Homework #2

Notations: if C/\mathbb{F}_q is a smooth projective curve over \mathbb{F}_q , and if $f \in \mathbb{F}_q(C)^{\times}$ is a nonzero rational function on C, we decompose $\operatorname{div}(f) \in \operatorname{Div}(C)$ in two parts:

$$\operatorname{div}(f) = \sum_{v \in |\mathcal{C}|} \operatorname{ord}_v f \cdot v = \sum_{\substack{v \in |\mathcal{C}| \\ \operatorname{ord}_v(f) > 0 \\ \vdots = \operatorname{div}(f)_0}} \operatorname{ord}_v f \cdot v - \sum_{\substack{v \in |\mathcal{C}| \\ \operatorname{ord}_v(f) < 0 \\ \vdots = \operatorname{div}(f)_\infty}} (-\operatorname{ord}_v f) \cdot v \,.$$

The first part $\operatorname{div}(f)_0$ (resp. the second one $\operatorname{div}(f)_{\infty}$) is called the divisor of zeros (resp. the divisor of poles) of f. Note that $\operatorname{div}(f)_0$ and $\operatorname{div}(f)_\infty$ are effective divisors, and that $\operatorname{deg}\operatorname{div}(f)_0 = \operatorname{deg}\operatorname{div}(f)_\infty$ (since $\operatorname{deg}\operatorname{div}(f) = 0$). As usual, we identify an \mathbb{F}_q -rational point on C and the \mathbb{F}_q -place of C of degree 1 it defines.

Exercise $1 - \text{Let } \mathbb{F}_q$ be a finite field and C be a smooth projective curve of genus g defined over \mathbb{F}_q . We denote by $L(C/F_q, T) \in \mathbb{Z}[T]$ the numerator of the zeta function $Z(C/F_q, T)$ of C/F_q . Since $L(C/F_q, 0) = 1$, we can write $L(C/\mathbb{F}_q, T)$ in the form:

$$L(C/\mathbb{F}_q, T) = \prod_{i=1}^{2g} (1 - \alpha_i \cdot T)$$
 for some nonzero complex numbers α_i .

1.1. Expand $\frac{d}{dT} \log L(C/\mathbb{F}_q, T)$ as a power series in T, and prove that

$$\forall s \ge 1, \qquad \# \mathcal{C}(\mathbb{F}_{q^s}) = q^s + 1 - \sum_{i=1}^{2g} \alpha_i^s.$$

Hint: compute the (formal) derivative of $\log Z(C/\mathbb{F}_q, T)$ *in two different ways, and identify coefficients.*

- 1.2. Prove that the radius of convergence of the formal $\frac{d}{dT} \log L(C/\mathbb{F}_q, T)$ is $\rho = \min_i |\alpha_i|^{-1}$.
- 1.3. Prove that the set $\{\alpha_i\}_{1 \leq i \leq 2g}$ is stable under the map $\alpha \mapsto q/\alpha$. *Hint: use the functional equation satisfied by* $L(C/\mathbb{F}_{q}, T)$ *.*
- 1.4. Prove that the following two assertions are equivalent:
 - (i) For all $i \in \{1, 2, ..., 2g\}, |\alpha_i| = \sqrt{q},$
 - (ii) Let $m \in \mathbb{Z}_{\geq 1}$, there exists a constant $\gamma_m > 0$ such that, for all sufficiently large $n \geq 1$,

 $\left| \# \mathbf{C}(\mathbb{F}_{q^{2nm}}) - q^{2nm} - 1 \right| \leq \gamma_m \cdot q^{nm}.$

Exercise 2 – Let \mathbb{F}_q be a finite field, and C be a smooth projective curve over \mathbb{F}_q , whose genus is denoted by g. We assume that q is a square, say $q = q_0^2$, and that $q > (g+1)^4$. Under these two hypotheses, the goal of this exercise is to prove that

(1)
$$\#C(\mathbb{F}_q) < q + 1 + (2g + 1) \cdot \sqrt{q}.$$

We assume that C has a \mathbb{F}_q -rational point $Q \in C(\mathbb{F}_q)$ (otherwise, (1) is trivial). Let $m, n \in \mathbb{Z}_{\geq 1}$ be two integers. We define

$$\mathbf{J} := \left\{ j \in [0,m] \cap \mathbb{Z} : \exists u_j \in \mathbb{F}_q(\mathbf{C})^{\times}, \operatorname{div}(u_j)_{\infty} = j \cdot \mathbf{Q} \right\}$$

For each $j \in J$, we choose such a function $u_j \in \mathbb{F}_q(\mathbb{C})^{\times}$.

2.1. Prove that the set $\{u_i, j \in J\}$ forms a basis of the Riemann-Roch space $\mathcal{L}(m \cdot Q)$.

Now, consider the \mathbb{F}_q -vector space $\mathcal{H} \subset \mathbb{F}_q(\mathbb{C})$ spanned by all products $u \cdot v^{q_0}$, where $u \in \mathcal{L}(m \cdot \mathbb{Q})$ and $v \in \mathcal{L}(n \cdot \mathbb{Q})$. That is to say,

$$\mathcal{H} = \mathcal{L}(m \cdot \mathbf{Q}) \cdot \mathcal{L}(n \cdot \mathbf{Q})^{q_0} = \left\{ \sum_{j \in \mathbf{J}} u_j \cdot v_j^{q_0}, \ v_j \in \mathcal{L}(n \cdot \mathbf{Q}) \right\} \subset \mathbb{F}_q(\mathbf{C}).$$

- 2.2. Prove that \mathcal{H} is an \mathbb{F}_q -subvector space of $\mathcal{L}((m+nq_0)\cdot \mathbf{Q})$.
- 2.3. If $m < q_0$, prove that any $f \in \mathcal{H}$ can be written uniquely in the form

$$f = \sum_{j \in \mathcal{J}} u_j \cdot v_j^{q_0}$$
 with $v_j \in \mathcal{L}(n \cdot \mathcal{Q})$.

2.4. Deduce from the previous questions that, if $m < q_0$, one has $\#J = \ell(m \cdot Q)$ and dim $\mathcal{H} = \ell(m \cdot Q) \cdot \ell(n \cdot Q)$. Let us define a map

$$\Phi: \mathcal{H} \to \mathcal{L}((q_0 m + n) \cdot \mathbf{Q}), \qquad \sum_{j \in \mathbf{J}} u_j \cdot v_j^{q_0} \in \mathcal{H} \ \mapsto \ \sum_{j \in \mathbf{J}} u_j^{q_0} \cdot v_j.$$

2.5. Explain why the map Φ is well-defined if $m < q_0$, and prove that it is additive, *i.e.* that

$$\Phi(f+g) = \Phi(f) + \Phi(g) \text{ for all } f, g \in \mathbf{H}.$$

- 2.6. From now on, we choose $m = q_0 1$ and $n = q_0 + 2g$. Using the Riemann-Roch theorem, prove that Ker $\Phi \neq \{0\}$. Remember our assumption that $q = q_0^2 > (g+1)^4$.
- 2.7. Let $z \in \text{Ker } \Phi \setminus \{0\}$. For all $P \in C(\mathbb{F}_q) \setminus \{Q\}$, explain why z is regular at P, and prove that z(P) = 0. *Hint: what are the poles of z? To show that* z(P) = 0, *you may compute* $z(P)^{q_0}$ and remember that $q = q_0^2$.
- 2.8. Finally, prove the chain of inequalities:

 $#(\mathcal{C}(\mathbb{F}_q) \setminus \{\mathcal{Q}\}) \leqslant \deg \operatorname{div}(z)_0 = \deg \operatorname{div}(z)_\infty \leqslant m + nq_0,$

and conclude that (1) holds (for our choice of m, n).

Exercise \mathcal{J} – Given a finite field \mathbb{F}_q , let $n, k \ge 1$ be integers such that $1 \le k \le n-1$. Denote by $\mathcal{G}_{k,n}$ the Grassmannian variety over \mathbb{F}_q : for each finite extension $\mathbb{F}_{q^s}/\mathbb{F}_q$, the \mathbb{F}_{q^s} -rational points on $\mathcal{G}_{k,n}$ are the k-dimensional subspaces of $(\mathbb{F}_{q^s})^n$.

- 3.1. Show that $\operatorname{GL}_n(\mathbb{F}_q)$ acts transitively on $\mathcal{G}_{k,n}(\mathbb{F}_q)$, and that the stabilizer of each point $S \in \mathcal{G}_{k,n}(\mathbb{F}_q)$ is in bijection with $\operatorname{GL}_k(\mathbb{F}_q) \times \operatorname{GL}_{n-k}(\mathbb{F}_q) \times \operatorname{M}_{k,n-k}(\mathbb{F}_q)$, where $\operatorname{GL}_n(\mathbb{F}_q)$ denotes the group of invertible matrices of size $n \times n$ with coefficients in \mathbb{F}_q , and $\operatorname{M}_{k,n-k}(\mathbb{F}_q)$ is the set of all matrices of size $k \times n - k$ with coefficients in \mathbb{F}_q .
- 3.2. Show that, for each $k \ge 1$, one has

$$#\operatorname{GL}_{k}(\mathbb{F}_{q}) = q^{\frac{k(k-1)}{2}}(q^{k}-1)(q^{k-1}-1)\dots(q-1)$$

3.3. Use the previous questions to show that $\#\mathcal{G}_{k,n}(\mathbb{F}_q) = \binom{n}{k}_q$, where $\binom{n}{k}_q$ is the Gaussian binomial coefficient:

$$\binom{n}{k}_q := \frac{(q^n - 1)\dots(q^{n-k+1} - 1)}{(q^k - 1)\dots(q - 1)}.$$

3.4. Prove that

$$\binom{n}{k}_{q} = q^{k} \binom{n-1}{k}_{q} + \binom{n-1}{k-1}_{q}$$

3.5. Use this to deduce that there exist some $\lambda_{k,n}(i) \in \mathbb{Z}_{\geq 0}$ (i = 0, ..., k(n-k)) such that

$$\binom{n}{k}_{q} = \sum_{i=0}^{k(n-k)} \lambda_{k,n}(i) \cdot q^{i}.$$

3.6. With the same notations as in the previous question, deduce the following identity between formal power series:

$$\sum_{s=1}^{\infty} \frac{\#\mathcal{G}_{k,n}(\mathbb{F}_{q^s})}{s} \cdot \mathbf{T}^s = -\sum_{i=0}^{k(n-k)} \lambda_{k,n}(i) \cdot \log(1-q^i \cdot \mathbf{T}).$$

Deduce an expression of the zeta function of $\mathcal{G}_{k,n}$ over \mathbb{F}_q , which is defined as:

$$Z(\mathcal{G}_{k,n}/\mathbb{F}_q, T) = \exp\left(\sum_{s=1}^{\infty} \frac{\#\mathcal{G}_{k,n}(\mathbb{F}_{q^s})}{s} \cdot T^s\right).$$

3.7. Compare $Z(\mathcal{G}_{1,2}/\mathbb{F}_q, T)$ and $Z(\mathbb{P}^1/\mathbb{F}_q, T)$, and give a geometric interpretation of your result.