
Curves over finite fields
Friday 19th January, 2018

Universiteit Leiden

Final Exam

Duration : 3 hours
The use of electronic devices or books is not allowed, but you can use the lecture notes of the course.

You may use results from the lecture notes without proof, provided you clearly state which results you use.
Write your name and student ID on each piece of paper you hand in. Please write legibly and give proper

justification to your answers.

Exercise 1 – Let Fq be a finite field of odd characteristic. Fix three distinct elements e1, e2, e3 ∈ Fq. Consider
the affine curve C0 ⊂ A2 defined over Fq given (in the (x, y)-coordinates on A2) by the equation

C0 ⊂ A2 : y2 = (x− e1)(x− e2)(x− e3).

1.1. Give an equation of the projective closure C ⊂ P2 of C0 (in the [X : Y : Z]-coordinates on P2), list the points at
infinity on C and check that they are Fq-rational.

1.2. Check that C is smooth.

The curve C has genus 1. Consider the following four Fq-rational points on C:

P0 := [0 : 1 : 0], P1 := [e1 : 0 : 1], P2 := [e2 : 0 : 1], P3 := [e3 : 0 : 1].

1.3. Prove that, for i = 1, 2, 3, div(x− ei) = 2Pi − 2P0 and div(y) = P1 + P2 + P3 − 3P0.

1.4. Let P ∈ C(Fq). Using the Riemann-Roch theorem, prove the following assertion: if f ∈ Fq(C)× is a rational
function satisfying div(f) > −P then f is constant.

For each i ∈ {1, 2, 3}, let ci be the class in Pic0(C) of the divisor Di := Pi − P0 ∈ Div(C).

1.5. Deduce from the two previous questions that, in Pic0(C), one has ci 6= 0 and 2ci = 0 for i = 1, 2, 3.

1.6. Show that c1 + c2 + c3 = 0 in Pic0(C).

Let Γ denote the subgroup of Pic0(C) generated by c1, c2, c3.

1.7. Deduce from the above questions that Γ ' (Z/2Z)2.

1.8. Let c ∈ Pic0(C) be a divisor class such that c 6= 0 and 2c = 0. Prove that c ∈ Γ. Hint: C is an elliptic curve.

Exercise 2 – Let Fq be a finite field and let C be a smooth projective curve of genus g = g(C) defined over Fq.
We denote by Pic0(C) the group of classes of divisors of degree 0 on C, and we let h(C) := #Pic0(C).

For all f ∈ Fq(C)×, we decompose div(f) ∈ Div(C) as div(f) = div(f)0 − div(f)∞ where both div(f)0,div(f)∞
are effective divisors. The degree of f is then defined to be deg div(f)0 = deg div(f)∞ > 0 (i.e. the degree of f is the
number of zeroes/poles of f counted with multiplicities).

Recall that the gonality γ of C is the minimum degree of a nonconstant rational function f ∈ Fq(C)×.

2.1. Prove that γ = min {deg D : D ∈ Div(C) and `(D) > 2}.

2.2. If g = 0, show that γ = 1. In the case that g = 1, prove that γ = 2.

We now assume that g > 1. Let X be the set of effective divisors of degree 2g on C. Recall from the lecture notes that
#X = h(C) · (qg+1 − 1)

/
(q − 1).

For any point P ∈ C(Fq2g ), we construct a divisor DP ∈ X as follows. Let vP = {σ(P), σ ∈ Gal(Fq2g/Fq)} ⊂ C(Fq2g )
be the set of Galois conjugates of P. This set vP is an Fq-place of C and we denote its degree by aP = #vP. Then aP
divides 2g and we set DP := 2g

aP
· vP ∈ Z · vP ⊂ Div(C).

2.3. Explain why aP divides 2g, and check that DP ∈ X.

2.4. Prove that DP 6= DQ if P,Q ∈ C(Fq2g ) are not in the same Gal(Fq2g/Fq)-orbit.

2.5. Using this construction, prove that #X >
#C(Fq2g )

2g .
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2.6. Using the Hasse-Weil bound, deduce that

h(C) > q − 1
2 · q

2g − 2g · qg + 1
g · (qg+1 − 1) .

2.7. Fix a finite field Fq and a sequence (Cn)n>1 of smooth projective curves Cn over Fq. Assume that the genus
gn = g(Cn) of Cn tends to infinity as n→∞. Prove that, as n→∞, one has

h(Cn) > qgn

gn
·
(
q − 1

2q + εq(gn)
)
,

for some function εq : R>0 → R such that |εq(x)| → 0 as x→∞.

Exercise 3 – Let Fp be a prime finite field with p > 3. Let C be a smooth projective curve of genus g > 1
over Fp. We denote by L(C/Fp,T) =

∑2g
i=0 aiTi ∈ Z[T] the numerator of the zeta function of C/Fp.

Prove the following assertions:

3.1. For any integer n such that 1 6 n < p − 1, the homogeneous equation
∑n
i=0 x

p−1
i = 0 has exactly one solu-

tion (x0, . . . , xn) ∈ (Fp)n+1.

3.2. One has a1 = #C(Fp)− (p+ 1).

3.3. One has |ag| 6
(2g
g

)
· pg/2.

3.4. If there is a permutation τ : C(Fp)→ C(Fp) of order 3 acting without fixed points. Then #C(Fp) ≡ 0 mod 3.

3.5. If #C(Fpm) = pm + 1 for all m ∈ {1, . . . ,M} with M 6 g, then a1 = · · · = aM = 0.

Here are a list of 4 curves Ci ⊂ P2 defined over F5 which are smooth projective of genus g = 3, and a list of 5
polynomials Lα in Z[T]. Four of the Lα’s are actually the L-functions of one of the Ci’s.

La(T) = 125T6 − 50T5 − 5T4 + 12T3 − T2 − 2T + 1.
C1 : y4 − x4 + x2z2 + yz3 = 0.

Lb(T) = 125T6 − 150T5 + 135T4 − 68T3 + 27T2 − 6T + 1.
C2 : x3y + y3z + z3x = 0.

Lc(T) = 125T6 + 150T5 + 125T4 + 64T3 + 25T2 + 6T + 1.
C3 : x4 + y3z + yz3 = 0

Ld(T) = 125T6 + 150T5 + 135T4 − 235T3 + 27T2 − 6T + 1.
C4 : x4 + y4 + z4 = 0.

Le(T) = 125T6 + 1.

3.6. Assign to each curve Ci its L-function. Explain your argument. Hint: avoid unnecessary computations.

Note:
√

5 = 2.23606...,
√

53 = 11.18034... and
(6

3
)

= 20.

Exercise 4 – Let q be a prime power, and let n be a positive integer. Let C be a curve of genus g over Fq,
and let Q,P1,P2, . . . ,Pn be distinct Fq-rational points of C. For each integer r > 0, we defined the Goppa code Gr

associated with (C, r ·Q) in the lecture notes as the image of

αr : L(r ·Q)→ Fnq : f 7→ (f(P1), f(P2), . . . , f(Pn)).

4.1. Prove that αr is injective if r < n.

4.2. For each integer n, give an example of a prime power q, a curve C over Fq, points Q,P1,P2, . . . ,Pn, such that αn
is not injective.

4.3. Prove that there exists an integer N, possibly depending on q, g, n and/or C, such that for all r > N the map αr
is surjective.

4.4. In this question, we take q = 3 and consider C = P1 over F3. We choose Q = (1 : 0), P1 = (0 : 1), P2 = (1 : 1)
and P3 = (2 : 1). Compute the dimension, length and minimum distance of the codes G1, G2 and G1 ⊗G1.

4.5. Construct a [6, 4, 2]-code over F2. Hint: you may start by constructing a [3, 2, 2]-code over F4.

4.6. Does there exist a [6, 4, 3]-code over F2?
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