Homework #1

Choose three exercises among the following four.

Exercise 1 – Let C/\mathbb{F}_q be a smooth projective curve defined over \mathbb{F}_q . As such, C is also defined over any finite extension \mathbb{F}_{q^m} of \mathbb{F}_q (because one can see the equations $f_a \in \mathbb{F}_q[X]$ defining C as equations with coefficients in \mathbb{F}_{q^m}). In this exercise, we study the relation between the zeta functions of C/\mathbb{F}_q and C/\mathbb{F}_{q^m} .

- 1.1. We denote by $\operatorname{Fr}_q : \mathcal{C} \to \mathcal{C}$ the Frobenius morphism. Let v be a \mathbb{F}_q -place of \mathcal{C} , and $\mathcal{P} \in v$. Prove that $v = \{\operatorname{Fr}_q^j(\mathcal{P}), j = 0, 1, 2, \dots\}$, and that $\operatorname{deg}(v)$ is the least positive integer j such that $\operatorname{Fr}_q^j(\mathcal{P}) = \mathcal{P}$.
- 1.2. Let $\mathbb{F}_{q^m}/\mathbb{F}_q$ be an extension of degree $m \ge 1$, and let v be a \mathbb{F}_q -place of C of degree $d \ge 1$. Prove that v splits into $r = \gcd(d, m)$ places of C over \mathbb{F}_{q^m} of degree $d/\gcd(d, m)$: that is to say,

 $v = w_1 \sqcup \cdots \sqcup w_r$, where w_i are \mathbb{F}_{q^m} -places of C of degree deg $w_i = d/\gcd(d, m)$.

1.3. For any integers $m, d \ge 1$, prove the identity:

$$\left(1 - \mathbf{T}^{md/\operatorname{gcd}(d,m)}\right)^{\operatorname{gcd}(d,m)} = \prod_{\zeta^m = 1} \left(1 - (\zeta \mathbf{T})^d\right),$$

where the product is over the *m*-th roots of unity in \mathbb{C} . (Hint: remember that $1 - T^m = \prod_{\zeta^m = 1} (1 - \zeta T)$.)

1.4. Deduce the relation:

$$Z(C/\mathbb{F}_{q^m}, T^m) = \prod_{\zeta^m = 1} Z(C/\mathbb{F}_q, \zeta T).$$

Hint: in the Euler product $\prod_{w} (1 - T^{\deg w})^{-1}$ over all \mathbb{F}_{q^m} -places of C defining $Z(C/\mathbb{F}_{q^m}, T)$, you may want to regroup the *w*'s "coming from" a given \mathbb{F}_q -place *v* of C (by *Q.1.2)*.

Exercise 2 – Let $k = \mathbb{F}_q$ be a finite field. Consider the projective variety X/\mathbb{F}_q defined by the equation

$$X \subset \mathbb{P}^2$$
: $x^{q+1} + y^{q+1} + z^{q+1} = 0.$

- 2.1. Show that X is a smooth curve, and that is has only one point at infinity (that is, $\#(X \cap \{z = 0\}) = 1$). Give an equation for the "affine part" $Y = X \cap \{z = 1\} \subset \mathbb{A}^2$.
- 2.2. Prove that $\#\mathbf{Y}(\mathbb{F}_q) = q$ and deduce that $\#\mathbf{X}(\mathbb{F}_q) = q + 1$.

The rest of the exercise is devoted to the proof that $\#X(\mathbb{F}_{q^2}) = q^3 + 1$.

- 2.3. Show the existence of $a, b \in \mathbb{F}_{q^2}$ such that $a^q + a = 1 = b^{q+1}$. (Hint: you may show that the trace $T : \mathbb{F}_{q^2} \to \mathbb{F}_q$ $(y \mapsto y^q + y)$ is a \mathbb{F}_q -linear map whose kernel is $\mathbb{F}_q \subset \mathbb{F}_{q^2}$, and that $N : \mathbb{F}_{q^2}^{\times} \to \mathbb{F}_q^{\times}$ $(x \mapsto x^{q+1})$ is a surjective group homomorphism).
- 2.4. Let $C \subset \mathbb{A}^2$ be the affine curve with equation $v^q + v = u^{q+1}$. With $a, b \in \mathbb{F}_{q^2}$ as above, show that the change of variables

$$(x,y) \in \mathbf{Y} \mapsto (u,v) = \left(\frac{b}{y-bx}, xu-a\right) \in \mathbf{C}$$

is well-defined and gives a bijection between $Y(\mathbb{F}_{q^2})$ and $C(\mathbb{F}_{q^2})$.

2.5. Show that $\# \{(u, v) \in C(\mathbb{F}_{q^2}) \mid u = 0\} = q$ and that, for all $t \in \mathbb{F}_q^{\times}$,

$$\#\{(u,v) \in \mathcal{C}(\mathbb{F}_{q^2}) \mid u^{q+1} = t = v^q + v\} = q(q+1).$$

2.6. Conclude that $\#C(\mathbb{F}_q) = q^3$ and that $X(\mathbb{F}_{q^2}) = q^3 + 1$.

Exercise 3 – Let \mathbb{F}_q be a finite field and consider the affine line \mathbb{A}^1 over \mathbb{F}_q .

- 3.1. For any integer $d \ge 1$, show that there is a bijection between \mathbb{F}_q -places of \mathbb{A}^1 of degree d and the monic irreducible polynomials in $\mathbb{F}_q[X]$ of degree d.
- 3.2. By a direct point-count (*i.e.* by computing $\#\mathbb{A}^1(\mathbb{F}_{q^m})$), prove that $Z(\mathbb{A}^1/\mathbb{F}_q, T) = (1-qT)^{-1}$.
- 3.3. Let Ir_d be the number of monic irreducible polynomials of degree d in $\mathbb{F}_q[X]$. With the help of your computation of the zeta function, prove that

$$\forall m \ge 1, \qquad q^m = \sum_{d|m} d \cdot \mathrm{Ir}_d \qquad \text{and that} \qquad \forall d \ge 1, \qquad \mathrm{Ir}_d = \frac{1}{d} \sum_{e|d} \mu(d/e) q^e,$$

where μ denotes the Möbius function on integers.

3.4. Conclude that, for $d \ge 1$,

$$\operatorname{Ir}_{d} = \frac{q^{d}}{d} + \mathcal{O}(q^{d/2}), \qquad (\text{as } d \to \infty)$$

where the implicit constant depends only on q. Comment on why this result is called the "prime number theorem for $\mathbb{F}_q[X]$ ".

Exercise 4 – Let p be a prime number and $\zeta := \exp(2i\pi/p) \in \mathbb{C}$.

4.1. We identify elements of \mathbb{F}_p with the set $\{0, 1, \ldots, p-1\}$. Let $v \in \mathbb{F}_p$. Show that

$$\sum_{u \in \mathbb{F}_p} \zeta^{u \cdot v} = \begin{cases} p & \text{if } v = 0, \\ 0 & \text{otherwise.} \end{cases}$$

4.2. Given a nonzero homogeneous polynomial $F(x, y, z) \in \mathbb{F}_p[x, y, z]$, let $N_p(F)$ be the number of solutions $(x, y, z) \in (\mathbb{F}_p)^3$ to the equation F(x, y, z) = 0. Prove that $N_p(F)$ is given by the exponential sum

$$N_p(\mathbf{F}) = p^2 + \frac{1}{p} \sum_{u \in \mathbb{F}_p^{\times}} \sum_{(x,y,z) \in \mathbb{F}_p^3} \zeta^{u \cdot \mathbf{F}(x,y,z)}.$$

- 4.3. The polynomial F defines a projective algebraic set $C \subset \mathbb{P}^2$ over \mathbb{F}_p (meaning that C is given by the equation F(x, y, z) = 0). From the previous question, deduce an expression of $\#C(\mathbb{F}_p)$ in terms of exponential sums.
- 4.4. Specialize to the case where F is diagonal: $F = F_r(x, y, z) = x^r + y^r + z^r \in \mathbb{F}_p[x, y, z]$ for some integer $r \ge 1$. In which case, we denote by $C_r \subset \mathbb{P}^2$ the projective algebraic set associated to F_r (called the Fermat curve of degree r over \mathbb{F}_p). Prove that C_r is a smooth projective curve over \mathbb{F}_p if r is prime to p.
- 4.5. Use the previous point-counts to prove that

$$N_p(\mathbf{F}_r) = p^2 + \frac{1}{p} \sum_{u \in \mathbb{F}_p^{\times}} \left(\sum_{x \in \mathbb{F}_p} \zeta^{u \cdot x^r} \right)^3,$$

and to express $\#C_r(\mathbb{F}_p)$ with exponential sums.

4.6. For any $y \in \mathbb{F}_p$, let $b_r(y)$ be the number of solutions of the equation $y = x^r$ (in the unknown $x \in \mathbb{F}_p$). Prove that

$$\forall u \in \mathbb{F}_p^{\times}, \qquad \sum_{x \in \mathbb{F}_p} \zeta^{u \cdot x^r} = \sum_{y \in \mathbb{F}_p} b_r(y) \cdot \zeta^{u \cdot y},$$

and give a sufficient condition (relating $r \ge 1$ to p) for the map $y \mapsto b_r(y)$ to be constant on \mathbb{F}_p .

4.7. Conclude that, for any $r \ge 1$ coprime to p-1, one has $\#C_r(\mathbb{F}_p) = p+1$.