
CHAPTER 1

ALGEBRAIC VARIETIES

In this chapter, we follow roughly [Sil09, Chap. I] and [NX09, Chap. 2].
Throughout this chapter: k will denote a perfect field (i.e. every extension of k is separable),

k is a fixed algebraic closure of k, and Gk denote the Galois group of k/k. The hypothesis that
k be perfect is not absolutely necessary but it simplifies the exposition. Note that finite fields
and their algebraic closures are perfect.

For more details on algebraic geometry, one can have a look at [Har77], [Mum99], [Kem93],
[Rei95], ...

1.1. Affine varieties

We begin by defining the affine space and its algebraic subsets.

1.1.1. Affine space. —

Definition 1.1. — The affine space of dimension n � 1 over k is the set of n-tuples:

An = An(k) =
�

P = (x1, . . . , xn) : xi 2 k
 

.

An element P = (x1, . . . , xn) 2 An is called a point, and the xi’s are called the coordinates of P .
For a finite extension k0/k inside k, a point P 2 An is called k0-rational if all its coordinates are
elements of k0: in other words, the set of k0-rational points on An is the subset

An(k0) =
�

P = (x1, . . . , xn) : xi 2 k0
 

.

We denote by Gk the Galois group Gal(k/k): since it acts on k, it certainly acts on An too:

for all � 2 Gk and all P = (x1, . . . , xn) 2 An, �(P ) := (�(x1), . . . ,�(xn)).

Check that this actually defines an action on An. Then, the set of k-rational points An(k) can
be characterized as the set of fixed points under the action of Gk:

An(k) = {P 2 An : �(P ) = P 8� 2 Gk} .
This follows essentially from the fact that k ⇢ k is exactly the set of elements of k that are fixed
under the action of Gk.

Example 1.2. — Assume that k = Fq. In this case, the Galois group Gk is (topologically)
generated by the Frobenius morphism Frq : k ! k, defined by x 7! xq. It is easy to check that

An(Fq) =
�

P 2 An(Fq) : Frq(P ) = P
 

.

Definition 1.3. — For a point P 2 An, the set {�(P ),� 2 Gk} is called a closed point over k
(or a k-closed point). Two points in a closed point over k are called conjugate (over k).
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By construction, a closed point over k is a subset of An. Notice that a point is k-rational if
and only if the corresponding closed point has only one element. We will discuss closed points
in more details later on.

1.1.2. Affine sets. — Let k[X] = k[x1, . . . , xn] be a polynomial ring in n variables over k.
Note the slight abuse of notation here. A polynomial f 2 k[X] can be evaluated at any n-tuple
of elements xi 2 k, i.e. at any point P = (x1, . . . , xn) of An. Note that the Galois group Gk acts
on k[X] by acting on the coefficients of the polynomials: a polynomial f 2 k[X] is in k[X] if and
only if �(f) = f for all � 2 Gk. The actions of Gk on An and on k[X] are compatible:

(1) for all f 2 k[X], all P 2 An and all � 2 Gk, �(f(P )) = �(f)(�(P )).

(Exercise: check this relation, say for n = 1, see [NX09, Lem. 2.2.2, p.38]).
For a subset S ⇢ k[X], we define the zero set Z(S) of S to be the subset of An formed by the

common zeroes of all f 2 S:
Z(S) = {P 2 An : f(P ) = 0 8f 2 S} .

If S is as above, and if IS denotes the ideal of k[X] generated by the elements of S, then it is not
difficult to check that Z(S) = Z(IS). Therefore, we do not loose much generality by restricting
our attention to zero sets of ideals.

Definition 1.4. — An affine algebraic set is any set of the form Z(I) for some ideal I of k[X]
(again, this is the same as considering all the zero sets Z(S) for any subset S ⇢ k[X]).

If V is an algebraic set, the ideal of V is given by:
I(V ) =

�

f 2 k[X] : f(P ) = 0 8P 2 V
 

.

(Check that this indeed defines an ideal).

An (affine) algebraic set V is said to be defined over k if its ideal I(V ) can be generated by
polynomials with coefficients in k[X]. For short, we will denote this situation by V/k. Let V be
an algebraic set and consider the ideal I(V/k) of k[x] defined by

I(V/k) = {f 2 k[X] : f(P ) = 0 8P 2 V } = I(V ) \ k[X].

Then I(V/k) · k[X] ⇢ I(V ), and V is defined over k if and only if I(V ) = I(V/k) · k[X].
If V is defined over k, then it makes sense to consider the set of k-rational points of V : it is

the set
V (k) := V \ An(k) = {P 2 V : �(P ) = P 8� 2 Gk} .

Further, the compatibility (1) implies that, if P 2 V then all its conjugates �(P ) (for � 2 Gk)
are in V . In other words, the action of Gk on An restricts to an action on V and, clearly,

V (k) = {P 2 V : P � = P 8� 2 G} .
More explicitely, let f1, . . . , fm 2 k[X] be generators of the ideals I(V/k) (by Hilbert’s basis
theorem, all ideals in k[X] or k[X] are finitely generated). Then V (k) is precisely the set of
solutions (x1, . . . , xn) 2 kn to the system of polynomial equations:

f1(X) = · · · = fm(X) = 0 with X = (x1, . . . , xn) 2 kn.

Before going further, let us give a few examples:

Example 1.5. — The affine space An itself is an algebraic set: its ideal is I(An) = {0} ⇢
k[x1, . . . , xn], which can be generated by a polynomial with coefficients in k (namely, the 0
polynomial). The affine set whose ideal is the whole of k[x1, . . . , xn] is the empty set.

A singleton {P}, where P = (a1, . . . , an) 2 An, is also an algebraic set. Indeed, it is the
zero set of the ideal generated by x1 � a1, ..., xn � an in k[x1, . . . , xn]. Over what field is the
singleton {P} defined? It can be shown that the map which maps (a1, . . . , an) 2 An(k) to the
ideal generated by x1�a1, ..., xn�an in k[x1, . . . , xn] gives a one-to-one correspondence between
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the points of An(k) and the maximal ideals of k[x1, . . . , xn] (Hilbert’s Nullstellensatz, see [Ful89,
Chap. I, §7], [Mum99, I.§2]). Note this map is not one-to-one if one replaces k by k.

Example 1.6. — Let S ⇢ A1 be an infinite set (Exercise: for a field k, its algebraic closure k
has infinite cardinality). Then S is not algebraic: if it were, there would be a polynomial f 2 k[x]
with infinitely many zeroes (the elements of S).

If k = R, the graph � = {(x, cosx), x 2 R} of the cosine ⇢ A2 is not algebraic.

Example 1.7. — Let `(x1, x2) = ↵x1 + �x2 2 k[x1, x2] with ↵,� not both zero. The zero zet
L = Z(`) is called a line in A2. By definition, it is an affine algebraic set, given by the equation:

L : ↵x1 + �x2 = 0

Let f(x1, x2) := x21�x22�1 2 k[x1, x2] and I := (f), the ideal generated by f in k[x1, x2]. Let
V = Z(I) be the algebraic set in A2 associated to I. One says that V is defined by the equation
f(x1, x2) = 0. Clearly, V is defined over k (for any field k). Make a picture of V (k), in the cases
when k = R, k = F5 and k = F7. Let us assume for simplicity that char(k) 6= 2. Then the set
V (k) is in bijection with A1(k)r {0}, one possible map is given by

t 2 A1(k)r {0} ! V (k), t 7!
✓

t2 + 1

2t
,
t2 � 1

2t

◆

.

Example 1.8. — Now let g(x1, x2) := x21 + x22 � 1 2 k[x1, x2], denote by J := (g) the ideal
generated by g in k[x1, x2], and let W = Z(J) be the zero set of J in A2. Equivalently, one
writes:

W : x21 + x22 � 1 = 0

Again, W is defined over k (for any field k) and one can make pictures of W (k) in specific
examples. Can you find a bijection between W (k) and A1(k)r {0}?
Example 1.9. — Let us give more details about algebraic sets in A1. For n = 1, the ring k[x]
is a unique factorization domain (and thus a principal ideal domain). This property fails when
n > 1: what is still true is that all ideals in k[x1, . . . , xn] are finitely generated (Hilbert’s basis
theorem, see [AM69, Thm. 7.5, p. 81]).

If V ⇢ A1 is an algebraic set, its ideal I(V ) ⇢ k[x] is principal: let us choose gV 2 k[x] such
that I(V ) = (gV ). If I(V ) = (0) then V = A1, and if I(V ) = (1) then V = ?. Otherwise, g has
positive degree d, and roots b1, . . . , bd in k = A1. So, as a set, one has V = {b1, . . . , bd} ⇢ A1.
Conversely, given a finite set of points V = {b1, . . . , bd}, set g =

Q

(x � bi) 2 k[x]: one has
V = Z(g). In conclusion, the algebraic sets ⇢ A1 are A1 itself, ?, and the finite subsets of A1.

Proposition 1.10. — As before, we write k[X] for k[x1, . . . , xn].
(i) Let S be a nonempty subset of k[X]. If I is the ideal generated by S, then Z(S) = Z(I).
(ii) For any two subsets S0 ⇢ S of k[X], we have Z(S0) � Z(S).
(iii) If S, S0 are two nonempty subsets of k[X], then Z(S [ S0) = Z(S) \ Z(S0).
(iv) Any intersection of affine algebraic sets is an algebraic set.
(v) For any polynomials f, g 2 k[X], we have Z(f · g) = Z(f) [ Z(g). More generally, if

S, S0 are two nonempty subsets of k[X] and if we let S · S0 = {fg, f 2 S, g 2 S0}, then
Z(S · S0) = Z(S) [ Z(S0).

(vi) Any finite union of affine algebraic sets is an algebraic set.

Proof. — Left as an exercise.

Proposition 1.11. — Let V be an affine algebraic set.
(i) There exists a finite set S0 ⇢ k[X] such that V = Z(S0).
(ii) The zero set of I(V ) is V : Z(I(V )) = V .
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(iii) If V = Z(I) for some ideal I of k[X], then the ideal I(V ) of V is the radical of I:

I(Z(I)) = rad(I) :=
�

f 2 k[X] : 9r � 1, f r 2 I
 

.

Proof. — (i) Let S be a non empty subset of k[X] such that V = Z(S), and I be the ideal
generated by S. From the above proposition, one has Z(S) = Z(I). Now, by Hilbert’s basis
theorem, I is finitely generated: this means that I can choose S0 a finite set of polynomials
such that S0 generates I. Then V = Z(I) = Z(S0).

(ii) Again, we write that V = Z(S) and we denote by I = IV the ideal of k[X] generated by
S. Since S ⇢ I, the inclusion-reversing property implies that Z(I) ⇢ Z(S) = V . But, from
the definitions, one has V ⇢ Z(I).

(iii) This part is a bit more subtle. One inclusion is straightforward though: if f 2 rad(I),
then f r 2 I for some r � 1 and, by definition, this means that f(P )r = 0 for all
P 2 V = Z(I); but then f(P ) = 0 for all P 2 V , and f 2 I(V ). We have proved
the inclusion rad(I) ⇢ I(Z(I)).

The following fact is often called “the weak Nullstellensatz” (we don’t prove it here):

if I is a proper ideal of k[X], then Z(I) 6= ?.

Note that this theorem is only true for k[X] (and not necessarily for k[X] when k is not
algebraically closed). Using this, we can conclude the proof of item (iii) (which is called
“the Nullstellensatz”). By Hilbert’s basis theorem, the ideal IV is finitely generated: choose
f1, . . . , fr a finite set of polynomials that generates I ⇢ k[x1, . . . , xn]. Let g 2 I(Z(I)) =
I(Z(f1, . . . , fr)). We need to show that there exists r � 1 such that gr 2 I. Consider the
ideal J of k[x1, . . . , xn, xn+1] generated by the fi’s and xn+1g � 1:

J = (f1, . . . , fr, xn+1g � 1) ⇢ k[x1, . . . , xn, xn+1].

Then Z(J) is an algebraic subset of An+1. Since g vanishes wherever all the fi’s do,
Z(J) is actually empty. By the weak Nullstellensatz, this means that J is the whole of
k[x1, . . . , xn+1]: in particular, 1 2 J and there are polynomials ai’s and b in k[x1, . . . , xn+1]
such that

(R) 1 =
X

ai(x1, . . . , xn+1) · fi + b(x1, . . . , xn+1) · (xn+1g � 1) 2 k[x1, . . . , xn, xn+1].

Putting y = 1/xn+1 and multiplying (8) by a big power of y to get rid of denominators,
one obtains a relation

(R’) yr =
X

ci(x1, . . . , xn, y) · fi + d(x1, . . . , xn, y) · (g � y) 2 k[x1, . . . , xn, y],

for some r � 1. Substituting y = g in (R’), we obtain that

gr =
X

ci(x1, . . . , xn, g) · fi 2 (f1, . . . , fr) = I,

which concludes the proof.

1.1.3. Irreducibility, affine varieties. —

Definition 1.12. — An affine algebraic set V is called irreducible if its ideal I(V ) is a prime
ideal in k[X]. An affine algebraic variety is an irreducible affine algebraic set.

Recall that an ideal I in a ring R is called prime when the quotient ring R/I is an integral
domain. Another way of phrasing this condition is to require that, for all a, b 2 Rr I, ab /2 I.

Remark 1.13. — If V is defined over k, we also say that V is absolutely irreducible (or
geometrically irreducible) if V is irreducible. Note that it is not enough to check that I(V/k)
is prime in k[X]. On the other hand, if V/k is (absolutely) irreducible (i.e. if I(V ) ⇢ k[X] is
prime), then I(V/k) is a prime ideal of k[X] because k[X]/I(V/k) is a subring of k[X]/I(V ),
which is a domain.
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For example, consider f(x1, x2) = x21 + x22 2 k[x1, x2] (where k is of characteristic 6= 2). Then
V = Z(f) is an affine algebraic set (in A2) defined over k, with ideal I = (f) ⇢ k[x1, x2]. The
ideal I is not prime because, denoting by ↵ one of the two square roots of �1 in k, one has

f(x1, x2) = (x1 � ↵x2)(x1 + ↵x2) 2 k[x1, x2],

and thus I decomposes in a product I = (x1�↵x2)·(x1+↵x2). However, if ↵ /2 k, f is irreducible
in k[x1, x2] so I(V/k) = (f) ⇢ k[x1, x2] is a prime ideal.

Example 1.14. — The affine space An is irreducible, because its ideal I(An) = (0) ⇢ k[x0, . . . , xn]
certainly is prime.

One can give a complete classification of varieties V ⇢ A1 (exercise).

Example 1.15. — A non-example: let V1 be the affine set ⇢ A2 defined by x2 � y2 = 0, and
let V2 be the affine set ⇢ A3 defined by z3 = 0.

The ideal I(V1) of V1 is generated by x2� y2 = (x� y)(x+ y) so it can not be prime (because
none of f1 = x� y and f2 = x+ y is in the ideal (x2 � y2) but their product is, in other words:
the reductions of f1 and f2 are not zero in k[x, y]/(x2 � y2) but their product is zero so the
quotient ring has non zero zero-divisors). The ideal of V2 is (z3) ⇢ k[x, y, z] and, again, it is not
prime: the quotient ring k[x, y, z]/(z3) contains nilpotent elements, for example z mod z3).

Example 1.16. — Let f 2 k[X] be an absolutely irreducible polynomial (that is, not only is f
irreducible in k[X], but it remains irreducible in k[X]). Then, the ideal I = (f) of k[X] is prime
and the associated algebraic set V = Z(f) ⇢ An is an affine variety. One often simply writes:
“let V be the affine variety defined by

V : f(x1, . . . , xn) = 0.00

If n = 2, such a V is called a plane curve and, in general for n � 3, a hypersurface.

Example 1.17. — Let f 2 k[x] be a polynomial in one variable, one can see f as a function
k ! k. Let �f ⇢ A2 be the “graph of f ”, i.e. the set

�f :=
�

(x, f(x)), x 2 k
 ⇢ A2.

This is an example of an algebraic variety. Indeed, the ideal of �f in k[x, y] is generated by
F (x, y) = y � f(x). It is not difficult to check that F 2 k[x, y] is irreducible, so the ideal it
generates is prime.

1.1.4. Coordinate ring(s). — Polynomials in k[X] = k[x1, . . . , xn] can be seen as functions
on An: indeed, any f 2 k[X] can be seen as the function P 7! f(P ). Here, we want to define
the natural notion of “functions on an affine variety V ⇢ An”: a function on V should also be
a polynomial, but we should consider f, g 2 k[X] as the same function if f � g vanishes on V .
This should motivate the following definitions.

Let V be an affine variety, with ideal I(V ) ⇢ k[X]. We define the affine coordinate ring of V
to be the quotient:

k[V ] := k[X]/I(V ).

By construction, the ideal I(V ) ⇢ k[X] is prime, so the ring k[V ] is an integral domain. Its field
of fractions will be denoted by k(V ) and will be called the function field of V .

Since an element k 2 k[V ] is well-defined up to adding a polynomial vanishing on V , it induces
a well-defined (polynomial) function f : V ! k. Note that k[V ] contains (an isomorphic copy
of) k (the constant functions). Thus, k[V ] naturally has the structure of a k-vector space.

Example 1.18. — Let V be an affine algebraic set, and let S = {P1, . . . , Pr} be a finite subset
of V . By an earlier example, we know that points of An (and thus of V ) are algebraic sets. We
also know that a finite union of algebraic set is algebraic. So S is an algebraic set, and we denote
by IS ⇢ k[X] its ideal.
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From Propositions 1.10 and 1.11, we know that the ideal Ik of S r {Pk} contains strictly
the ideal IS of S. Choose an element fk 2 Ik r IS for all k 2 [1, r]. Then, it is easy to check
that f1, . . . , fr are linearly independent over k in the coordinate ring k[V ] (it follows essentially
from the fact that fi(Pi) 6= 0 while fi(Pj) = 0 for all j 6= i). This leads to the inequality:
r = #S  dimk k[V ]. In particular, if k[V ] is finite-dimensional over k, then k(V )/k is a finite
extension of fields and V is a finite set.

Conversely, suppose that V = S = {P1, . . . , Pr} ⇢ An is a finite set. Let Pj = (a1j , . . . , anj)
for all j 2 [1, r], and consider gi :=

Qr
j=1(xi � aij) for all i 2 [1, n]. Then the polynomials gi are

in the ideal I(V ) of V , and this implies that, in the coordinate ring k[V ], one can express xri as
a k-linear combination of 1, . . . , xr�1

i . Thus, the finite set {Qn
i=1 x

ei
i , 0  ei  r � 1} generates

the whole vector space k[V ]. In particular, k[V ] has finite dimension over k.

Example 1.19. — By an earlier example, there is a bijective correspondence between the points
of V and the maximal ideals of k[X] containing I(V ).

Passing to the quotient ring k[V ], we obtain a one-to-one correspondence between the points
of V and the maximal ideals of k[V ]!

When V/k is an affine variety defined over k, one makes similar definitions:

Definition 1.20. — Let V/k be an affine variety (i.e. V is an affine variety defined over k).
The affine coordinate ring of V/k is the quotient:

k[V ] := k[X]/I(V/k) = k[X]/(I(V ) \ k[X]).

The ring k[V ] is an integral domain, and its field of fractions will be denoted by k(V ) and will
be called the k-rational function field of V/k.

Proposition 1.21. — Let V/k be an affine variety defined over k. Then

k[V ] = k · k[V ] and k(V ) = k · k(V ).

Proof. — By definition, the ideal I(V ) ⇢ k[X] can be generated by polynomials in k[X], so
I(V ) = I(V/k) · k[X]. Hence,

k[V ] = k[X]/I(V ) = k[X]/(I(V/k) · k[X]) = k · k[X]/I(V/k) = k · k[V ].

Finally, note that the fraction field of k · k[V ] is k · k(V ).

If f 2 k[X] is any polynomial, then Gk acts on f by acting on its coefficients. We denote the
action of � 2 Gk on f by f 7! �(f). If V is defined over k, the action of Gk takes I(V ) into
itself, and we obtain an action of Gk on k[V ] and k(V ), also denoted by f 7! �(f). For all points
P 2 V , one has �(f(P )) = �(f)(�(P )).

Proposition 1.22. — Let V/k be an affine variety defined over k. Then

k[V ] =
�

f 2 k[V ] : �(f) = f 8� 2 Gk

 

,

and similarly k(V ) =
�

f 2 k(V ) : �(f) = f 8� 2 Gk

 

.

Proof. — Let A =
�

f 2 k[V ] : �(f) = f 8� 2 Gk

 

. It is clear that k[V ] ⇢ A, and we need to
show that A ⇢ k[V ]. For f 2 A, by the preceding proposition, one can write f =

Pr
i=1 ↵ifi,

with fi 2 k[V ] and ↵i 2 k. Denote by E the k-vector space generated by the fi’s (i = 1, . . . , r).
Up to removing some fi’s, we may assume that {f1, . . . , fs} form a basis of E over k. Then
f =

Ps
i=1 �ifi for some �i 2 k and, for all � 2 Gk,

0 = �(f)� f =

s
X

i=1

(�(�i)� �i)fi.
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Since (fi)si=1 forms a basis of E, one has �(�i) = �i for all i 2 [1, s]. And this holds for any
� 2 Gk, so �i actually is an element of k. Thus f has the form

P

�ifi where �i 2 k and fi 2 k[X].
The very same argument gives the same result for k(V ).

1.1.5. Dimension. — Recall the following definition:

Definition 1.23. — Let L/K be an extension of fields. A subset S of L is algebraically
independent over K if the elements of S do not satisfy any non-trivial polynomial relation with
coefficients in K. In particular, if S = {↵} with ↵ 2 L, S is algebraically independent if and only
if ↵ is transcendental over K. In general, is S is algebraically independent over K, the elements
↵ of S are necessarily transcendental over K (and also transcendental over all the extensions of
K generated by the elements of S r {↵}).

One then defines the transcendence degree of L/K as the largest cardinality of an algebraically
independent subset of L over K. A subset S is a transcendance basis of L/K if S is algebraically
independant over K and if L is an algebraic extension of the extension K(S) generated by the
elements of S.

One can show that every field extension L/K has a transcendence basis, and that all transcen-
dence bases of L/K have the same cardinality: this common cardinality is the transcendence
degree of L/K and is denoted tr. degK L. An extension L/K is called purely transcendental
if there is an algebraically independent subset S of L over K such that L = K(S). A typical
example is: let L = K(x1, . . . , xn) be the field of rational functions in n variables x1, . . . , xn
with coefficients in K (i.e. L is the quotient field of the polynomial ring K[x1, . . . , xn]), then
tr. degK L = n.

For more details about the transcendence degree, you can have a look at the corresponding
section in Lang’s Algebra (Part II, Chapter VIII, §1), or Matsumura’s Commutative Ring Theory.

We use this notion to define the dimension of an affine variety:

Definition 1.24. — Let V be a variety. The dimension of V , denoted by dimV is the tran-
scendence degree of k(V ) over k. The dimension is an integer � 0.

An affine algebraic variety of dimension 1 is called a curve.

Since k(V ) is finitely generated over k, the transcendence degree tr. degk k(V ) is finite and the
definition makes sense.

Example 1.25. — The dimension of An is n since k(An) = k(X1, . . . , Xn).
Similarly, if V ⇢ An is an algebraic variety given by a single nonconstant (and absolutely

irreducible) polynomial equation (say, V : f(x1, . . . , xn) = 0), then dimV = n� 1.
In general, note that the dimension of a variety V is a “geometric notion”: it depends only on

what happens over k, and not on the field k. For example, if V is a variety defined over k and
k0/k is a finite extension, then the dimension of V (as a variety over k) is the same as that of V
(as a variety over k0).

Remark 1.26. — There is another common definition of the dimension of a variety, as follows:

Definition 1.27. — Let R be a ring (commutative, with identity). The height of a prime ideal
p of R, denoted by ht(p) is the supremum of all n 2 N such that there exists a chain

p0 ( p1 ( · · · ( pn = p

of distinct prime ideals of R. The Krull dimension of R is the supremum of the heights ht(p) of
all prime ideals p of R.

With this notion, if V is an algebraic variety, one defines the dimension of V as the Krull
dimension of the coordinate ring k[V ]. These two definitions of dimension actually coincide (see
a book of commutative algebra):
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Theorem 1.28. — Let k be a field, R be an integral domain, which is a finitely generated k-
algebra, and denote by K the quotient field of R. Then the Krull dimension of R is equal to the
transcendence degree of K over k.

1.1.6. Local rings. — Let V be an affine variety. As was remarked earlier, elements of
f 2 k[V ] define polynomial functions V ! k. Given a point P 2 V , we define

MP :=
�

f 2 k[V ] : f(P ) = 0
 

.

It can be checked that MP is an ideal in k[V ]: indeed, MP is the kernel of the evaluation map
evP : f 7! f(P ). Since evP : k[V ] ! k is onto, there is an isomorphism k[V ]/MP ' k. In
particular, the ideal MP is maximal.

The assignment P 7! MP is a one-to-one correspondence between points on V and maximal
ideals of k[V ] (this is another version of Hilbert’s Nullstellensatz).

Definition 1.29. — The local ring of V at P , denoted by OP is the localization of k[V ] at MP .
That is to say,

OP =
�

F 2 k(V ) : F = f/g for some f, g 2 k[V ] with g(P ) 6= 0
 

.

Notice that, if F = f/g 2 OP , then F (P ) = f(P )/g(P ) is well-defined. The functions
F 2 OP are said to be regular at P (or defined at P ). The local ring at P is indeed a local ring,
its maximal ideal is (the localization at MP ) of MP .

There are two equivalent ways to “obtain” OP :
• start from k[V ] and localize it at MP as above.
• or start from k[X], localize it at MP =

�

F 2 k[X] | F (P ) = 0
 

, and take the quotient of the
localized ring by the ideal IMP (I = I(V ) localized at MP ).
If you want to know more about local rings and localization, you can have a look at [AM69].

1.2. Projective varieties

1.2.1. Projective space. — The projective space is obtained from An by “adding points at
infinity”. More formally, this is done by considering the set of lines in An+1 passing through the
origin.

Definition 1.30. — The projective space of dimension n over k, denoted by Pn (or Pn(k)),
is the set of equivalence classes of (n + 1)-tuples (x0, . . . , xn) 2 An+1 r {(0, . . . , 0)}, under the
equivalence relation given by:

(x0, . . . , xn) ⇠ (y0, . . . , yn) () 9� 2 k
⇤
: xi = � · yi 8i.

An equivalence class {(�x0, . . . ,�xn), � 2 k
⇤} is called a point of Pn and is denoted by [x0 :

. . . : xn]. The xi’s are called homogeneous coordinates for P (by which one should understand
“a choice of homogeneous coordinates”).

Example 1.31. — For k = R, one can draw “pictures” of P1 and P2.

The Galois group Gk acts on Pn(k) by acting on homogeneous coordinates:
for all � 2 Gk and all P = [x0 : . . . : xn] 2 Pn, �(P ) := [�(x0) : . . . : �(xn)].

This action is well-defined and actually is an action. Among others, one needs to check that the
definition is independent of choice of homogeneous coordinates. This is done as follows:
�([�x0 : . . . : �xn]) = [�(�x0) : . . . : �(�xn)] = [�(�)�(x0) : . . . : �(�)�(xn)] = [�(x0) : . . . : �(xn)].

With this definition at hand, it is not difficult to check that one recovers the set of k-rational
points on Pn as the set of fixed points of this action:

Pn(k) =
�

P 2 Pn(k) : �(P ) = P 8� 2 Gk

 

.
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By construction of Pn, there is a canonical projection ⇡ : An+1 r {0} ⇣ Pn. Notice that
Pn(k) = ⇡(An+1(k)r {0}).
Remark 1.32. — Be warned that a point P = [x0 : . . . : xn] 2 Pn is an equivalence class.
For example, the condition that P is k-rational does not imply that all xi’s are in k (Example:
[
p
2 :

p
2 : 0] = [1 : 1 : 0] is a Q-rational point in P2, even if

p
2 /2 Q).

However, if P 2 Pn(k), there is an element � 2 k such that all �xi are elements of k. This is
equivalent to requiring that all the quotients x0/xi, . . . , xn/xi are elements of k (for any i with
xi 6= 0). For this reason, when P = [x0 : . . . : xn] 2 Pn, the field

k(P ) := k(x0/xi, . . . , xn/xi) for any i with xi 6= 0,

is called the minimal field of definition for P (over k). The extension k(P )/k is finite, and one
calls its degree the degree of P . (Check that these definitions make sense, see [NX09, Rk.
2.1.10, p. 36]). One can show that k(P ) is the subfield of k that is fixed by the subgroup
{� 2 Gk : �(P ) = P} of Gk (exercise).

As in the case of An, one define closed points of Pn over k to be sets of the form {�(P ),� 2 Gk}
for some point P 2 Pn. Here too, two points in a closed point over k are called conjugate (over
k).

Remark 1.33. — If k = Fq, closed points are finite subsets of Pn. Indeed, if P = [x0 : . . . :
xn] 2 Pn, then for each i 2 [0, n], there exists mi � 1 such that ai 2 Fqmi . Choose m to be
a common multiple of all mi’s (so that Fqm/Fq is a finite extension containing all the Fqmi as
subfields). Then P is a Fqm-rational point of Pn, and the corresponding closed point satisfies:

#{�(P ), � 2 GalFq} = # {�(P ), � 2 Gal(Fqm/Fq)}  #Gal(Fqm/Fq) = m.

In other words, the orbits of points in Pn under the action of the Galois group Gal(Fq/Fq) are
finite.

Example 1.34. — Again, assume that k = Fq and denote by Frq : k ! k the Frobenius
morphism, x 7! xq. One can check that

Pn(Fq) =
�

P 2 Pn(Fq) : Frq(P ) = P
 

.

1.2.2. Projective sets. — As in the case of An, we now define the subsets of Pn that we’re
interested in. We need to be careful about the fact that a point in Pn does not have a unique
(n+1)-tuple of homoegeneous coordinates (because a point in Pn is an equivalence class): we must
thus make sure that our definitions do not depend on the choice of homogeneous coordinates. For
example, if f 2 k[x0, . . . , xn] and P = [x0 : . . . : xn] 2 Pn, evaluating f at P does not necessarily
make sense, because f(x0, . . . , xn) might depend on the choice of xi’s we did. However, for a
certain class of polynomials, we can make things work pretty well.

Definition 1.35. — A polynomial F 2 k[y0, . . . , yn] = k[Y ] is said to be homogeneous of degree
d if and only if

8� 2 k, F (�y0, . . . ,�yn) = �d · F (y0, . . . , yn).

An ideal I of k[y0, . . . , yn] is homogeneous if it can be generated by homogeneous polynomials
(not necessarily all of the same degree).

Let F be a homogeneous polynomial and let P 2 Pn. It makes sense to ask whether F (P ) = 0
since the answer is independent of the choice of homogeneous coordinates for P . So, to each
homogeneous ideal, we can associate a subset of Pn by the rule:

Zh(I) := {P 2 Pn : F (P ) = 0 for all homogeneous F 2 I} .
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Definition 1.36. — A projective algebraic set is any set of the form Zh(I) for a homogeneous
ideal I. If V is any projective algebraic set, the homogeneous ideal of V , denoted by I(V ) is the
ideal of k[Y ] generated by

�

F 2 k[Y ] : F is homogeneous and F (P ) = 0 8P 2 V
 

.

By definition, the ideal I(V ) of an algebraic set is homogeneous. We say that such a V is
defined over k (denoted V/k) if its ideal I(V ) can be generated by homogeneous polynomials in
k[Y ]. If V is defined over k, then the set of k-rational points of V is the set V (k) := V \ Pn(k).

As usual, V (k) may also be described as V (k) = {P 2 V : P � = P 8� 2 Gk}.
Example 1.37. — A line in P2 is an algebraic set given by a single linear equation (homogeneous
of degree 1):

ax0 + bx1 + cx2 = 0,

with a, b, c 2 k, not all zero. If, say, c 6= 0, then such a line is defined over any field containing
a/c and b/c. More generally, a hyperplane in Pn is given by an equation

a0x0 + a1x1 + · · ·+ anxn = 0,

with ai 2 k not all zero.

Example 1.38. — Let V be the algebraic set in P2 given by the single equation

V : x2 + y2 = z2.

Then, for any field with char(k) 6= 2, the set V is isomorphic to P1, for example by the map

P1 ! V, [s : t] 7! ⇥

s2 � t2 : 2st : s2 + t2
⇤

.

(see [Sil09] for the precise definition of isomorphism). What does V (k) look like when k = R?
(and when k = F3?). More generally, a variety V ⇢ P2 defined by the vanishing of a single
homogeneous polynomial of degree 2 is called a conic. Over a field of characteristic 6= 2,
considering conics in the projective plane P2 allows for a much cleaner classification than that
of conics in the affine plane A2.

Example 1.39. — The projective space of dimension n is a projective algebraic set, the empty
set too: they are respectively the zero sets of I = (0) ⇢ k[Y ] and of I 0 = (y0, . . . , yn) ⇢ k[Y ].

If P 2 Pn is a point, the singleton {P} is a projective set: choose homogeneous coordinates
P = [a0 : . . . : an] for P , one of the ai is nonzero and up to renumbering we can assume
that a0 6= 0. Consider the ideal IP generated by the homogeneous n + 1 polynomials ci =
a0Xi � aiX0 2 k[X0, . . . , Xn]. Then it is easy to check that Z(IP ) = {P} and that the ideal IP
does not depend on the choice of homogeneous coordinates. In the first part, we were able to
classify all the affine algebraic subsets of A1. Can you do the same for P1?

The following proposition is the projective counterpart of the corresponding proposition about
affine sets:

Proposition 1.40. — We write k[Y ] for k[y0, . . . , yn].
(i) Let S be a nonempty set of homogeneous polynomials in k[Y ]. If I is the ideal generated by

S, then Zh(S) = Zh(I).
(ii) For any two sets S0 ⇢ S of homogeneous polynomials in k[Y ], we have Zh(S0) � Zh(S).
(iii) If S, S0 are two nonempty sets of homogeneous polynomials of k[Y ], then Zh(S [ S0) =

Zh(S) \ Zh(S0).
(iv) Any intersection of projective sets is a projective set.
(v) For any homogeneous polynomials F,G 2 k[Y ], we have Zh(F ·G) = Zh(F )[Zh(G). More

generally, if S, S0 are two nonempty sets of homogeneous polynomials in k[Y ] and if we let
S · S0 = {FG,F 2 S,G 2 S0}, then Zh(S · S0) = Zh(S) [ Zh(S0).

(vi) Any finite union of projective algebraic sets is a projective algebraic set.
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(vii) Zh(0) = Pn and Zh(y0, . . . , yn) = ?.

Proof. — Exercise (you can get inspiration from the affine case).

Proposition 1.41. — Let V be a projective algebraic set.
(i) There exists a finite set S0 ⇢ k[X], formed of homogeneous polynomials, such that V =

Zh(S0).
(ii) The projective zero set of I(V ) is V : Zh(I(V )) = V .
(iii) If V = Zh(I) for some homogeneous ideal I of k[X], then the ideal I(V ) of V is the radical

of I:
I(Zh(I)) = rad(I) :=

�

f 2 k[X] : 9r � 1, f r 2 I
 

.

(Note that the radical of a homogeneous ideal is again a homogeneous ideal.)

1.2.3. Projective varieties. —

Definition 1.42. — A projective variety is a projective algebraic set V whose homogeneous
ideal I(V ) is a prime ideal of k[Y ].

Which one of the examples above is a projective variety? Find a projective algebraic set that
is not projective variety (you can draw inspiration from the corresponding section about affine
sets).

Given any polynomial f 2 k[Y ] of degree d, one can decompose it as a sum of homogeneous
polynomials (of different degrees), called the homogeneous components of f . Precisely, one can
write f = f[0] + · · ·+ f[d] where each f[i] 2 k[Y ] is homogeneous of degree i 2 {0, . . . , d}.

We then note the following useful fact:

Lemma 1.43. — Let I be an ideal of k[Y ].
(i) I is homogeneous if and only if for all f 2 I, written as f = f[0] + · · ·+ f[d], all the f[i] are

in I.
(ii) Assume that I is a proper homogeneous ideal of k[Y ]. The ideal I is prime if and only if

for all homogeneous polynomials F,G 2 k[Y ], F ·G 2 I implies that F 2 I or G 2 I.
In other words, if I is homogeneous and proper, and if one wants to check that it is

prime, it suffices to check the “primality condition” on homogeneous ideals.
(iii) The radical of an homogeneous ideal is also homogeneous.

Proof. — We first prove part (i): let I be a homogeneous ideal, and let f =
Pd

i=0 f[i] 2 I. By
induction on the degree d of f , it suffices to prove that f[d] is in I. Now, since I is homogeneous,
we can pick a finite set of generators G1, . . . , Gs which are homogeneous of some degrees. We
can also write f =

P

ajGj for some aj 2 k[Y ] because f 2 I. Then, one has

f[d] =
X

j

(aj)[d�degGj ]Gj

and it becomes clear that f[d] is also an element of I.
Conversely, by Hilbert’s basis theorem, we know that any ideal I in k[Y ] can be generated by

finitely many polynomials g1, . . . , gs (which are not necessarily homogeneous). We can decompose
each of the gj into homogeneous components: gj =

Pdeg gj
k=0 (gj)[k] and, by the hypothesis on I,

we know that all the resulting (gj)[k] are (homogeneous) elements of I. Moreover, the (gj)[k]’s
certainly generate I since the gj ’s do. Therefore, I is a homogeneous ideal of k[Y ], by definition
(it can be generated by homogeneous polynomials).

Next, we prove part (ii) of the Lemma. The necessity is clear, so that we only give details for
the sufficiency of the condition. So let f, g be two polynomials in k[Y ] whose product is in I (we
need to prove that either f or g is itself in I). Assume that f /2 I and g /2 I and decompose f, g
into homogeneous components: f =

Pm
i=0 f[i] and g =

Pn
j=0 g[j]. Without loss of generality, we

may assume that f[m] and g[n] are not in I (since we may replace f by f �f[m] and g by g�g[n]).
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By part (i) of the lemma, we know that the product f[m] · g[n] = (f · g)[m+n] is in I. But since I
satisfies the “primality condition” for homogeneous polynomials, we conclude that either f[m] 2 I
or g[n] 2 I, which is a contradiction.

We leave the proof of part (iii) as an exercise for the reader.

1.2.4. Covering Pn by affine pieces. — The projective space Pn contains many copies of
An, which together cover the whole of Pn. This fact is useful to extend to projective varieties
the definitions of some properties of affine varieties, and to associate a projective variety to an
affine one (in a nontrivial way).

For each 0  i  n, consider the map
�i : An ,! Pn, (y1, . . . , yn) 7! [y1 : . . . : yi�1 : 1 : yi : . . . : yn].

Clearly, �i is injective and “defined over k” (in the sense that, for all P 2 An and all � 2 Gk,
�(�i(P )) = �i(�(P ))). We let Hi ⇢ Pn denote the hyperplane in Pn given by Xi = 0:

Hi = {P = [x0 : x1 : . . . : xn] 2 Pn : xi = 0} ,
and we let Ui denote the complement of Hi in Pn:

Ui = {P = [x0 : x1 : . . . : xn] 2 Pn : xi 6= 0} = Pn rHi.

Then, there is a natural bijection

��1
i : Ui ! An, [x0 : . . . : xi�1 : xi : xi+1 : . . . : xn] 7!

✓

x0
xi

, . . . ,
xi�1

xi
,
xi+1

xi
, . . . ,

xn
xi

◆

.

Note that this map is well-defined since, for any point in Pn with xi 6= 0, the ratios xj/xi are
well-defined (independent of a choice of homogeneous coordinates). For a given i, we identify An

with Ui ⇢ Pn via the map �i (usually, implicitly). Notice that the sets U0, U1, . . . , Un cover the
whole of Pn.

Remark 1.44. — It may be illuminating to draw pictures of P1(R) and P2(R) and of their
subsets Ui(R).

1.2.5. Dehomogenizing and homogenizing. — Let F 2 k[y0, . . . , yn] be a homogeneous
polynomial. For any k 2 [0, n], one defines the dehomogenisation of F in the k-th variable to be

Fdh(y0, . . . , yn) := F (y0, . . . , yk�1, 1, yk+1, . . . , yn),

a polynomial in n variables. Conversely, if k 2 [1, n] and if f 2 k[x1, . . . , xn] is a polynomial in
n variables, we define its homogenisation with respect to the k-th variable to be

fh(x0, . . . , xn) := xrk · f
✓

x0
xk

, . . . ,
xk�1

xk
,
xk+1

xk
, . . . ,

xn
xk

◆

,

where r is the smallest integer such that fh is a polynomial. These two processes are somehow
“inverse to each other”:

Proposition 1.45. — Let F,G be two homogeneous polynomials in k[x0, . . . , xn], and f, g be
two polynomials in k[x1, . . . , xn]. Then, for a given k 2 [0, n] or [1, n]:

(i) (F ·G)dh = Fdh ·Gdh and (F +G)dh = Fdh +Gdh.
(ii) (f · g)h = fh · gh and xtk · (f + g)h = x

dg
k · fh + x

df
k · g where df (resp. dg) is the degree of

f (resp. g) in the k-th variable and t = df + dg � df+g.
(iii) (fh)dh = f .
(iv) if F is non zero and r is the maximal power of xk dividing F , then xrk · (Fdh)

h = F .
(v) Let I be an ideal in k[x1, . . . , xn], and let Ih be the ideal of k[x0, . . . , xn] generated by the

homogenisation of polynomials in I (with respect to the 0-th variable say). Then I is prime
if and only if Ih is prime.

Proof. — Exercise (see §2.6 in [Ful89] for example).
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1.2.6. Affine varieties and projective varieties. — Let V be an affine algebraic subset of
An, and I = I(V ) ⇢ k[x1, . . . , xn] be its ideal. Let Ih ⇢ k[x0, . . . , xn] be the ideal generated by
the homogeneized polynomials fh with f 2 I (with respect to the k-th variable, say). One can
naturally define a projective algebraic variety from V :

Definition 1.46. — Let V ⇢ An be an affine algebraic set with ideal I(V ). Consider V as a
subset of Pn via the composition V ,! An ! Pn of the inclusion V ⇢ An with �k : An ! Pn.
The projective closure of V , denoted by V , is the projective algebraic set whose homogeneous
ideal I(V ) is generated by

n

fh(X), f 2 I(V )
o

.

Conversely, let W be a projective algebraic set with homogeneous ideal J := I(W ) ⇢
k[x0, . . . , xn]. Let Jdh be the ideal of k[x1, . . . , xn] generated by the Fdh’s when F runs through
homogeneous polynomials in J . We define V := Z(Jdh) ⇢ An. Then W \An (by which we mean
��1
k (W \Uk) for some chosen k) is an affine algebraic set with ideal I(W \An) ⇢ k[Y ] given by:

I(W \ An) = {f(Y1, . . . , Yk�1, 1, Yk+1, . . . , Yn) : f 2 I(W )} = Jdh.

Since the subsets Uk cover Pn, any projective variety W ⇢ Pn is covered by its subsets W \ U0,
W \U1, ..., W \Un and each of these sets is an affine algebraic variety in An via an appropriate
map �k (draw a picture).

Example 1.47. — Start with the affine variety V ⇢ A2 defined by

V : y2 = x3 + x, i.e. V : y2 � (x3 + x) = 0.

We put f(x, y) = y2 � (x3 + x). There are three embeddings �i : A2 ! P2.
(1) First we consider �2 : A2 ! P2 (sending (x, y) to [x : y : 1]). To see what W is, we need only

compute the homogeneization of f with respect to x2:

F := fh(x0, x1, x2) = xr2f

✓

x0
x2

,
x1
x2

◆

= xr2

✓

x21
x22

� x30
x32

� x0
x2

◆

= x21x2 � x30 � x0x
2
2,

because the smallest r such that F is a polynomial is r = 3. So W2 ⇢ P2 associated to V in
this embedding is given by

W2 =
�

[x0 : x1 : x2] 2 P2 : x21x2 � x30 � x0x
2
2 = 0

 

.

One recovers V by looking at W2 \ {x2 = 1} = W2 \ {x2 6= 0}, i.e. by substituting 1
for x2 in the equation of W2... which is exactly the process of dehomogeneizing F with
respect to its third variable! Now, how much does W2 differ from V ? Since we already
know that V = W2 \ {x2 6= 0}, the extra points we added in passing from V to W2

are exactly W2 \ {x2 = 0}. Substituting 0 for x2 in the equation of W2, we find that
W2 \ {x2 = 0} = {[0 : 1 : 0]} (this is called the point at infinity of V ).

(2) The same process repeats for �1. This time, �1 : A2 ! P2 is given by (x, y) 7! [x : 1 : y] and
the computation of the homogeneization of f in the second variable leads to:

W1 =
�

[x0 : x1 : x2] 2 P2 : x22x1 � x30 � x0x
2
1 = 0

 

.

Again, we recover V from W1 by substituting 1 for x1.
(3) you can work out the details for �0 : A2 ! P2, (x, y) 7! [1 : x : y].

Remark 1.48. — In this remark, we work things out for k = 0 (but of course, the same
computations would hold for any k). Let W = Zh(J) be an algebraic subset of Pn, it is easy to
show that

��1
0 (W ) = “W \ U0” = Z ({f(1, y1, . . . , yn), f 2 J homogeneous polynomial }) .

Note that if W \ U0 = ?, then the dehomogenized ideal on the right is the ideal (1) = k[X].
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Conversely, let V = Z(I) ⇢ An be an affine algebraic set. Then one can show:

�0(V ) = U0 \ Zh

⇣n

xdeg f0 f(x1/x0, . . . , xn/x0), f 2 I
o⌘

.

The following proposition shows that one can easily pass from affine varieties to projective
varieties, and vice versa:

Proposition 1.49. — (i) Let V ⇢ An be an affine algebraic subset. Then �k(V ) = V h \ Uk

and (V h)dh = V .
(ii) If V is irreducible (in An), then V h is irreducible (in Pn).
(iii) If W ⇢ Pn is a projective algebraic subset such that W \Hk ( W (i.e. W \Uk 6= ?), then

Wdh is a (strict) algebraic subset of An and (Wdh)
h = W .

Before starting the proof, notice that the condition in (iii) is actually quite natural: if
W \Uk = ?, then Wdh is empty too (since the ideal of ? ⇢ Pn is the ideal (y0, . . . , yn) ⇢ k[Y ], its
dehomogenization in the k-th variable is the ideal (x1, . . . , xk�1, 1, xk+1, . . . , xn) in k[X] which
is (1) = k[X]) and we cannot expect that ?h has anything to do with W ...

Proof. — (i) is a direct consequence of the proposition in the last subsection. Item (ii) comes
from the fact that, if I denotes the ideal of V , then a homogeneous polynomial F is an element
of Ih if and only if Fdh 2 I. This fact implies that Ih is prime as soon as I is prime.

For item (iii), we assume that V is irreducible. Then, obviously �k(Vh) ⇢ V and we need to
show that V ⇢ (Vdh)

h, i.e. that I(Vdh)
h ⇢ I(V ). This is done by using Hilbert’s Nullstellensatz:

let f 2 I(Vdh), then there exists N � 1 such that fN 2 I(V )dh. So xtk ·(fN )h is an element of I(V )

(for some t, see formulae above), where I(V ) is prime: thus xtk 2 I(V ) or (fN )h = (fh)N 2 I(V ).
Since we assumed that V is not contained in Hk, we have xk /2 I(V ). This proves that fh 2 I(V )
and concludes the proof. (see also [Har77, I.2.3]).

Remark 1.50. — In view of this proposition, each affine variety may be “completed” into a
unique projective variety. Notationally, since it is easier to deal with affine coordinates, we will
often say “let W be a projective variety” and write down some inhomogenous equations. The
understanding is that W is the projective closure of the indicated affine variety V . The points
of W r V are called the points at infinity of W .

Example 1.51. — Let V be the projective variety defined by the equation
V : Y 2

2 = Y 3
1 + 17.

This really means that V is the variety in P2 given by the homogeneous equation
X2

1X2 = X3
0 + 17X2

2 ,

the identification being Y1 = X0/X2 and Y2 = X1/X2. This variety has one point at infinity,
namely [0 : 1 : 0], obtained by setting X2 = 0.

Example 1.52. — Consider the two “vertical lines” in A2 defined by
`1 : x = �1, and `2 : x = 1

in the affine plane A2 with coordinates (x, y). More precisely, consider f1 = x+ 1 2 k[x, y] and
f2 = x � 1 2 k[x, y] and set `1 = Z(f1), `2 = Z(f2). Obviously, `1 and `2 are parallel lines and
they do not intersect (Exercise: check this using that Z(f1) \ Z(f2) = Z((f1, f2)) has the same
ideal as ? ⇢ A2).

Homogeneizing f1 and f2 with respect to a third variable z, we obtain
F1 = (f1)

h = x+ z 2 k[x, y, z], and F2 = (f2)
h = x� z 2 k[x, y, z].

Therefore the projective closures of `1 and `2 are the projective sets ⇢ P2 defined by `1 = Zh(F1)
and `2 = Zh(F2). As an exercise, you may show that `1 \ `2 is a singleton {P1} where
P1 = [0 : 1 : 0] 2 P2. Try to make a picture of the situation.
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Furthermore, notice that one can now dehomogenize the equations of `1 and `2 with respect
to the second variable y. One obtains two polynomials g1 = (F1)dh = x + z 2 k[x, z] and
g2 = (F2)dh = x�z 2 k[x, z]. Remark that P1 lands at the origin (0, 0) in the affine (x, z)-plane
A2, and that the lines `01 = Z(g1) and `02 = Z(g2) intersect perpendicularly at (0, 0). Make a
picture of the situation, explain and comment.

1.2.7. Further properties. — Many properties (so-called “local properties”) of a projective
variety W can be now defined in terms of one of the affine parts “W \ An” of W (by which we
mean one of the ��1

k (W \ Uk) ⇢ An).

Definition 1.53. — The function field of W , denoted by k(W ), is the function field of the
affine variety V = ��1

j (W \ Uj) for any choice of j 2 {0, . . . , n}. Note that, for different choices
of j, the different k(V ) are actually canonically isomorphic, so the definition makes sense.

See [NX09, Lemma 2.4.10] for a proof of the isomorphism: the main point is that W \Uj ⇢ W
is “big enough” so that knowing a rational function on W \ Uj is enough to recover it on the
whole of W .

We use this definition to recover the notion of dimension for projective varieties:

Definition 1.54. — Let W be a projective variety and choose one of the embeddings �j : An ⇢
Pn such that V := ��1

j (W \ Uj) 6= ?. The dimension of W is the dimension of V ⇢ An as an
affine algebraic variety.

Of course, one needs to check that this definition does not depend on the choice of j, but this
follows from the fact that the dimension of V is the transcendence degree of its function field
k(V ) over k, and the latter does not depend on j (up to isomorphism).

Remark 1.55. — Let us give an alternative description of the function field of Pn: it may also be
described as the subfield of k(An) = k(X0, . . . , Xn) consisting of rational functions f/g for which
f and g are homogeneous polynomials of the same degree. Indeed, such an expression f/g gives a
well-defined function on Pn at all points P where g(P ) 6= 0 (at the points P where g(P ) = 0, we
say that f/g has a pole). Note that all the fractions f/g do not give well-defined functions on Pn

(for instance, consider a homogeneous polynomial f of degree d > 0, then P 7! (f/1)(P ) = f(P )
is not well-defined because its value depends on the choice of homogeneous coordinates of P ).

Remark 1.56. — Similarly, the function field of a projective variety V is the field of rational
functions F = f/g such that f and g are homogeneous of the same degree, g /2 I(V ). Two such
functions f1/g1 and f2/g2 are identified if f1g2�f2g1 2 I(V ). In other words, if V is a projective
variety and its (homogeneous) ideal is I(V ) then define R := k[x0, . . . , xn]/I(V ), this ring R is
an integral domain and we can consider its quotient field L. As in the case of Pn, the field L
contains elements which we can not consider as “rational functions” on V (because it does not
make sense to evaluate them at a point P ). To overcome this difficulty, we define the field of
rational functions on V to be:

k(V ) = {F 2 L : 9f, g 6= 0 in R homogeneous of the same degree such that F = f/g} .
In general, k(V ) is a strict subfield of L. Note that k(V ) always contains k (the field of ”constant
functions”, obtained as the field of f/g where both f and g 6= 0 are homogeneous of degree 0).

Remark 1.57. — Let V ⇢ Pn be a projective variety. Relabelling the coordinates if necessary,
we can assume that V \ U0 6= ? (i.e. V is not contained in the hyperplane H0 = {x0 = 0}).
Then the field k(V ) of rational functions on V is generated over k by the (restrictions to V ) of
the functions x1/x0, . . . , xn/x0.

Note the abuse of notation here: we denote by the same symbol xi both the element of
k[x0, . . . , xn] and its “restriction to V ” (that is, the image of xi in k[V ] = k[x0, . . . , xn]/I(V )).
The proof of the above statement is not very difficult.
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Definition 1.58. — The local ring of V at P , denoted by OP , is the local ring of V \An at P
(we choose an embedding An ,! Pn such that P 2 V \An). A function F 2 k(V ) in the function
field of V is regular at P (or defined at P ) if it is in the local ring OP (of V \ An). In which
case, it makes sense to evaluate F at P .

You should check that all these definition actually do not depend on the choice of An ,! Pn.
One can give a description of the local rings OP along the lines of the previous remark.

1.3. Exercises for Chapter 1

Exercise 1. — For p = 2, 3, 5, 7, 11, 13 and 17, find the smallest positive integer which generates
F⇤
p (a primitive root modp). How many of the integers 1, 2, . . . , p� 1 generate F⇤

p?

Exercise 2. — How many elements are there in the smallest field extension of F5 which contains
all the roots of x2+x+1? of x3+x+1? Write down explicitely the addition and multiplication
tables of these fields.

Exercise 3. — For each 1  d  6, find the number of irreducible polynomials in one variable
of degree d over F2. Make a list of them.

Exercise 4. — Let k be a perfect field (of characteristic 6= 2) and a, b 2 k be two parameters.
Let V1 and V2 be the following projective algebraic sets

V1 : Y
2Z + aXY Z + bY Z2 = X3 V2 : Y

2Z = X3 + aXZ2 + bZ3.

Find conditions on a, b that ensure that V1 and V2 are varieties. What further conditions on a, b
imply that V1 and V2 are nonsingular?

Exercise 5. — Let J = (xy, yz, yz) in k[x, y, z]. Find V = Z(J) in A3. Is it a variety? Is it
true that J = I(Z(J))? Prove that J cannot be generated by 2 elements.

Let J 0 = (xy, (x� y)z) ⇢ k[x, y, z]. Find Z(J 0) and compute the radical rad(J 0).

Exercise 6. — Let J = (x2 + y2 � 1, y � 1) ⇢ k[x, y]. Find an element f 2 I(Z(J))r J .

Exercise 7. — Let J = (x2 + y2 + z2, xy + xz + yz) ⇢ k[x, y, z]. Identify Z(J) and compute
I(V (J)).

Exercise 8. — Let f = x2 � y2 and g = x3 + xy2 � y3 � x2y� x+ y in k[x, y] (assume that the
characteristic of k is 6= 2, 3). Let W = Z(f, g) ⇢ A2. Is W an algebraic variety? If not, give a
list of affine algebraic varieties V such that V ⇢ W . (i.e. give a list of factors of the ideal (f, g)).

Exercise 9. — For any field k, prove that an algebraic set in A1 is either finite or the whole of
A1. Identify the algebraic varieties among the algebraic sets.

Exercise 10. — Let k be a field.
(a) Let f, g 2 k[x, y] be irreducible polynomials, not multiples of one another. Prove that

Z(f, g) ⇢ A2 is finite.
Hint: write K = k(x), prove first that f, g have no common factor in the PID K[y].

Deduce that there exist p, q 2 K[y] such that pf + qg = 1. By clearing denominators in p, q,
show that there exist h 2 k[x] and a, b 2 k[x, y] such that h = af + bg. Conclude that there
are only finitely many possible values of the x-coordinate of points in Z(f, g).

(b) Prove that an algebraic set V ⇢ A2 is a finite union of points and curves. Identify the
algebraic varieties among those.

Exercise 11. — In this exercise let K = k be the algebraic closure of any field.
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(a) Let f 2 K[x1, . . . , xn] be a nonconstant polynomial (that is k 2 K r k). Prove that Z(f) is
a strict subset of An.

Hint: suppose that f involves xn and write f =
P

i fix
i
n where fi 2 K[x1, . . . , xn�1], use

induction on n to conclude.
(b) Let f be as above, suppose that f has degree m in xn and let fm(x1, . . . , xn�1) · xmn be its

leading term (in xn). Show that, wherever fm doesn’t vanish, there is a finite nonempty
set of points of Z(f) ⇢ An corresponding to every value of (x1, . . . , xn�1). Deduce that, in
particular, Z(f) is infinite for n � 2.

(c) Putting together the results of the last question and of the previous exercise, show that
distinct irreducible polynomials f, g 2 K[x, y] define distinct algebraic sets Z(f), Z(g) in A2.

(d) Can you generalize the results of the last question to An?


