Homework #3

Conventions – Let \mathbb{F}_q be a finite field. For any smooth projective curve C defined over \mathbb{F}_q , we let $L(C/F_q, T)$ be the numerator of the zeta function $Z(C/\mathbb{F}_q, T)$ of C/\mathbb{F}_q . We denote by g the genus of C, and by $\alpha_1, \ldots, \alpha_{2g}$ the inverse roots of $L(C/\mathbb{F}_q, T)$, so that:

$$\mathcal{L}(\mathcal{C}/\mathbb{F}_q,\mathcal{T}) = \prod_{i=1}^{2g} (1 - \alpha_i \cdot \mathcal{T}) \in \mathbb{Z}[\mathcal{T}].$$

We assume that the α_j 's are numbered in such a way that $\text{Im}(\alpha_j) \ge 0$ and $\alpha_j \cdot \alpha_{j+g} = q$ for all $j = 1, \ldots, g$. The set $\{\alpha_1, \ldots, \alpha_{2g}\}$ thus numbered (with multiplicities allowed) will be called the set of Frobenius eigenvalues of C.

By Weil's theorem, we may pick angles $\theta_j \in [0, \pi]$ such that $\alpha_j = \sqrt{q} \cdot e^{i\theta_j}$ for all $j = 1, \ldots, g$. The set $\{\theta_1, \ldots, \theta_g\}$ (with multiplicities allowed) is called the set of *Frobenius angles of* C.

Exercise 1 – Let \mathbb{F}_q be a finite field and C be a smooth projective curve of genus $g \ge 1$ defined over \mathbb{F}_q . Denote by $\{\alpha_1, \ldots, \alpha_{2g}\}$ the set of Frobenius eigenvalues of C.

Let us assume that there exists an angle $\theta \in [0, \pi/2)$ such that $\alpha_j = \sqrt{q} \cdot e^{i\theta}$ for all $j = 1, \ldots, g$.

1.1. Put $t = \sqrt{q} \cdot e^{i\theta} + \sqrt{q} \cdot e^{-i\theta}$. Prove that t > 0 and that t is an integer.

1.2. Using a relation between $\#C(\mathbb{F}_q) \ge 0$ and t, prove that $g \le q+1$.

Now consider the Hermitian curve X/\mathbb{F}_q defined by

$$\mathbf{X} \subset \mathbb{P}^2 : \qquad zy^q + z^q y - x^{q+1} = 0.$$

In Homework #1 (Exercise 2), we have proved that X is a smooth curve, and that $\#X(\mathbb{F}_q) = q+1, \#X(\mathbb{F}_{q^2}) = q^3+1.$

1.3. Compare $\#X(\mathbb{F}_{q^2})$ to the Hasse-Weil bound.

Hint: you may use without proof that a smooth projective curve $X \subset \mathbb{P}^2$ *defined by a single homogeneous equation* $F(x, y, z) \in \mathbb{F}_q[x, y, z]$ of degree d has genus g = (d - 1)(d - 2)/2.

1.4. With as little computation as possible, prove that

$$Z(X/\mathbb{F}_q, T) = \frac{(1+q \cdot T^2)^{\frac{q(q-1)}{2}}}{(1-T)(1-qT)}.$$

1.5. Can the result of 1.2 be extended to $\theta = \pi/2$?

Exercise 2 – Let $S \subset [0, \pi]$ be a nonempty finite set of "angles". In this exercise, we prove that there exists an explicit constant $B_S > 0$ (depending only on S and q) such that: a smooth projective curve C/\mathbb{F}_q whose Frobenius angles are all in S has genus $g \leq B_S$.

Let C/\mathbb{F}_q be a smooth projective curve of genus g over \mathbb{F}_q , and $\{\theta_1, \ldots, \theta_g\}$ be its set of Frobenius angles.

2.1. Let $G(x) = \sum_{k \ge 1} a_k x^k \in \mathbb{R}[x]$ be a polynomial with G(0) = 0. Show the following variant of the explicit formula:

$$\sum_{k \ge 1} \frac{a_k \cdot \# \mathbf{C}(\mathbb{F}_{q^k})}{q^{k/2}} = \mathbf{G}(q^{1/2}) + \mathbf{G}(q^{-1/2}) - 2\sum_{j=1}^g \operatorname{Re}(\mathbf{G}(\mathbf{e}^{i\theta_j}))$$

We say that a polynomial $G(x) \in \mathbb{R}[x]$ is S-positive if

- (H1) the coefficients of G(x) are nonnegative, (H2) G(0) = 0, (H3) $\operatorname{Re}(G(e^{i\theta})) \ge 1$ for all $\theta \in S$.
- 2.2. We assume that all the Frobenius angles of C are in S (*i.e.* that $\theta_j \in S$ for all j = 1, ..., g). Prove that, for all S-positive polynomials $G \in \mathbb{R}[x]$, one has:

$$g \leqslant \frac{1}{2} \cdot \left(\mathbf{G}(q^{1/2}) + \mathbf{G}(q^{-1/2}) \right)$$

2.3. If S = {0}, find a S-positive polynomial, and deduce that $g \leq (q^{1/2} + q^{-1/2})/2$.

To any angle $\phi \in (0, \pi]$, we associate a polynomial $H_{\phi}(x) \in \mathbb{R}[x]$, as follows. For $\phi = \pi$, put $H_{\phi}(x) := 1 + x$. For any $\phi \in (0, \pi)$, choose an integer $m \ge 1$ such that $\cos(m\phi) \le 0$, and put $H_{\phi}(x) := 1 - 2\cos(m\phi) \cdot x^m + x^{2m}$.

2.4. Check that, for any $\phi \in (0, \pi]$, the polynomial $H_{\phi}(x) \in \mathbb{R}[x]$ has nonnegative coefficients and satisfies: $H_{\phi}(0) = 1$, $H_{\phi}(e^{i\phi}) = 0$, and $H_{\phi}(1) \ge 2$.

For a nonempty finite set $S \neq \{0\}$, define $K_S(x) := \prod_{\theta \in S \setminus \{0\}} H_{\theta}(x) \in \mathbb{R}[x]$, and $G_S(x) := (K_S(x) - 1)^2 \in \mathbb{R}[x]$.

- 2.5. Check that $K_{\rm S}(x)$ has nonnegative coefficients, and prove that $\forall z > 0$, one has $1 \leq K_{\rm S}(z) \leq (1+z)^{\deg K_{\rm S}}$.
- 2.6. Prove that $G_S(x)$ is S-positive. Check that $G_S(z) \leq (1+z)^{2 \deg K_S}$ for all z > 0, and deduce that

$$G_{S}(q^{1/2}) + G_{S}(q^{-1/2}) \leq (\sqrt{q}+1)^{2 \deg K_{S}} \cdot (1+q^{-\deg K_{S}}).$$

2.7. Let S \subset [0, π] be an nonempty finite set of angles, and put

$$B_{S} := \begin{cases} \left(q^{1/2} + q^{-1/2}\right)/2 & \text{if } S = \{0\}, \\ \left(\sqrt{q} + 1\right)^{2 \deg K_{S}} \cdot (1 + q^{-\deg K_{S}})/2 & \text{otherwise.} \end{cases}$$

Conclude that the following assertion is true: A smooth projective curve C over \mathbb{F}_q , all of whose Frobenius angles lie in S, has genus $g \leq B_S$.

2.8. Bonus question: give an upper bound for deg K_S, in terms of the angles $\theta \in S$.

Exercise \mathcal{J} – First, we work with the projective plane \mathbb{P}^2 over \mathbb{F}_2 . A *line* in \mathbb{P}^2 is a curve $\mathcal{L} \subset \mathbb{P}^2$ defined by a homogeneous polynomial $\mathcal{F}(x, y, z) \in \mathbb{F}_2[x, y, z]$ of degree 1.

- 3.1. List all points $P \in \mathbb{P}^2(\mathbb{F}_2)$, and give a list \mathcal{L} of all lines $L \subset \mathbb{P}^2$. Compare $\#\mathbb{P}^2(\mathbb{F}_2)$ to the number of lines $\#\mathcal{L}$.
- 3.2. Form a blank array B_0 whose rows are indexed by $P \in \mathbb{P}^2(\mathbb{F}_2)$ and whose columns indexed by $L \in \mathcal{L}$. For a point P and a line L, shade the cell (P, L) if $P \in L$.

What do you notice about the resulting array B? Give a geometric interpretation.

Now, consider the Klein quartic $K \subset \mathbb{P}^2$ defined over \mathbb{F}_2 by

$$\mathbf{K} \subset \mathbb{P}^2 \hspace{0.1 cm} : \hspace{0.1 cm} x^3y + y^3z + z^3x = 0.$$

- 3.3. Check that K/\mathbb{F}_2 is a smooth projective curve, and give its genus (you may use the Hint in 1.3).
- 3.4. Prove that K has 2 points at infinity, which are \mathbb{F}_2 -rational (*i.e.* solve equations for $K \cap \{z = 0\}$). Give the equation $f(x, y) \in \mathbb{F}_2[x, y]$ for the "affine part" of K (*i.e.* $K \cap \{z = 1\}$ has equation $f(x, y) = 0 \subset \mathbb{A}^2$).
- 3.5. Let $\alpha \in \mathbb{F}_8$ be an element such that $\alpha^3 + \alpha + 1 = 0$: the field \mathbb{F}_8 is generated by α over \mathbb{F}_2 .

Prove that $\#K(\mathbb{F}_8) = 24$, and compare $\#K(\mathbb{F}_8)$ to the Serre bound.

3.6. Deduce, as simply as possible, that

$$Z(K/\mathbb{F}_2, T) = \frac{1+5T^3+8T^6}{(1-T)(1-2T)}.$$

Hint: if you think you need these numbers, you may use that:

$$\#\mathbf{K}(\mathbb{F}_2) = 3, \ \#\mathbf{K}(\mathbb{F}_4) = 5, \ \#\mathbf{K}(\mathbb{F}_{16}) = 17, \ \#\mathbf{K}(\mathbb{F}_{32}) = 33, \ \#\mathbf{K}(\mathbb{F}_{64}) = 38, \ \dots$$

3.7. Let $f(x,y) \in \mathbb{F}_2[x,y]$ and $\alpha \in \mathbb{F}_8$ be as above. Form a 7 × 7 blank array C_0 , whose cells are indexed by $(i,j) \in \{0,\ldots,6\}^2$. For all $(i,j) \in \{0,\ldots,6\}^2$, shade the (i,j)-th cell in C_0 if $f(\alpha^i, \alpha^j) = 0$. Denote by C the resulting array.

Compare the number of shaded cells to $\#K(\mathbb{F}_8)$. Compare the properties of B and C. Comment.