
Curves over finite fields

Wednesday 21st February, 2018
Universiteit Leiden

Retake Exam

Duration : 3 hours

The use of electronic devices or books is not allowed, but you can use the lecture notes of the course.

You may use results from the lecture notes without proof, provided you clearly state which results you use.

Write your name and student ID on each piece of paper you hand in. Please write legibly and give proper

justification to your answers.

Exercise 1 –

1.1. Let „3 : F3 æ F3, x ‘æ x

3. Show that „3 is a bijection. Let „7 : F7 æ F7, x ‘æ x

3. What is „7(F7)?

Let C0 : x

3 + y

3 + 1 = 0 be a curve in the a�ne plane A2 over F7 with coordinates (x, y).

1.2. Give an equation of the projective closure C µ P2 of C0 (in the [X : Y : Z]-coordinates on P2).
List the F7-rational points of C.

1.3. Check that C is smooth.

1.4. Compute div(x) and div(y).

Let P1, P2 and P3 be the points at infinity (Z = 0) of C. You may assume that C has genus 1.

1.5. Compute dimFq (L(P1 + P2 + P3)).

1.6. Prove that C has at most 64 points with coordinates in F49.

We now consider the projective closure D µ P2 of the curve x

3 + y

3 + 1 = 0 in A2 over F3 (with coordinates (x, y)).

1.7. For each finite extension F3 µ F
q

compute the number of F
q

-rational points on D.

1.8. Compute the zeta-function of D.

1.9. Does the zeta function of D satisfy the Riemann Hypothesis? Comment on this.

Exercise 2 – Let p > 5 be a prime number and F
p

ƒ Z/pZ be the finite field with p elements.

2.1. For any integer n > 0, we let S
p

(n) :=
q

xœFp
x

n. Prove that S
p

(n) =
I

≠1 if p ≠ 1 divides n

0 otherwise.

Let E µ P2 be the projective curve defined over F
p

by the equation Y2Z = X3 + XZ2
.

2.2. Check that E is smooth, and prove that E has only one point at infinity, which is F
p

-rational.

We denote by ⁄

p

: F
p

æ Z the Legendre symbol modulo p: ⁄

p

(0) = 0 and, for all y œ F◊
p

, ⁄

p

(y) = +1 if y is a square
in F◊

p

and ⁄

p

(y) = ≠1 otherwise. Recall that ⁄

p

(y) © y

(p≠1)/2 mod p for all y œ F
p

.

2.3. Show that #E(F
p

) = p + 1 + �
p

where �
p

=
q

xœFp
⁄

p

(x3 + x).

2.4. Show that |�
p

| 6 2Ô
p < p. You may assume that the curve E has genus 1.

Let H
p

(x) := (x3 + x)(p≠1)/2 œ F
p

[x] and write H
p

(x) =
q

n>0 –

n

· x

n.

2.5. Prove that �
p

©
q

n>0 –

n

· S
p

(n) mod p, and deduce that �
p

© ≠–

p≠1 mod p.

2.6. Show that –

p≠1 = 0 if p © 3 mod 4.

2.7. We assume that p © 3 mod 4. Deduce from the previous questions that #E(F
p

) = p + 1, and give an expression
of the L-function of E/F

p

.
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2.8. We now assume that p © 1 mod 4. Recall that ≠1 is then a square modulo p.
Let � µ E(F

p

) denote the subgroup of 2-torsion points in E(F
p

). Show that #� = 4.

2.9. Deduce that #E(F
p

) © 0 mod 4 in both cases (p © 1 or 3 mod 4).

Exercise 3 – Let q be a prime power, and let n be a positive integer. Let C be a curve of genus g over F
q

, and
let P1, . . . , P

n

be distinct F
q

-rational points on C. For each divisor D, we defined the Goppa code GD associated with
(C, D) in the lecture notes as the image of

–D : L(D) æ Fn

q

: f ‘æ (f(P1), . . . , f(P
n

)).

In the lecture notes we proved that –D is injective if deg(D) 6 n ≠ 1 and P1, . . . , P
n

are not in the support of D.

3.1. Give an example of a curve C, points P1, . . . , P
n

and a divisor D of degree at most n ≠ 1, such that –D is not
injective.

Let Q be an F
q

-rational point of C di�erent from P1, . . . , P
n

. Let g be a function on C with a simple zero at Q. For
each integer k, let

—

k

: L(k · Q) æ Fn+1
q

: f ‘æ (f(P1), . . . , f(P
n

), (gk · f)(Q)).

3.2. Prove that the map —

k

is well-defined.

3.3. Prove that —

n

is injective.

3.4. Prove that the minimum distance of the code Im(—
k

) is at least n + 1 ≠ k.

Let A = {(x1, x2, x3) œ F3
q

: x1 + x2 + x3 = 0} be the generalised parity bit code in F3
q

.

3.5. Compute the dimension, length and minimum distance of A‚ ¢ A‚ and A ¢ A.

3.6. Does there exist an [5, 3, 3]-code over F3?

Exercise 4 – Here are a list of 5 curves C
i

µ P2 defined over F7 which are all smooth and projective, and a list
of 5 polynomials L

–

in Z[T]. Each L
–

is actually the L-function of one of the C
i

’s.

C1 : x

4 ≠ z

4 + xy

3 + 2x

2
z

2 = 0. L
a

(T) = (7T2 + 1)2(7T2 + 4T + 1).
C2 : 3x

4 + x

2
yz + y

3
z + yz

3 = 0. L
b

(T) = (49T4 + 1)(7T2 ≠ 2T + 1).
C3 : x

4 + z

4 + 3y

3
z + y

2
z

2 + 3yz

3 = 0. L
c

(T) = (7T2 + 1)(7T2 ≠ 4T + 1)(7T2 + 2T + 1).
C4 : x

4 + z

4 + 3y

3
z + y

2
z

2 + yz

3 = 0. L
d

(T) = (7T2 + 1)2(7T2 ≠ 4T + 1).
C5 : x

4 + z

4 + y

3
z + y

2
z

2 + yz

3 = 0. L
e

(T) = (7T2 ≠ T + 1)(7T2 + T + 1)(7T2 + 4T + 1).

4.1. Tabulate the values of x œ F7 ‘æ x

4 + 1 œ F7.

We give the following table:
y œ F7 0 1 2 3 4 5 6

3y

3 + y

2 + 3y 0 0 6 1 3 2 2
3y

3 + y

2 + y 0 5 2 2 2 6 4
y

3 + y

2 + y 0 3 0 4 0 1 6

4.2. Deduce the number of F7-rational points on C3, C4 and C5.

4.3. Explain the link between #C
i

(F7) and the coe�cient of T in the L-function of C
i

/F7.

4.4. Explain the link between #Pic0(C
i

) and a value of the L-function of C
i

/F7.

We give the following information: #Pic0(C1) = 22 · 33 · 7, #Pic0(C3) = 22 · 3 · 52.

4.5. Assign to each curve C
i

its L-function. Explain your argument. Avoid unnecessary computations.
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