CHAPTER 3

ZETA FUNCTIONS

In this chapter, we consider a smooth projective curve C' defined over a finite field k = .
Assume that C'is given as a projective algebraic subset of P" (i.e. C' C P™).

3.1. Points and divisors

3.1.1. Places/closed points. — Recall that there is an action of G = Gal(k/k) on C(k),

and that a point P € C(k) is called k-rational if o(P) = P for all o € G. In particular, given
an integer m > 1, we can define

C(F4m) = the set of Fym-rational points on C' = {P € C(F,) :o(P)=P, Vo € Gal(E/]qu)} .

Lemma 3.1. — For any integer m > 1, the set of Fym-rational points on C' is finite. In other
words, C' has only finitely many Fyn-rational points.

Proof. — By construction, C' is embedded in P" for some n. Thus C(Fgm) C P"(Fm) and it
suffices to prove that P" has only finitely many Fgm-rational points. Which can be done “by
hand”: more precisely, we note that

G

#O(Fym) < #P"(Fym) = (¢") — 1

A more precise bound can be obtained by noticing that there exists a surjective algebraic map
C — Pl grouping F m-rational points according to their image by this map, one can show the
existence of a yo > 0 (depending only on C') such that

Ym 21y #C(Fm) <0 #PUFan) <q0- (" +1).
This latter bound can be used to prove that ((C/Fy, s) converges for Re(s) > 1 (see below). [
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Since the Galois group Gal(F,/F,) is generated (topologically) by the frobenius Fr, :  +— 29, it
can be proved that o

C(Fgm) = {P € C(F,) : Fr'(P) = P}.
It will be sometimes useful to count rational points by grouping them as follows:

Definition 3.2. — For a point P € C(k), the set of its conjugate under the action of Gy, that
is {o(P),0 € Gy}, is called a place of C' (over k), or a closed point over k (or a k-closed point).
The place of C' associated to a point P will be denoted by vp.

Two points in a place of C over k are called conjugate over k, they give rise to the same place.
The set of places of C over k is denoted by |C/.

By construction, a place of C over k is a subset of C'(k) (which is why we avoid calling a place
a closed point: a closed point is not a point, it is a Galois orbits of points). Notice that a point
P € C(k) is k-rational (i.e. P has k-rational coordinates) if and only if the corresponding place
has only one element, in which case we identify P and vp = {P}.
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Lemma 3.3. — Let v be a place of C. Then v is a finite subset of C. We can thus define the
degree of a place v of C over k to be its cardinality, denoted by degwv.

Proof. — Let P =[ag : ... : ay) € C(Fy) be a point, and v = vp be the corresponding place.
For all i = 1,...,n, there exists m; € Z>; such that a; € Fgm;. Now put m = [[m;. Then P is
a [Fym-rational point (since all its coordinates are elements of Fgm). This implies that

#op = # {o(P),0 € Gal(Fy/F,)} < #{o(P),0 € Gal(Fgm /Fy)} < # Gal(Fgm /Fy) = m.
Since any place of C' is of the form vp for some P € C(F,), we are done. ]

A place v of C over F, has degree 1 if and only if it contains only one point P, which has to
be F4-rational. Such a place is called a rational place:

#{v e |C|:degv =1} = #C(F,).

Remark 3.4. — For a point P € C(F,), say P =[ag : ... : ap] with ag # 0, the definition field
of P over Fy, denoted by k(P), is defined by

a1 (079
k(P):=F, (ao,..., ao) .

It is a finite extension of Fy and one can check that this extension is well-defined (independent
of the choice of homogeneous coordinates for P, and of the index i such that a; # 0 (here we
had i = 0)). If P and Q are two conjugate points in C(F,), say Q = o(P) for some o € Gy, then
a;(P) # 0 if and only if a;(Q) # 0, and one can show that k(P) = k(Q). We can thus define the
definition field of a place v to be k(P) for any P € v.

The degree of v is then the degree of the extension k(P)/F,. Exercise: check the assertions in
this remark.

Note also that the set |C| of all F,-places of C' is the set of Galois conjugacy classes of points
in C(F,). In a sense, |C| is C(F,) modulo the Galois action. We prove two things:

Lemma 3.5. — For any integer d > 1, there are only finitely many places of C' of degree d.

Proof. — Left as an (easy) exercise. O
Lemma 3.6. — For any integer m > 1, one has
CFm)= || v
ve|C| s.t.
degv|m

This leads to

(2) #HC(Fgm) = d-#{ve|C|:degv=d}.
dlm
Proof. — The second formula is a direct consequence of the first one (just take cardinality on

both sides and group places according to their degrees). Now let P € C(Fym) be a point and vp
be the associated place (i.e. vp is the orbit of P under the action of GFq). Then vp has degree
(i.e. cardinality) the degree of the extension Fy(P)/F,, which is a subextension of Fym /F,. So
that, by transitivity of degrees in finite extensions, degvp divides m. To any point in C(Fgm),
we've just associated a place v of degree degv dividing m with P € v. That proves the “C”
inclusion, the reverse inclusion is obvious. O

You have already seen the relation (2) under a slightly different form: where?
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Example 3.7 — Let k = Fy and consider the affine smooth curve C/Fq defined by
CcA?: y+y=23+1
By direct check, one can see that C'(Fz) = {(1,0), (1,1)} so that C has 2 Fa-rational points. Recall

that Fy is generated (as a field) over Fy by a3 satisfying a?+a+1 =0, i.e. F4 = {0,1, a0, a+1}.
Using the addition and multiplication tables in F4 and a case-by-case check, one computes that

C(F4) ={(1,0),(1,1),(0,), (0, + 1), (e, 0), (e, 1), (« + 1,0), (v + 1, 1) }.

As an example, we have (a+1)% = (a+1)?(a+1) = (?+1)(-a?) =a® = d?a=—a?—a=1.
Thus, we see that C' has 8 rational points over Fy.

Using the relation in the previous lemma, we deduce that C' has 2 places of degree 1 (which
correspond bijectively to Fa-rational points on C') and (8 — 2)/2 = 3 places of degree 2. The 3
places of degree 2 are

v ={(0,), (0,0 + 1)}, v2={(c,0),(x+1,0)}, wv3={(a,1),(+1,1)}.

Indeed, elements of Fy are fixed by the action of Gal(F4/F2) and «, o + 1 are permuted under
this action.

3.1.2. Divisors. — One last thing we need before introducing the zeta function of a curve is
the notion of divisors. The divisor group of C, denoted by Div(C), is the free abelian group
generated by the places of C. More explicitely, a divisor D € Div(C) is a formal sum

D= Z Ny - v, where n, € Z and all but finitely many n, are 0.
ve|C|
And divisors are added “component-wise”. The degree of a divisor D is then defined to be
deg D =) n,-degv. Clearly, deg : Div(C') — Z is a homomorphism of groups. The subgroup
of divisors of degree 0 on C, denoted by Div’(C), is the kernel of deg:

Div’(C) = {D = va -v € Div(C) : degv = vadegv = 0}.

A divisor D = Y n, - v is effective if all coefficients n, € Z are nonnegative: n, > 0 for all
v € |C]. If D is effective, one writes that D > 0.

For any integer d > 1, let A4(C) be the cardinality of the set of divisors D € Div(C') such
that D > 0 and deg(D) = d.

Lemma 3.8. — A4(C) is finite for all d > 1.

Proof. — Write that D = ), n, - v where n, > 0 are integers. By definition of deg(D) =
> nydegw, it suffices to show that there exists only finitely many places of C' of a given degree
d. But we have already proved this. O

3.2. Riemann zeta function

We briefly recall a few facts about the Riemann zeta function. The Riemann zeta function
s+ ((s) is first defined in the complex half-plane Re(s) > 1 by a converging Dirichlet series (or

an Euler product):
= Lo(i-t)
- —~ ns ps )
= P

the equality between the series on the left and the product on the right (where p ranges over
the set of prime numbers) is an analytic version of the unique decomposition of an integer as a
product of primes.
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The Gamma function is defined for all s with Re(s) > 0 by

o0
['(s) = / e it de
0

and it is then extended to the whole complex plane by the relation I'(s + 1) = s - I'(s).

Theorem 3.9 (Riemann). — The Riemann zeta function has the following analytic properties:

Analytic continuation : The zeta function s — ((s) can be extended to a meromorphic
function on the whole complex plane, with a unique simple pole at s = 1 (with residue 1).
Functional equation : Let £(s) := m%/2 . T'(s/2) - ((s) be the completed zeta function. This

function satisfies the functional equation

£(1—5)=¢(s).
Conjecture: Riemann Hypothesis : The zeroes of £(s) have real part Re(s) =1/2.

Note that ((s) can not vanish on the half-plane Re(s) > 1 (because of the convergence of
the Euler product). Given the functional equation satisfied by ¢, and given that the Gamma
function has simple poles at all s = —2n (n > 1 integer), the zeta function has trivial zeroes at
these points (those are simple poles, they “compensate” the poles of T'(s) so that £(s) is regular
at these points). By the functional equation, the trivial zeroes are the only zeroes of ((s) in the
half-plane Re(s) < 0.

As for the zeroes of ((s) in the strip 0 < Re(s) < 1 (the so-called critical strip), one sees that
they are the same as those of £(s), and that they are symmetrically distributed with respect to
the critical line Re(s) = 1/2.

((s) is a major tool to study the repartition of the prime numbers. For example, the Prime
Number Theorem is a consequence of the fact that ((s) does not vanish on the line Re(s) = 1
(it says that the number 7(z) of primes < z is ~ z/logx when z — 00). Inspired by the succes
of this tool, people have tried to associate zeta functions to other objects than Z. We will define
a zeta function for curves over finite fields, and then describe the analogy with ((s), show that
it satisfies a functional equation and that it can be extended to C as a meromorphic function.

3.3. Zeta function of curves over finite fields

3.3.1. Counting rational points and zeta-functions. — Troughout this section, C is a
smooth projective curve defined over a finite field k = F,, and we denote by K = F,(C) its
rational function field.

Definition 3.10. — The zeta-function of C'/F, is defined as the formal series in s € C:

(CfFyys) = 3~

gdeeDs € Zllg™"]];
D>0

where the sum runs over the set of all effective divisors D on C.

One also defines another version of the zeta function, in terms of the formal variable T'= ¢—°

and denoted by Z(C/F,, T):
Z(C[Fy, T) = TP ¢ Z[[T]).
D>0
In our previous notations, this can be rewritten as
Z(C/Fy, T) = 3 Au(C) - T € Z[T7.
d>1

Lemma 3.11. — The Dirichlet series defining ((C/Fy, s) converges on the half-plane Re(s) > 1
in C. In other words, Z(C/F,,T) converges on the open disc {T € C:|T| < g '}.
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Proof. — This follows from the estimate mentioned above: there exists a constant yo > 0
(depending only on C') such that

Vm>1; #COFgm) <o #PY(Fem) <o - (@™ +1).

Also note that |T| = |¢~%| = ¢~ Re®). =
3.3.2. Analogy with the Riemann zeta function. — Let us prove the following two
relations

Proposition 3.12. — One has
-1 _
2(C/F 1) = T] (1-1%%") o ¢(C/Fps)= T] (1-a =)
velC| ve|C]|

where the product is over all places v of C over Fy.

Note that ¢4°8v is the cardinality of the field of definition of v (i.e. the cardinality of the
residue field of the corresponding valuation on K = Fy(C)).

Proof. — Let us work within the ring of formal power series in 7. Since every effective divisor
is a (finite) Z-linear combination of places (with nonnegative coefficients), one has

C/Fq,T Z mdeg D _ Z TZ"’U degv __ H Z Ty degv

D20 (nw)velo) ve|C] \nw20

Now use the known formula for the sum of the geometric series

Z (Tdegv)nv — - ;degv _ <1 _ Tdegv)_

Ny >0

Proposition 3.13. — One has

Tm
Z(C/Fy,T) =exp | Y #C(Fgm)- —
m>1
Proof. — Expand log Z(C/F,,T) as a power series:
Tdegv m Tm: degv
log Z(C/Fq, T) = > —log(1 —T9%") =" Z => Z
v v m=1 v m=1
This double sum can be rearranged into
© m-degv &
B ol ED DR R
v m=1 n=1 v,m s.t

where, for all n > 1, one has

1 1  H#CO(Fgn)
Z — = Z degv—inq.

m n
v,m s.t. ve|C| s.t.
mdegv=n degvin

The last equality follows from a proposition above (relation between places and rational points).
O
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3.3.3. Examples “by hand”. — Let us start by computing the zeta function of P!.

Exzample 3.14. — Let ag be the number of places of P! of degree d (for all d > 1). So
ar = #A(F,) +1=¢+1 and for d > 1, a4 is the number of monic irreducible polynomials in
Fq[X] of degree d. We have seen that

HP (Fymn) =D d-ag=q" +1.
d

Therefore, a straightforward computation leads to

tog [ TTO -7 | = 3 S dag? - = 30 T Fdgm

d>1 m>1 dim m>1

And this easily implies that

1
2@ /50D = a0 gy

Or, in terms of the variable s:

1

C(P'/F,, s) = — —.
o) = T =)

We see that the function s — ((P!/Fy, s) is 2mi/log g-periodic, that it has only poles at s = 0

and s = 1 (modulo the period), and that it satisfies a functional equation

C(1—s)=4q""¢(s).
Note also that the different expressions obtained for Z(P!/F,, T) lead to
1
1. — == 4/
vd > 1,#{v e P :degv=1d} = dzd,u(e)q €
e
= #{P € F,[X] : P monic irreducible of degree d},

and #Pl(IFq) = ¢ + 1 is the number of places of degree 1.

Example 3.15. — Suppose that k = F3 and consider the projective smooth curve C', defined
over F3, whose affine equation is

C:y?=a°—u.
Then it follows from a special case of a computation of Koblitz (see [Kob75, pp. 204 — 208],
article on the website of the course) that one has
14377
C (1-T)(1-3T)
The article [Kob75]| uses elementary techniques to arrive at this result (but the proof is not the
simplest...).

Z(C/F3,T)

Example 3.16. — For p # 3, consider the projective curve C/F,, defined by
C:3+y+22=0.
If p = 2 mod 3, one obtains

14 pT?
Z(C/F,,T) = .
D = Ty )
If p =1 mod 3, one can also obtain an expression, but it is more involved:
1 —aT + pT?
7 C F ,T = ]
D = om0 )

where a € R has an explicit description (and satisfies |a| < 2,/p). The first case is easier to deal
with.
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3.3.4. Behaviour under finite extension. — Again, let us assume that C is a smooth
projective curve defined over F,. Then C is also defined over Fym, for any finite extension
Fgm /Fq of Fy. One can relate the zeta functions Z(C/F,,T) and Z(C/Fgm,T) as follows:

Proposition 3.17. — Let C be as above. For any m > 1:
Z(C[Fgm, T™) = [] 2Z(C/F,.CT),
¢m=1
where the product runs over all ¢ € C such that (™ = 1.

Proof. — See the first homework assignment. O






