
Curves over finite fields
To be handed in on Monday 30th October, 2017

Universiteit Leiden

Homework #1

Exercise 1 – We fix a perfect field k of odd characteristic. Let f =
d∑
j=0

ajx
j ∈ k[x] be a monic squarefree

polynomial of degree d > 2. Define h0(x, y) := y2 − f(x) ∈ k̄[x, y] and consider the affine set C0 ⊂ A2 corresponding
to the ideal (h0) ⊂ k̄[x, y].

1.1. Prove that C0 is a smooth affine algebraic variety of dimension 1, which is defined over k.

1.2. Let C0 ⊂ P2 be the projective closure of C0. Give an equation for C0 (in the [x : y : z]-coordinates on P2).

1.3. We know that C0 ∩ {z = 1} “is” C0 ⊂ A2 (see Lecture Notes). Compute the set C0 ∩ {z = 0} of “points at
infinity” on C0. Check that all the points in this set are k-rational.

1.4. Is C0 smooth? If not, give a list of singular points. Your answer can depend on d.

We now assume that d > 3; if d is odd (resp. if d is even), we write d = 2g + 1 (resp. d = 2g + 2) with g ∈ Z>1.
Consider the projective algebraic set C ⊂ Pg+2, whose ideal Ih(C) ⊂ k̄[x0, x1, . . . , xg+2] is generated by the following 2g
homogeneous polynomials of degree 2:

Q1 = x2
1 − x0x2 Qg+1 = x0xg+1 − x1xg

Q2 = x2
2 − x1x3 Qg+2 = x1xg+1 − x2xg
...

...
Qg−1 = x2

g−1 − xg−2xg Q2g−1 = xg−2xg+1 − xg−1xg
Qg = x2

g − xg−1xg+1
Ho = −x2

g+2 +
g∑
j=0

aj · x0xj +
g∑
j=0

aj+g+1 · xg+1xj if d is odd,

He = −x2
g+2 +

g∑
j=0

aj · x0xj +
g+1∑
j=0

aj+g+1 · xg+1xj if d is even.

1.5. Give equations for C ∩ {x0 6= 0}. Prove that the map f : A2 → Pg+2 given by (x, y) 7→ [1 : x : x2 : · · · : xg+1 : y]
induces a well-defined bijection between C0 and C ∩ {x0 6= 0}.
Hint: start by proving that, for all [x0 : x1, . . . , xg+2] ∈ C, one has xjxj−1

0 = xj1 for j = 1, . . . , g + 1.

1.6. Show that C ∩ {x0 = 0} consists of the one point P∞ = [0 : 0 : · · · : 0 : 1 : 0] if d is odd, and of the two points
P± = [0 : 0 : · · · : 0 : 1 : ±1] if d is even.

We view C1 := C ∩ {xg+1 = 1} as an affine subset of Ag+2 with coordinates (x0, x1, . . . , xg, xg+2).

1.7. By dehomogenizing the equations of C with respect to the variable xg+1, give equations for C1 ⊂ Ag+2 (i.e.
exhibit generators of the ideal of C1 in k̄[x0, . . . , xg, xg+2]).

1.8. In the case when d is odd, compute the rank of the Jacobian matrix of C1 at the point (0, . . . , 0) ∈ Ag+2. Is C1
smooth at (0, . . . , 0)? In the case when d is even, compute the rank of the Jacobian matrix of C1 at the points
(0, . . . , 0,±1) ∈ Ag+2. Is C1 smooth at these points?

1.9. Conclude about the smoothness of C ⊂ Pg+2.

Exercise 2 – Let C/Fq be a smooth projective curve defined over k = Fq. As such, C is also defined over any
finite extension Fqm of Fq (because one can see the equations fa ∈ Fq[X] defining C as equations with coefficients in
Fqm). In this exercise, we study the relation between the zeta functions of C/Fq and C/Fqm .

2.1. We denote by Frq : C → C the Frobenius morphism. Let v be a Fq-place of C, and P ∈ v. Prove that
v =

{
Frjq(P), j = 0, 1, 2, . . .

}
, and that deg(v) is the least positive integer j such that Frjq(P) = P.
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2.2. Let Fqm/Fq be an extension of degree m > 1, and let v be a Fq-place of C of degree d > 1. Prove that v splits
into r = gcd(d,m) places of C over Fqm of degree d/ gcd(d,m): that is to say,

v = w1 t · · · t wr, where wi are Fqm -places of C of degree degwi = d/ gcd(d,m).

2.3. For any integers m, d > 1, prove the identity in C[T]:(
1− Tmd/ gcd(d,m)

)gcd(d,m)
=
∏
ζm=1

(
1− (ζT)d

)
,

where the product is over the m-th roots of unity in C. Hint: remember that 1− Tm =
∏
ζm=1(1− ζT).

2.4. Deduce the relation:
Z(C/Fqm ,Tm) =

∏
ζm=1

Z(C/Fq, ζT).

Hint: in the Euler product
∏
w

(
1− Tdegw)−1 over all Fqm-places of C defining Z(C/Fqm ,T), you may want to

group the w’s “coming from” a given Fq-place v of C (by Q.2.2).

Exercise 3 – Let Fq be a finite field and consider the affine line A1 over Fq.

3.1. For any integer d > 1, show that there is a bijection between Fq-places of A1 of degree d and the monic irreducible
polynomials in Fq[X] of degree d.

3.2. By a direct point-count (i.e. by computing #A1(Fqm)), prove that Z(A1/Fq,T) = (1− qT)−1.

3.3. Let Ird be the number of monic irreducible polynomials of degree d in Fq[X]. With the help of your computation
of the zeta function, prove that

∀m > 1, qm =
∑
d|m

d · Ird and that ∀d > 1, Ird = 1
d

∑
e|d

µ(d/e)qe,

where µ denotes the Möbius function on integers.

3.4. Conclude that there exists a constant cq > 0 (depending only on q) such that for all d > 1,∣∣∣∣Ird − qd

d

∣∣∣∣ 6 cq ·
qd/2

d
.

Comment on why this result is called “the analogue of the prime number theorem for Fq[X]”.

Exercise 4 – Let k = Fq be a finite field. Consider the projective variety X/Fq defined by the equation

X ⊂ P2 : zyq + zqy − xq+1 = 0.

4.1. Show that X is a smooth projective curve, and that it has only one point at infinity (that is, #(X∩{z = 0}) = 1).
Give an equation for the “affine part” Y = X ∩ {z = 1} ⊂ A2.

4.2. Using that z ∈ Fq is an element of Fq if and only if zq = z, prove that #Y(Fq) = q and deduce that #X(Fq) = q+1.
Hint: how many squares and non-squares are there in F×q ?

4.3. Show that the trace T : Fq2 → Fq (y 7→ yq + y) is a surjective Fq-linear map, and that the norm N : F×q2 → F×q
(x 7→ xq+1) is a surjective group homomorphism

4.4. Prove that #
{

(x, y) ∈ Y(Fq2) | x = 0
}

= q and that, for all t ∈ F×q ,

#
{

(x, y) ∈ Y(Fq2) | xq+1 = t = yq + y
}

= q(q + 1).

4.5. Conclude that #Y(Fq2) = q3 and that X(Fq2) = q3 + 1.
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