
Analytic Algebraic Number Theory
December 10, 2019

Exercise sheet #12

Exercises marked with a Ò are to be handed in before Tuesday December 17 at noon, in the
mailbox at Spiegelgasse 1. Each of these is worth a number of points, as indicated.

Questions marked with a ? are more difficult.

Exercise 1 (Dirichlet density and Bauer’s theorem) – Let S be a set of prime numbers. We say
that S has a Dirichlet density if the limit

lim
σ→1+

∑
p∈S

p−σ

 · (∑
p

p−σ
)−1

.

exists. The sum in the denominator is over the set of all prime numbers. In case the limit exists, we
denote it by δ(S) and call it the Dirichlet density of S.

Let K be a number field. For any prime number p, we let ωK(p) be the number of prime ideals p
of K which lie above p and have residual degree fp = 1.

1.1. For any σ ∈ (1,+∞), show that log ζK(σ) =
∞∑
k=1

∑
p

p−kσ

k
·

∑
p|p
fp|k

fp

.
1.2. Deduce that there exists a constant c0 > 0 (which does not depend on K) such that, for all σ > 1,

we have
∣∣∣∣∣log ζK(σ)−

∑
p

ωK(p)
pσ

∣∣∣∣∣ 6 c0 · [K : Q].

1.3. Deduce that, as σ > 1 tends to 1+, we have log ζK(σ)
log ζ(σ) ∼

∑
p p
−σ · ωK(p)∑
p p
−σ −−−−→

σ→1+
1.

Let y ∈ Z>1 be given. Consider the set Sy,K consisting of prime numbers p which have at least y distinct
prime (ideal) divisors p in K with fp = 1.

1.4. Assuming that Sy,K admits a Dirichlet density δ(Sy,K), prove that δ(Sy,K) 6 1/y.

1.5. Prove that K has infinitely many prime ideals with residual degree fp = 1.

Assume now that the number field K/Q is Galois. Let SK be the set of prime numbers p which split
completely in K.

1.6. Let p be a prime. Prove that p splits completely if and only if ωK(p) > 0, if and only if ωK(p) = n.

1.7. Show that SK has a Dirichlet density and that δ(SK) = 1/[K : Q]. (In particular, SK is infinite.)

In the last questions, we prove Bauer’s theorem. Let K and L be two Galois number fields. As in the
previous questions, we write SK and SL for the set of prime numbers which are completely split in K
and L, respectively. We assume that SK = SL, and we will deduce that K = L.

1.8. Using the previous question, prove that [K : Q] = [L : Q].

1.9. Consider the compositum M := K · L (i.e. the smallest extension of Q containing both K and L).
Show that δ(SK) 6 [M : Q]−1. Hint: show that the primes in SK split completely in M, use 2.4.

1.10. Conclude that M = K = L.
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Exercise 2 (Closed formula for L(χ, 1)) {Ò : 8 points} – Let q > 2 be an integer, and let Xq denote
the set of Dirichlet characters modulo q. Recall that, for each non-trivial χ ∈ Xq, we have defined a
Dirichlet series L(χ, s) =

∑∞
n=1 χ(n)n−s which converges on Re(s) > 0.

The goal of the exercise is to give a closed formula for L(χ, 1).

2.1. For any θ ∈ (0, 2π), we put L(θ) =
∞∑
n=1

exp(inθ)
n

. Prove that the series converges.

2.2. Prove that L(θ) = − log
(
2 sin θ

2

)
+ iπ−θ2 . Here, log denotes the principal branch of the complex

logarithm.

We now fix a non-trivial Dirichlet character χ ∈ Xq. Let G(χ) :=
q−1∑
x=1

χ(x) · exp
(2πi · x

q

)
.

2.3. Show that, for all n ∈ Z which are coprime to q, we have:

(1) χ(n) = 1
G(χ)

∑
y∈(Z/qZ)×

χ(y) · exp
(2πi · ny

q

)
.

Hint : note that χ(y−1) = χ(y) for all y ∈ (Z/qZ)×.

For the rest of the exercise, we assume that χ ∈ Xq is primitive modulo q (i.e. χ is not induced by a
Dirichlet character χ′ ∈ Xq′ modulo some strict divisor q′ of q). Among other things, this implies that
equality (1) holds for all n ∈ Z. You don’t have to prove this.

2.4. For a primitive character χ ∈ Xq, prove by using (1) that

L(χ, 1) = −1
G(χ) ·

q−1∑
y=1

χ(y) · log sin πy
q

+ πi

q
·
q−1∑
y=1

χ(y) · y

 .
2.5. Assume moreover that χ(−1) = 1 (one says that χ is even). Prove that

∑q−1
y=1 χ̄(y) · y = 0 in this

case, and deduce that

L(χ, 1) = −1
G(χ) ·

N−1∑
y=1

χ(y) · log sin πy
q
.

2.6. Assume now that χ(−1) = −1 (one says that χ is odd). Prove that
∑q−1
y=1 χ̄(y) · log sin πy

q = 0 under
this assumption, and deduce that

L(χ, 1) = −πi
qG(χ) ·

q−1∑
y=1

χ(y) · y.

2.7. As a first application, consider the following situation. Let q = 4 and χ4 ∈ X4 denote the Dirichlet
character defined by χ4(−1) = −1. Deduce from the above relations that L(χ4, 1) = π

4 .

2.8. As a second application, consider the case where q = 5 and χ5 ∈ X5 is the Dirichlet character
modulo 5 defined by χ5(−1) = χ5(1) = 1, and χ5(2) = χ5(3) = −1. Deduce from the above that

L(χ5, 1) = log η√
5
, where η =

sin 2π
5 · sin

3π
5

sin π
5 · sin

4π
5
.

2.9. Consider the number field K = Q(
√

5). Compute its discriminant, its class number, its fundamental
unit and the number of roots of unity in K. Comment on the equality proven in 1.8.
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Exercise 3 (The different) {Ò : 4 points} – Let K be a number field with discriminant dK. We
denote by TrK : K→ Q the trace of K/Q. Recall that the Dedekind dual of a fractional ideal b of K is
defined by

b′ = {α ∈ K : ∀β ∈ b, TrK(αβ) ∈ Z}.

3.1. Prove that the Dedekind dual b′ of a fractional ideal b of K is also a fractional ideal of K. Moreover,
check that (b′)′ = b.

We define the different dK of K by the equality d−1
K := (OK)′.

3.2. Prove that dK is an (integral) ideal of K.

3.3. Check that, for any fractional ideal b of K, we have b′ = b−1 · d−1
K .

3.4. Prove the equality N(dK) = |dK|.
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