CURVES OVER FINITE FIELDS Universiteit Leiden
To be handed in before Monday 22nd May, 2017

HOMEWORK #3

Conventions — Let F, be a finite field. For any smooth projective curve C defined over Fy, we let L(C/F,, T)
be the numerator of the zeta function Z(C/F,, T) of C/F,. We denote by g the genus of C, and by aq,..., a4 the
inverse roots of L(C/F,, T), so that:

2g
L(C/Fq, T) = [[(1 = i - T) € Z[T).
i=1
We assume that the a;’s are numbered in such a way that Im(c;) > 0 and «; - oj44 =g for all j =1,...,g. The set
{ai,..., a4} thus numbered (with multiplicities allowed) will be called the set of Frobenius eigenvalues of C.

By Weil’s theorem, we may pick angles 6; € [0, 7] such that o; = \/ﬁoewf forall j=1,...,9. Theset {61,...,0,}
(with multiplicities allowed) is called the set of Frobenius angles of C.

Exercise 1 — Let Fy be a finite field and C be a smooth projective curve of genus g > 1 defined over F,. Denote
by {au,...,as,} the set of Frobenius eigenvalues of C.

Let us assume that there exists an angle 6 € [0,7/2) such that a; = \/g-e? forall j =1,...,g.
1.1. Put t = \/q- e + Va- e~ Prove that t > 0 and that ¢ is an integer.
1.2. Using a relation between #C(F;) > 0 and ¢, prove that g < ¢+ 1.
Now consider the Hermitian curve X/, defined by
X cP? . 2yl 4 29y — 29 = 0.
In Homework #1 (Exercise 2), we have proved that X is a smooth curve, and that #X(F,;) = ¢+ 1, #X(F,2) = ¢* + 1.
1.8. Compare #X(Fg2) to the Hasse-Weil bound.

Hint: you may use without proof that a smooth projective curve X C P2 defined by a single homogeneous equation
F(z,y,z) € Fylz,y, 2] of degree d has genus g = (d — 1)(d — 2)/2.

1.4. With as little computation as possible, prove that

(1 tq- T2) q(q;l)

(1-T)(1—qT)

Z(X/F,, T) =

1.5. Can the result of 1.2 be extended to § = 7/2?

Exercise 2 — Let S C [0,7] be a nonempty finite set of “angles”. In this exercise, we prove that there exists an
explicit constant Bg > 0 (depending only on S and ¢) such that: a smooth projective curve C/F, whose Frobenius
angles are all in S has genus g < Bg.

Let C/Fy be a smooth projective curve of genus g over Fy, and {61,...,0,} be its set of Frobenius angles.
2.1. Let G(z) = Y5, axz” € Rlz] be a polynomial with G(0) = 0. Show the following variant of the explicit formula:

Z ar - #C(Fgr) =G(¢"?) + G(g ) - 2§:Re(G(ei9j)).
j=1

k)2
k1 ¢/
We say that a polynomial G(z) € R[z] is S-positive if
(H1) the coefficients of G(x) are nonnegative, (H2) G(0) =0, (H3) Re(G(e")) > 1 for all § € S.

2.2. We assume that all the Frobenius angles of C are in S (é.e. that §; € Sforall j =1,...,g). Prove that, for all
S-positive polynomials G € R[], one has:

(G +a@).

N =

g <
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2.3. It S = {0}, find a S-positive polynomial, and deduce that g < (q1/2 + qil/z) /2.

To any angle ¢ € (0, 7], we associate a polynomial Hy(x) € Rlz], as follows. For ¢ = 7, put Hy(x) := 1+ z. For any
¢ € (0,7), choose an integer m > 1 such that cos(m¢) < 0, and put Hy(x) := 1 — 2 cos(me) - 2™ + x>™.

2.4. Check that, for any ¢ € (0, 7], the polynomial Hy(z) € R[z] has nonnegative coefficients and satisfies: Hy(0) = 1,
Hy(e'?) = 0, and Hy(1) > 2.

For a nonempty finite set S # {0}, define Ks(2) := [[yes. 1oy Ho(2) € R[z], and Gs(z) := (Ks(z) — 1)% € R[z].
2.5. Check that Ks(z) has nonnegative coefficients, and prove that Vz > 0, one has 1 < Kg(2) < (1 + 2z)deeKs,
2.6. Prove that Gg(z) is S-positive. Check that Gg(z) < (1 4+ 2)249¢8Ks for all z > 0, and deduce that

Gs(¢"/?) + Gs(g/?) < (Vg +1)°98Ks - (14 ¢~ 98 Ks),
2.7. Let S C [0, 7] be an nonempty finite set of angles, and put

b @ if S = {0},
. (/@ + 1)2deeKs . (1 4 g=deKs) /2 otherwise.

Conclude that the following assertion is true: A smooth projective curve C over F,, all of whose Frobenius angles
lie in S, has genus g < Bg.

2.8. Bonus question: give an upper bound for deg Kg, in terms of the angles 6 € S.

Ezercise 8 — First, we work with the projective plane P? over Fy. A line in P? is a curve L C P? defined by a
homogeneous polynomial F(x,y, z) € Falx, y, z] of degree 1.

3.1. List all points P € P?(FFy), and give a list £ of all lines L C P2. Compare #P?(F;) to the number of lines #L.

3.2. Form a blank array By whose rows are indexed by P € P2(F,) and whose columns indexed by L € £. For a point
P and a line L, shade the cell (P,L) if P € L.

What do you notice about the resulting array B? Give a geometric interpretation.
Now, consider the Klein quartic K C P? defined over Fy by
KcP? . By+ P+ Bz =0
3.3. Check that K/Fy is a smooth projective curve, and give its genus (you may use the Hint in 1.3).

3.4. Prove that K has 2 points at infinity, which are Fo-rational (i.e. solve equations for KN {z = 0}). Give the
equation f(z,y) € Fy[x,y] for the “affine part” of K (i.e. KN {z =1} has equation f(z,y) =0 C A2).

3.5. Let a € Fg be an element such that a® + o + 1 = 0: the field Fg is generated by a over Fs.
Prove that #K(Fg) = 24, and compare #K(Fg) to the Serre bound.

3.6. Deduce, as simply as possible, that
1+5T3 +8T°

Z(K/Fy,T) = a—Ta—zm

Hint: if you think you need these numbers, you may use that:
#K(F2) =3, #K(F4) =5, #K(F16) = 17, #K(F32) = 33, #K(Fes) =38, ...

3.7. Let f(z,y) € Falz,y] and o € Fg be as above. Form a 7 x 7 blank array Cp, whose cells are indexed by
(i,5) € {0,...,6}% For all (i,5) € {0,...,6}2, shade the (i,7)-th cell in Cq if f(a’,al) = 0. Denote by C the
resulting array.

Compare the number of shaded cells to #K(Fg). Compare the properties of B and C. Comment.
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