
Curves over finite fields
To be handed in before Monday 22nd May, 2017

Universiteit Leiden

Homework #3

Conventions – Let Fq be a finite field. For any smooth projective curve C defined over Fq, we let L(C/Fq,T)
be the numerator of the zeta function Z(C/Fq,T) of C/Fq. We denote by g the genus of C, and by α1, . . . , α2g the
inverse roots of L(C/Fq,T), so that:

L(C/Fq,T) =
2g∏
i=1

(1− αi · T) ∈ Z[T].

We assume that the αj ’s are numbered in such a way that Im(αj) > 0 and αj · αj+g = q for all j = 1, . . . , g. The set
{α1, . . . , α2g} thus numbered (with multiplicities allowed) will be called the set of Frobenius eigenvalues of C.

By Weil’s theorem, we may pick angles θj ∈ [0, π] such that αj = √q · eiθj for all j = 1, . . . , g. The set {θ1, . . . , θg}
(with multiplicities allowed) is called the set of Frobenius angles of C.

Exercise 1 – Let Fq be a finite field and C be a smooth projective curve of genus g > 1 defined over Fq. Denote
by {α1, . . . , α2g} the set of Frobenius eigenvalues of C.

Let us assume that there exists an angle θ ∈ [0, π/2) such that αj = √q · eiθ for all j = 1, . . . , g.

1.1. Put t = √q · eiθ +√q · e−iθ. Prove that t > 0 and that t is an integer.

1.2. Using a relation between #C(Fq) > 0 and t, prove that g 6 q + 1.

Now consider the Hermitian curve X/Fq defined by

X ⊂ P2 : zyq + zqy − xq+1 = 0.

In Homework #1 (Exercise 2), we have proved that X is a smooth curve, and that #X(Fq) = q+ 1, #X(Fq2) = q3 + 1.

1.3. Compare #X(Fq2) to the Hasse-Weil bound.
Hint: you may use without proof that a smooth projective curve X ⊂ P2 defined by a single homogeneous equation
F(x, y, z) ∈ Fq[x, y, z] of degree d has genus g = (d− 1)(d− 2)/2.

1.4. With as little computation as possible, prove that

Z(X/Fq,T) = (1 + q · T2)
q(q−1)

2

(1− T)(1− qT) .

1.5. Can the result of 1.2 be extended to θ = π/2?

Exercise 2 – Let S ⊂ [0, π] be a nonempty finite set of “angles”. In this exercise, we prove that there exists an
explicit constant BS > 0 (depending only on S and q) such that: a smooth projective curve C/Fq whose Frobenius
angles are all in S has genus g 6 BS.

Let C/Fq be a smooth projective curve of genus g over Fq, and {θ1, . . . , θg} be its set of Frobenius angles.

2.1. Let G(x) =
∑
k>1 akx

k ∈ R[x] be a polynomial with G(0) = 0. Show the following variant of the explicit formula:

∑
k>1

ak ·#C(Fqk )
qk/2 = G(q1/2) + G(q−1/2)− 2

g∑
j=1

Re(G(eiθj )).

We say that a polynomial G(x) ∈ R[x] is S-positive if
(H1) the coefficients of G(x) are nonnegative, (H2) G(0) = 0, (H3) Re(G(eiθ)) > 1 for all θ ∈ S.

2.2. We assume that all the Frobenius angles of C are in S (i.e. that θj ∈ S for all j = 1, . . . , g). Prove that, for all
S-positive polynomials G ∈ R[x], one has:

g 6
1
2 ·
(

G(q1/2) + G(q−1/2)
)
.
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2.3. If S = {0}, find a S-positive polynomial, and deduce that g 6
(
q1/2 + q−1/2) /2.

To any angle φ ∈ (0, π], we associate a polynomial Hφ(x) ∈ R[x], as follows. For φ = π, put Hφ(x) := 1 + x. For any
φ ∈ (0, π), choose an integer m > 1 such that cos(mφ) 6 0, and put Hφ(x) := 1− 2 cos(mφ) · xm + x2m.

2.4. Check that, for any φ ∈ (0, π], the polynomial Hφ(x) ∈ R[x] has nonnegative coefficients and satisfies: Hφ(0) = 1,
Hφ(eiφ) = 0, and Hφ(1) > 2.

For a nonempty finite set S 6= {0}, define KS(x) :=
∏
θ∈Sr{0}Hθ(x) ∈ R[x], and GS(x) := (KS(x)− 1)2 ∈ R[x].

2.5. Check that KS(x) has nonnegative coefficients, and prove that ∀z > 0, one has 1 6 KS(z) 6 (1 + z)deg KS .

2.6. Prove that GS(x) is S-positive. Check that GS(z) 6 (1 + z)2 deg KS for all z > 0, and deduce that

GS(q1/2) + GS(q−1/2) 6 (√q + 1)2 deg KS · (1 + q− deg KS).

2.7. Let S ⊂ [0, π] be an nonempty finite set of angles, and put

BS :=
{(
q1/2 + q−1/2) /2 if S = {0},

(√q + 1)2 deg KS · (1 + q− deg KS)/2 otherwise.

Conclude that the following assertion is true: A smooth projective curve C over Fq, all of whose Frobenius angles
lie in S, has genus g 6 BS.

2.8. Bonus question: give an upper bound for deg KS, in terms of the angles θ ∈ S.

Exercise 3 – First, we work with the projective plane P2 over F2. A line in P2 is a curve L ⊂ P2 defined by a
homogeneous polynomial F(x, y, z) ∈ F2[x, y, z] of degree 1.

3.1. List all points P ∈ P2(F2), and give a list L of all lines L ⊂ P2. Compare #P2(F2) to the number of lines #L.

3.2. Form a blank array B0 whose rows are indexed by P ∈ P2(F2) and whose columns indexed by L ∈ L. For a point
P and a line L, shade the cell (P,L) if P ∈ L.
What do you notice about the resulting array B? Give a geometric interpretation.

Now, consider the Klein quartic K ⊂ P2 defined over F2 by

K ⊂ P2 : x3y + y3z + z3x = 0.

3.3. Check that K/F2 is a smooth projective curve, and give its genus (you may use the Hint in 1.3 ).

3.4. Prove that K has 2 points at infinity, which are F2-rational (i.e. solve equations for K ∩ {z = 0}). Give the
equation f(x, y) ∈ F2[x, y] for the “affine part” of K (i.e. K ∩ {z = 1} has equation f(x, y) = 0 ⊂ A2).

3.5. Let α ∈ F8 be an element such that α3 + α+ 1 = 0: the field F8 is generated by α over F2.
Prove that #K(F8) = 24, and compare #K(F8) to the Serre bound.

3.6. Deduce, as simply as possible, that

Z(K/F2,T) = 1 + 5T3 + 8T6

(1− T)(1− 2T) .

Hint: if you think you need these numbers, you may use that:

#K(F2) = 3, #K(F4) = 5, #K(F16) = 17, #K(F32) = 33, #K(F64) = 38, . . .

3.7. Let f(x, y) ∈ F2[x, y] and α ∈ F8 be as above. Form a 7 × 7 blank array C0, whose cells are indexed by
(i, j) ∈ {0, . . . , 6}2. For all (i, j) ∈ {0, . . . , 6}2, shade the (i, j)-th cell in C0 if f(αi, αj) = 0. Denote by C the
resulting array.
Compare the number of shaded cells to #K(F8). Compare the properties of B and C. Comment.
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