$$

2.6. Assume now that $\chi(-1) = -1$ (one says that χ is *odd*). Prove that $\sum_{y=1}^{q-1} \bar{\chi}(y) \cdot \log \sin \frac{\pi y}{q} = 0$ under this assumption, and deduce that

$$\mathcal{L}(\chi, 1) = \frac{-\pi i}{q \mathcal{G}(\chi)} \cdot \sum_{y=1}^{q-1} \overline{\chi}(y) \cdot y$$

- **2.7.** As a first application, consider the following situation. Let q = 4 and $\chi_4 \in X_4$ denote the Dirichlet character defined by $\chi_4(-1) = -1$. Deduce from the above relations that $L(\chi_4, 1) = \frac{\pi}{4}$.
- **2.8.** As a second application, consider the case where q = 5 and $\chi_5 \in X_5$ is the Dirichlet character modulo 5 defined by $\chi_5(-1) = \chi_5(1) = 1$, and $\chi_5(2) = \chi_5(3) = -1$. Deduce from the above that

$$\mathcal{L}(\chi_5, 1) = \frac{\log \eta}{\sqrt{5}}, \quad \text{where} \quad \eta = \frac{\sin \frac{2\pi}{5} \cdot \sin \frac{3\pi}{5}}{\sin \frac{\pi}{5} \cdot \sin \frac{4\pi}{5}}$$

2.9. Consider the number field $K = \mathbb{Q}(\sqrt{5})$. Compute its discriminant, its class number, its fundamental unit and the number of roots of unity in K. Comment on the equality proven in **1.8**.

Exercise 3 (The different) $\{\mathscr{S} : 4 \text{ points}\}$ – Let K be a number field with discriminant d_{K} . We denote by $\operatorname{Tr}_{K} : K \to \mathbb{Q}$ the trace of K/\mathbb{Q} . Recall that the Dedekind dual of a fractional ideal \mathfrak{b} of K is defined by

$$\mathfrak{b}' = \{ \alpha \in \mathbf{K} : \forall \beta \in \mathfrak{b}, \ \mathrm{Tr}_{\mathbf{K}}(\alpha \beta) \in \mathbb{Z} \}.$$

3.1. Prove that the Dedekind dual \mathfrak{b}' of a fractional ideal \mathfrak{b} of K is also a fractional ideal of K. Moreover, check that $(\mathfrak{b}')' = \mathfrak{b}$.

We define the different \mathfrak{d}_K of K by the equality $\mathfrak{d}_K^{-1} := (\mathcal{O}_K)'$.

- **3.2.** Prove that $\mathfrak{d}_{\mathrm{K}}$ is an (integral) ideal of K.
- **3.3.** Check that, for any fractional ideal \mathfrak{b} of K, we have $\mathfrak{b}' = \mathfrak{b}^{-1} \cdot \mathfrak{d}_{K}^{-1}$.
- **3.4.** Prove the equality $N(\mathfrak{d}_K) = |d_K|$.