
Curves over finite fields
To be handed in on Monday 10th April, 2017

Universiteit Leiden

Homework #2

Notations: if C/Fq is a smooth projective curve over Fq, and if f ∈ Fq(C)× is a nonzero rational function on C,
we decompose div(f) ∈ Div(C) in two parts:

div(f) =
∑

v∈|C|

ordv f · v =
∑

v∈|C|
ordv(f)>0

ordv f · v

︸ ︷︷ ︸
:=div(f)0

−
∑

v∈|C|
ordv(f)<0

(− ordv f) · v

︸ ︷︷ ︸
:=div(f)∞

.

The first part div(f)0 (resp. the second one div(f)∞) is called the divisor of zeros (resp. the divisor of poles) of f .
Note that div(f)0 and div(f)∞ are effective divisors, and that deg div(f)0 = deg div(f)∞ (since deg div(f) = 0).

As usual, we identify an Fq-rational point on C and the Fq-place of C of degree 1 it defines.

Exercise 1 – Let Fq be a finite field and C be a smooth projective curve of genus g defined over Fq. We denote
by L(C/Fq,T) ∈ Z[T] the numerator of the zeta function Z(C/Fq,T) of C/Fq. Since L(C/Fq, 0) = 1, we can write
L(C/Fq,T) in the form:

L(C/Fq,T) =
2g∏

i=1
(1− αi · T) for some nonzero complex numbers αi.

1.1. Expand d
dT log L(C/Fq,T) as a power series in T, and prove that

∀s > 1, #C(Fqs) = qs + 1−
2g∑

i=1
αs

i .

Hint: compute the (formal) derivative of log Z(C/Fq,T) in two different ways, and identify coefficients.

1.2. Prove that the radius of convergence of the formal d
dT log L(C/Fq,T) is ρ = mini |αi|−1.

1.3. Prove that the set {αi}16i62g is stable under the map α 7→ q/α.
Hint: use the functional equation satisfied by L(C/Fq,T).

1.4. Prove that the following two assertions are equivalent:

(i) For all i ∈ {1, 2, ..., 2g}, |αi| =
√
q,

(ii) Let m ∈ Z>1, there exists a constant γm > 0 such that, for all sufficiently large n > 1,∣∣#C(Fq2nm)− q2nm − 1
∣∣ 6 γm · qnm.

Exercise 2 – Let Fq be a finite field, and C be a smooth projective curve over Fq, whose genus is denoted by g.
We assume that q is a square, say q = q2

0 , and that q > (g+ 1)4. Under these two hypotheses, the goal of this exercise
is to prove that

(1) #C(Fq) < q + 1 + (2g + 1) · √q.

We assume that C has a Fq-rational point Q ∈ C(Fq) (otherwise, (1) is trivial). Let m,n ∈ Z>1 be two integers. We
define

J :=
{
j ∈ [0,m] ∩ Z : ∃uj ∈ Fq(C)×, div(uj)∞ = j ·Q

}
.

For each j ∈ J, we choose such a function uj ∈ Fq(C)×.

2.1. Prove that the set {uj , j ∈ J} forms a basis of the Riemann-Roch space L(m ·Q).

Now, consider the Fq-vector space H ⊂ Fq(C) spanned by all products u · vq0 , where u ∈ L(m ·Q) and v ∈ L(n ·Q).
That is to say,

H = L(m ·Q) · L(n ·Q)q0 =

∑
j∈J

uj · vq0
j , vj ∈ L(n ·Q)

 ⊂ Fq(C).
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2.2. Prove that H is an Fq-subvector space of L((m+ nq0) ·Q).

2.3. If m < q0, prove that any f ∈ H can be written uniquely in the form

f =
∑
j∈J

uj · vq0
j with vj ∈ L(n ·Q).

2.4. Deduce from the previous questions that, if m < q0, one has #J = `(m ·Q) and dimH = `(m ·Q) · `(n ·Q).

Let us define a map
Φ : H → L((q0m+ n) ·Q),

∑
j∈J

uj · vq0
j ∈ H 7→

∑
j∈J

uq0
j · vj .

2.5. Explain why the map Φ is well-defined if m < q0, and prove that it is additive, i.e. that

Φ(f + g) = Φ(f) + Φ(g) for all f, g ∈ H.

2.6. From now on, we choose m = q0−1 and n = q0 + 2g. Using the Riemann-Roch theorem, prove that Ker Φ 6= {0}.
Remember our assumption that q = q2

0 > (g + 1)4.

2.7. Let z ∈ Ker Φ r {0}. For all P ∈ C(Fq) r {Q}, explain why z is regular at P, and prove that z(P) = 0.
Hint: what are the poles of z? To show that z(P) = 0, you may compute z(P)q0 and remember that q = q2

0.

2.8. Finally, prove the chain of inequalities:

#(C(Fq) r {Q}) 6 deg div(z)0 = deg div(z)∞ 6 m+ nq0,

and conclude that (1) holds (for our choice of m,n).

Exercise 3 – Given a finite field Fq, let n, k > 1 be integers such that 1 6 k 6 n − 1. Denote by Gk,n the
Grassmannian variety over Fq: for each finite extension Fqs/Fq, the Fqs -rational points on Gk,n are the k-dimensional
subspaces of (Fqs)n.
3.1. Show that GLn(Fq) acts transitively on Gk,n(Fq), and that the stabilizer of each point S ∈ Gk,n(Fq) is in bijection

with GLk(Fq)×GLn−k(Fq)×Mk,n−k(Fq), where GLn(Fq) denotes the group of invertible matrices of size n× n
with coefficients in Fq, and Mk,n−k(Fq) is the set of all matrices of size k × n− k with coefficients in Fq.

3.2. Show that, for each k > 1, one has

#GLk(Fq) = q
k(k−1)

2 (qk − 1)(qk−1 − 1) . . . (q − 1).

3.3. Use the previous questions to show that #Gk,n(Fq) =
(

n
k

)
q
, where

(
n
k

)
q
is the Gaussian binomial coefficient:(

n

k

)
q

:= (qn − 1) . . . (qn−k+1 − 1)
(qk − 1) . . . (q − 1) .

3.4. Prove that (
n

k

)
q

= qk

(
n− 1
k

)
q

+
(
n− 1
k − 1

)
q

3.5. Use this to deduce that there exist some λk,n(i) ∈ Z>0 (i = 0, ..., k(n− k)) such that(
n

k

)
q

=
k(n−k)∑

i=0
λk,n(i) · qi.

3.6. With the same notations as in the previous question, deduce the following identity between formal power series:
∞∑

s=1

#Gk,n(Fqs)
s

· Ts = −
k(n−k)∑

i=0
λk,n(i) · log(1− qi · T).

Deduce an expression of the zeta function of Gk,n over Fq, which is defined as:

Z(Gk,n/Fq,T) = exp
( ∞∑

s=1

#Gk,n(Fqs)
s

· Ts

)
.

3.7. Compare Z(G1,2/Fq,T) and Z(P1/Fq,T), and give a geometric interpretation of your result.
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