FINAL EXAM

Duration : 3 hours

Exercise 1 – Consider the projective curve $X_1 \subset \mathbb{P}^2$ defined over $k = \mathbb{F}_2$ as the projective closure of the affine curve $\subset \mathbb{A}^2$ given by:

$$y^2 + y = x^3 + x.$$

1.1. Give an equation of X_1 , and prove that X_1 is smooth.

1.2. Show that $\#X_1(\mathbb{F}_{16}) = 25$. You may use without proof that X_1 has genus 1.

Let $P \in X_1(\mathbb{F}_{16})$ be one of these 25 points, and $a, b \ge 1$ be two integers. Consider the divisor $D = a \cdot P$ on X_1/\mathbb{F}_{16} , and choose b points P_1, \ldots, P_b in $X_1(\mathbb{F}_{16}) \setminus \{P\}$.

We denote by $\Gamma_{a,b}$ the Goppa code over \mathbb{F}_{16} associated to this data $X_1, D, \{P_1, \ldots, P_b\}$.

- 1.3. Estimate the invariants n, k, d of $\Gamma_{a,b}$ in terms of a, b (give the exact values of n and k, and a lower bound on d). What inequalities restrict the possible choices of a, b?
- 1.4. Among the following, which can be realized as a $\Gamma_{a,b}$? If so, give suitable values of a, b.
 - (a) A [n, k, d]-code over \mathbb{F}_{16} with n = 21, k = 11 and $d \ge 10$.
 - (b) A code over \mathbb{F}_{16} of dimension 24.
 - (c) A code over \mathbb{F}_{16} of length 22 which corrects at least 4 errors. *Hint: use the Singleton bound.*
 - (d) A code over \mathbb{F}_{16} which corrects at least 12 errors.
- 1.5. From a suitable $\Gamma_{a,b}$ over \mathbb{F}_{16} , explain how to deduce a $[84, 32, \ge 13]$ -code over \mathbb{F}_2 .

Let $X_2 \subset \mathbb{P}^2$ be the smooth projective curve of genus 1 defined over \mathbb{F}_{16} by $x^3 + y^3 + z^3 = 0$.

1.6. Can a Goppa code obtained from X_2 have bigger length than the longest $\Gamma_{a,b}$?

Exercise 2 – Let $k = \mathbb{F}_5$, and consider the smooth projective curve $C \subset \mathbb{P}^2$ defined over \mathbb{F}_5 by

$$C/\mathbb{F}_5$$
 : $x^4 + y^4 + z^4 = 0.$

It can be shown that C is smooth and has genus 3. For any integer $d \ge 1$ coprime to q, we denote by μ_d the group of d-th roots of unity in $\overline{\mathbb{F}_5}$.

- 2.1. For what values of d do we have $\mu_d \subset \mathbb{F}_5^{\times}$? and $\mu_d \subset \mathbb{F}_{25}^{\times}$?
- 2.2. Show that $\#C(\mathbb{F}_5) = 0$.
- 2.3. Let $\xi \in \mathbb{F}_{25}^{\times}$ be a primitive 8-th root of unity. Considering points of the form $P_k = [0:1:\xi^k] \in \mathbb{P}^2$ (for suitable $k \ge 0$) and points obtained from P_k by permuting the coordinates, prove that $\#C(\mathbb{F}_{25}) \ge 3 \cdot 4 = 12$.
- 2.4. Now let $\zeta \in \mathbb{F}_{25}^{\times}$ be a primitive 12-th root of unity.

For $a \in \{0, 1, 2\}$ and $k, \ell \ge 0$, let $Q_{a,k,\ell} = [1 : \zeta^{a+3k} : \zeta^{3-a+3\ell}] \in \mathbb{P}^2$. Exhibit $2 \cdot 4 \cdot 4 = 32$ more points in $C(\mathbb{F}_{25})$. Hint: ζ^4 is a primitive 3-rd of unity.

The Serre bound gives that $\#C(\mathbb{F}_{25}) \leq 56$, and a more detailed analysis would show that $\#C(\mathbb{F}_{25}) \leq 55$. Using the "symmetries" of C, one can show that $\#C(\mathbb{F}_{25}) \equiv 8 \mod 12$.

- 2.5. Conclude that $\#C(\mathbb{F}_{25}) = 44$.
- 2.6. It is known that $\#C(\mathbb{F}_{125})$ attains the upper bound of Serre. Deduce that

$$Z(C/\mathbb{F}_5, T) = \frac{125T^6 - 150T^5 + 135T^4 - 68T^3 + 27T^2 - 6T + 1}{(1 - T)(1 - 5T)}$$

Exercise $\mathcal{J} - \text{Let } k = \mathbb{F}_2$ be the finite field with 2 elements. For any finite extension \mathbb{F}_q of \mathbb{F}_2 (with $q = 2^m$), we denote by $\text{Tr} : \mathbb{F}_q \to \mathbb{F}_2$ the trace map, defined by $\text{Tr}(x) = \sum_{i=0}^{m-1} x^{2^i}$, for all $x \in \mathbb{F}_q$. We identify \mathbb{F}_2 with $\{0, 1\} \subset \mathbb{Z}$; in particular, $(-1)^{\text{Tr}(x)}$ makes sense, for all $x \in \mathbb{F}_q$.

3.1. Show that the map $\operatorname{Tr} : \mathbb{F}_q \to \mathbb{F}_2$ is \mathbb{F}_2 -linear, and surjective.

3.2. Prove that $\sum_{x \in \mathbb{F}_q} (-1)^{\operatorname{Tr}(x)} = 0$, and deduce that the following probabilistic statement holds:

"the probability that a randomly chosen $x \in \mathbb{F}_q$ has trace 0 is 1/2."

3.3. Consider the \mathbb{F}_2 -linear map $s: \mathbb{F}_q \to \mathbb{F}_q, y \mapsto y^2 - y$. Compute the kernel of s, and show that $\operatorname{Tr} \circ s = 0$. 3.4. Deduce that, for all $z \in \mathbb{F}_q$,

$$\#\{y \in \mathbb{F}_q : y^2 - y = z\} = 1 + (-1)^{\operatorname{Tr}(z)} = \begin{cases} 0 & \text{if } \operatorname{Tr}(z) \neq 0\\ 2 & \text{if } \operatorname{Tr}(z) = 0. \end{cases}$$

Given A, B $\in \mathbb{F}_2$, we set $f(x) := x^3 + Ax + B \in \mathbb{F}_2[x]$. For any extension $\mathbb{F}_q/\mathbb{F}_2$, we define the sum

$$\Sigma_{\mathbf{A},\mathbf{B}}(q) := \sum_{x \in \mathbb{F}_q} (-1)^{\mathrm{Tr}(f(x))}$$

3.5. Prove that the sequence $(2^{-m} \cdot \Sigma_{A,B}(2^m))_{m \ge 1}$ is bounded.

For $A, B \in \mathbb{F}_2$, consider the affine curve $C_{aff} \subset \mathbb{A}^2$ defined over \mathbb{F}_2 by

$$C_{aff}/\mathbb{F}_2: \qquad y^2 - y = f(x) = x^3 + A \cdot x + B.$$

Denote by C/\mathbb{F}_2 the projective closure of C_{aff} in \mathbb{P}^2 . You may use without proof that the curve C has genus 1.

- 3.6. Give an equation of $C \subset \mathbb{P}^2$, and check that C is smooth.
- 3.7. Given any finite extension $\mathbb{F}_q/\mathbb{F}_2$, prove that $\#C_{\mathrm{aff}}(\mathbb{F}_q) = q + \Sigma_{\mathrm{A,B}}(q)$.
- 3.8. For any extension $\mathbb{F}_q/\mathbb{F}_2$, show that $|\Sigma_{A,B}(q)| \leq 2 \cdot \sqrt{q}$. Deduce that the sequence $(2^{-m} \cdot \Sigma_{A,B}(2^m))_{m \ge 1}$ tends to 0 as $m \to \infty$.
- 3.9. Conclude that the following statement is true:

"the probability that $\operatorname{Tr}(x^3 + 1) = 0$ for a random $x \in \mathbb{F}_{2^m}$ tends to 1/2, when $m \to \infty$."