Homework #1

Exercise 1 – We fix a perfect field k of odd characteristic. Let $f = \sum_{j=0}^{d} a_j x^j \in k[x]$ be a monic squarefree polynomial of degree $d \ge 2$. Define $h_0(x, y) := y^2 - f(x) \in \bar{k}[x, y]$ and consider the affine set $C_0 \subset \mathbb{A}^2$ corresponding

to the ideal $(h_0) \subset \bar{k}[x,y]$.

- 1.1. Prove that C_0 is a smooth affine algebraic variety of dimension 1, which is defined over k.
- 1.2. Let $\overline{C}_0 \subset \mathbb{P}^2$ be the projective closure of C_0 . Give an equation for \overline{C}_0 (in the [x:y:z]-coordinates on \mathbb{P}^2).
- 1.3. We know that $\overline{C}_0 \cap \{z = 1\}$ "is" $C_0 \subset \mathbb{A}^2$ (see Lecture Notes). Compute the set $\overline{C}_0 \cap \{z = 0\}$ of "points at infinity" on \overline{C}_0 . Check that all the points in this set are k-rational.
- 1.4. Is \overline{C}_0 smooth? If not, give a list of singular points. Your answer can depend on d.

We now assume that d > 3; if d is odd (resp. if d is even), we write d = 2g + 1 (resp. d = 2g + 2) with $g \in \mathbb{Z}_{\geq 1}$. Consider the projective algebraic set $\overline{\mathbb{C}} \subset \mathbb{P}^{g+2}$, whose ideal $I_h(\overline{\mathbb{C}}) \subset \overline{k}[x_0, x_1, \dots, x_{g+2}]$ is generated by the following 2g homogeneous polynomials of degree 2:

$$\begin{aligned} & \mathbf{Q}_{1} = x_{1}^{2} - x_{0}x_{2} & \mathbf{Q}_{g+1} = x_{0}x_{g+1} - x_{1}x_{g} \\ & \mathbf{Q}_{2} = x_{2}^{2} - x_{1}x_{3} & \mathbf{Q}_{g+2} = x_{1}x_{g+1} - x_{2}x_{g} \\ & \vdots & \vdots \\ & \mathbf{Q}_{g-1} = x_{g-1}^{2} - x_{g-2}x_{g} & \mathbf{Q}_{2g-1} = x_{g-2}x_{g+1} - x_{g-1}x_{g} \\ & \mathbf{Q}_{g} = x_{g}^{2} - x_{g-1}x_{g+1} & \mathbf{Q}_{2g-1} = x_{g-2}x_{g+1} - x_{g-1}x_{g} \\ & \mathbf{H}_{o} = -x_{g+2}^{2} + \sum_{j=0}^{g} a_{j} \cdot x_{0}x_{j} + \sum_{j=0}^{g} a_{j+g+1} \cdot x_{g+1}x_{j} & \text{if } d \text{ is odd,} \\ & \mathbf{H}_{e} = -x_{g+2}^{2} + \sum_{j=0}^{g} a_{j} \cdot x_{0}x_{j} + \sum_{j=0}^{g+1} a_{j+g+1} \cdot x_{g+1}x_{j} & \text{if } d \text{ is even.} \end{aligned}$$

1.5. Give equations for $\overline{\mathbb{C}} \cap \{x_0 \neq 0\}$. Prove that the map $f : \mathbb{A}^2 \to \mathbb{P}^{g+2}$ given by $(x, y) \mapsto [1 : x : x^2 : \cdots : x^{g+1} : y]$ induces a well-defined bijection between \mathbb{C}_0 and $\overline{\mathbb{C}} \cap \{x_0 \neq 0\}$.

Hint: start by proving that, for all $[x_0: x_1, \ldots, x_{g+2}] \in \overline{\mathbb{C}}$ *, one has* $x_j x_0^{j-1} = x_1^j$ *for* $j = 1, \ldots, g+1$.

1.6. Show that $\overline{C} \cap \{x_0 = 0\}$ consists of the one point $P_{\infty} = [0:0:\cdots:0:1:0]$ if d is odd, and of the two points $P_{\pm} = [0:0:\cdots:0:1:\pm 1]$ if d is even.

We view $C_1 := \overline{C} \cap \{x_{g+1} = 1\}$ as an affine subset of \mathbb{A}^{g+2} with coordinates $(x_0, x_1, \dots, x_g, x_{g+2})$.

- 1.7. By dehomogenizing the equations of \overline{C} with respect to the variable x_{g+1} , give equations for $C_1 \subset \mathbb{A}^{g+2}$ (*i.e.* exhibit generators of the ideal of C_1 in $\overline{k}[x_0, \ldots, x_g, x_{g+2}]$).
- 1.8. In the case when d is odd, compute the rank of the Jacobian matrix of C_1 at the point $(0, \ldots, 0) \in \mathbb{A}^{g+2}$. Is C_1 smooth at $(0, \ldots, 0)$? In the case when d is even, compute the rank of the Jacobian matrix of C_1 at the points $(0, \ldots, 0, \pm 1) \in \mathbb{A}^{g+2}$. Is C_1 smooth at these points?
- 1.9. Conclude about the smoothness of $\overline{\mathbb{C}} \subset \mathbb{P}^{g+2}$.

2.1. We denote by $\operatorname{Fr}_q : \mathcal{C} \to \mathcal{C}$ the Frobenius morphism. Let v be a \mathbb{F}_q -place of \mathcal{C} , and $\mathcal{P} \in v$. Prove that $v = \{\operatorname{Fr}_q^j(\mathcal{P}), j = 0, 1, 2, \ldots\}$, and that $\operatorname{deg}(v)$ is the least positive integer j such that $\operatorname{Fr}_q^j(\mathcal{P}) = \mathcal{P}$.

Exercise 2 – Let C/\mathbb{F}_q be a smooth projective curve defined over $k = \mathbb{F}_q$. As such, C is also defined over any finite extension \mathbb{F}_{q^m} of \mathbb{F}_q (because one can see the equations $f_a \in \mathbb{F}_q[X]$ defining C as equations with coefficients in \mathbb{F}_{q^m}). In this exercise, we study the relation between the zeta functions of C/\mathbb{F}_q and C/\mathbb{F}_{q^m} .

2.2. Let $\mathbb{F}_{q^m}/\mathbb{F}_q$ be an extension of degree $m \ge 1$, and let v be a \mathbb{F}_q -place of C of degree $d \ge 1$. Prove that v splits into $r = \gcd(d, m)$ places of C over \mathbb{F}_{q^m} of degree $d/\gcd(d, m)$: that is to say,

 $v = w_1 \sqcup \cdots \sqcup w_r$, where w_i are \mathbb{F}_{q^m} -places of C of degree deg $w_i = d/\gcd(d, m)$.

2.3. For any integers $m, d \ge 1$, prove the identity in $\mathbb{C}[T]$:

$$\left(1 - \mathbf{T}^{md/\operatorname{gcd}(d,m)}\right)^{\operatorname{gcd}(d,m)} = \prod_{\zeta^m = 1} \left(1 - (\zeta \mathbf{T})^d\right)$$

where the product is over the *m*-th roots of unity in \mathbb{C} . *Hint: remember that* $1 - T^m = \prod_{\zeta^m = 1} (1 - \zeta T)$.

2.4. Deduce the relation:

$$Z(C/\mathbb{F}_{q^m}, T^m) = \prod_{\zeta^m = 1} Z(C/\mathbb{F}_q, \zeta T).$$

Hint: in the Euler product $\prod_{w} (1 - T^{\deg w})^{-1}$ over all \mathbb{F}_{q^m} -places of C defining $Z(C/\mathbb{F}_{q^m}, T)$, you may want to group the w's "coming from" a given \mathbb{F}_q -place v of C (by Q.2.2).

Exercise \mathcal{J} – Let \mathbb{F}_q be a finite field and consider the affine line \mathbb{A}^1 over \mathbb{F}_q .

- 3.1. For any integer $d \ge 1$, show that there is a bijection between \mathbb{F}_q -places of \mathbb{A}^1 of degree d and the monic irreducible polynomials in $\mathbb{F}_q[X]$ of degree d.
- 3.2. By a direct point-count (*i.e.* by computing $\#\mathbb{A}^1(\mathbb{F}_{q^m})$), prove that $Z(\mathbb{A}^1/\mathbb{F}_q, T) = (1 qT)^{-1}$.
- 3.3. Let Ir_d be the number of monic irreducible polynomials of degree d in $\mathbb{F}_q[X]$. With the help of your computation of the zeta function, prove that

$$\forall m \ge 1, \qquad q^m = \sum_{d|m} d \cdot \operatorname{Ir}_d \qquad \text{and that} \qquad \forall d \ge 1, \qquad \operatorname{Ir}_d = \frac{1}{d} \sum_{e|d} \mu(d/e) q^e,$$

where μ denotes the Möbius function on integers.

3.4. Conclude that there exists a constant $c_q > 0$ (depending only on q) such that for all $d \ge 1$,

$$\left| \mathrm{I} r_d - \frac{q^d}{d} \right| \leqslant c_q \cdot \frac{q^{d/2}}{d}$$

Comment on why this result is called "the analogue of the prime number theorem for $\mathbb{F}_q[X]$ ".

Exercise 4 – Let $k = \mathbb{F}_q$ be a finite field. Consider the projective variety X/\mathbb{F}_q defined by the equation

$$\mathbf{X} \subset \mathbb{P}^2: \qquad zy^q + z^q y - x^{q+1} = 0.$$

- 4.1. Show that X is a smooth projective curve, and that it has only one point at infinity (that is, $\#(X \cap \{z = 0\}) = 1$). Give an equation for the "affine part" $Y = X \cap \{z = 1\} \subset \mathbb{A}^2$.
- 4.2. Using that $z \in \overline{\mathbb{F}_q}$ is an element of \mathbb{F}_q if and only if $z^q = z$, prove that $\#Y(\mathbb{F}_q) = q$ and deduce that $\#X(\mathbb{F}_q) = q+1$. *Hint: how many squares and non-squares are there in* $\mathbb{F}_q^{\times 2}$?
- 4.3. Show that the trace $T : \mathbb{F}_{q^2} \to \mathbb{F}_q \ (y \mapsto y^q + y)$ is a surjective \mathbb{F}_q -linear map, and that the norm $N : \mathbb{F}_{q^2}^{\times} \to \mathbb{F}_q^{\times}$ $(x \mapsto x^{q+1})$ is a surjective group homomorphism
- 4.4. Prove that $\# \{(x,y) \in Y(\mathbb{F}_{q^2}) \mid x=0\} = q$ and that, for all $t \in \mathbb{F}_q^{\times}$,

$$\#\left\{(x,y) \in \mathcal{Y}(\mathbb{F}_{q^2}) \mid x^{q+1} = t = y^q + y\right\} = q(q+1).$$

4.5. Conclude that $\#Y(\mathbb{F}_{q^2}) = q^3$ and that $X(\mathbb{F}_{q^2}) = q^3 + 1$.