CHAPTER 3

ZETA FUNCTIONS

In this chapter, we consider a smooth projective curve C defined over a finite field $k = \mathbb{F}_q$. Assume that C is given as a projective algebraic subset of \mathbb{P}^n (*i.e.* $C \subset \mathbb{P}^n$).

3.1. Points and divisors

3.1.1. Places/closed points. — Recall that there is an action of $G_k = \operatorname{Gal}(\overline{k}/k)$ on $C(\overline{k})$, and that a point $P \in C(\overline{k})$ is called k-rational if $\sigma(P) = P$ for all $\sigma \in G_k$. In particular, given an integer $m \geq 1$, we can define

 $C(\mathbb{F}_{q^m}) = \text{ the set of } \mathbb{F}_{q^m} \text{-rational points on } C = \left\{ P \in C(\overline{\mathbb{F}_q}) : \sigma(P) = P, \ \forall \sigma \in \operatorname{Gal}(\overline{\mathbb{F}_q}/\mathbb{F}_{q^m}) \right\}.$

Lemma 3.1. — For any integer $m \ge 1$, the set of \mathbb{F}_{q^m} -rational points on C is finite. In other words, C has only finitely many \mathbb{F}_{q^m} -rational points.

Proof. — By construction, C is embedded in \mathbb{P}^n for some n. Thus $C(\mathbb{F}_{q^m}) \subset \mathbb{P}^n(\mathbb{F}_{q^m})$ and it suffices to prove that \mathbb{P}^n has only finitely many \mathbb{F}_{q^m} -rational points. Which can be done "by hand": more precisely, we note that

$$#C(\mathbb{F}_{q^m}) \le #\mathbb{P}^n(\mathbb{F}_{q^m}) = \frac{(q^m)^{n+1} - 1}{(q^m) - 1} = (q^m)^n + (q^m)^{n-1} + \dots + (q^m) + 1.$$

A more precise bound can be obtained by noticing that there exists a surjective algebraic map $C \to \mathbb{P}^1$: grouping \mathbb{F}_{q^m} -rational points according to their image by this map, one can show the existence of a $\gamma_C > 0$ (depending only on C) such that

$$\forall m \ge 1; \quad \#C(\mathbb{F}_{q^m}) \le \gamma_C \cdot \#\mathbb{P}^1(\mathbb{F}_{q^m}) \le \gamma_C \cdot (q^m + 1).$$

This latter bound can be used to prove that $\zeta(C/\mathbb{F}_q, s)$ converges for $\operatorname{Re}(s) > 1$ (see below). \Box

Since the Galois group $\operatorname{Gal}(\overline{\mathbb{F}_q}/\mathbb{F}_q)$ is generated (topologically) by the frobenius $\operatorname{Fr}_q : x \mapsto x^q$, it can be proved that

$$C(\mathbb{F}_{q^m}) = \left\{ P \in C(\overline{\mathbb{F}_q}) : \operatorname{Fr}_q^m(P) = P \right\}.$$

It will be sometimes useful to count rational points by grouping them as follows:

Definition 3.2. — For a point $P \in C(\overline{k})$, the set of its conjugate under the action of G_k , that is $\{\sigma(P), \sigma \in G_k\}$, is called a place of C (over k), or a closed point over k (or a k-closed point). The place of C associated to a point P will be denoted by v_P .

Two points in a place of C over k are called conjugate over k, they give rise to the same place. The set of places of C over k is denoted by |C|.

By construction, a place of C over k is a subset of $C(\overline{k})$ (which is why we avoid calling a place a closed point: a closed point is not a point, it is a Galois orbits of points). Notice that a point $P \in C(\overline{k})$ is k-rational (*i.e.* P has k-rational coordinates) if and only if the corresponding place has only one element, in which case we identify P and $v_P = \{P\}$. **Lemma 3.3**. — Let v be a place of C. Then v is a finite subset of C. We can thus define the degree of a place v of C over k to be its cardinality, denoted by deg v.

Proof. — Let $P = [a_0 : \ldots : a_n] \in C(\overline{\mathbb{F}_q})$ be a point, and $v = v_P$ be the corresponding place. For all $i = 1, \ldots, n$, there exists $m_i \in \mathbb{Z}_{\geq 1}$ such that $a_i \in \mathbb{F}_{q^{m_i}}$. Now put $m = \prod m_i$. Then P is a \mathbb{F}_{q^m} -rational point (since all its coordinates are elements of \mathbb{F}_{q^m}). This implies that

$$\#v_P = \#\left\{\sigma(P), \sigma \in \operatorname{Gal}(\overline{\mathbb{F}_q}/\mathbb{F}_q)\right\} \le \#\left\{\sigma(P), \sigma \in \operatorname{Gal}(\mathbb{F}_{q^m}/\mathbb{F}_q)\right\} \le \#\operatorname{Gal}(\mathbb{F}_{q^m}/\mathbb{F}_q) = m.$$

Since any place of C is of the form v_P for some $P \in C(\overline{\mathbb{F}_q})$, we are done.

A place v of C over \mathbb{F}_q has degree 1 if and only if it contains only one point P, which has to be \mathbb{F}_q -rational. Such a place is called a rational place:

$$\# \{ v \in |C| : \deg v = 1 \} = \# C(\mathbb{F}_q).$$

Remark 3.4. — For a point $P \in C(\overline{\mathbb{F}_q})$, say $P = [a_0 : \ldots : a_n]$ with $a_0 \neq 0$, the definition field of P over \mathbb{F}_q , denoted by k(P), is defined by

$$k(P) := \mathbb{F}_q\left(\frac{a_1}{a_0}, \dots, \frac{a_n}{a_0}\right).$$

It is a finite extension of \mathbb{F}_q and one can check that this extension is well-defined (independent of the choice of homogeneous coordinates for P, and of the index i such that $a_i \neq 0$ (here we had i = 0)). If P and Q are two conjugate points in $C(\overline{\mathbb{F}_q})$, say $Q = \sigma(P)$ for some $\sigma \in G_k$, then $a_i(P) \neq 0$ if and only if $a_i(Q) \neq 0$, and one can show that k(P) = k(Q). We can thus define the definition field of a place v to be k(P) for any $P \in v$.

The degree of v is then the degree of the extension $k(P)/\mathbb{F}_q$. Exercise: check the assertions in this remark.

Note also that the set |C| of all \mathbb{F}_q -places of C is the set of Galois conjugacy classes of points in $C(\overline{\mathbb{F}_q})$. In a sense, |C| is $C(\overline{\mathbb{F}_q})$ modulo the Galois action. We prove two things:

Lemma 3.5. — For any integer $d \ge 1$, there are only finitely many places of C of degree d.

Proof. — Left as an (easy) exercise.

Lemma 3.6. — For any integer $m \ge 1$, one has

$$C(\mathbb{F}_{q^m}) = \bigsqcup_{\substack{v \in |C| \ s.t. \\ \deg v \mid m}} v.$$

This leads to

(2)
$$#C(\mathbb{F}_{q^m}) = \sum_{d|m} d \cdot \# \{ v \in |C| : \deg v = d \}.$$

Proof. — The second formula is a direct consequence of the first one (just take cardinality on both sides and group places according to their degrees). Now let $P \in C(\mathbb{F}_{q^m})$ be a point and v_P be the associated place (*i.e.* v_P is the orbit of P under the action of $G_{\mathbb{F}_q}$). Then v_P has degree (*i.e.* cardinality) the degree of the extension $\mathbb{F}_q(P)/\mathbb{F}_q$, which is a subextension of $\mathbb{F}_{q^m}/\mathbb{F}_q$. So that, by transitivity of degrees in finite extensions, deg v_P divides m. To any point in $C(\mathbb{F}_{q^m})$, we've just associated a place v of degree deg v dividing m with $P \in v$. That proves the " \subset " inclusion, the reverse inclusion is obvious.

You have already seen the relation (2) under a slightly different form: where?

Example 3.7. — Let $k = \mathbb{F}_2$ and consider the affine smooth curve C/\mathbb{F}_2 defined by

$$C \subset \mathbb{A}^2: \quad y^2 + y = x^3 + 1.$$

By direct check, one can see that $C(\mathbb{F}_2) = \{(1,0), (1,1)\}$ so that C has $2\mathbb{F}_2$ -rational points. Recall that \mathbb{F}_4 is generated (as a field) over \mathbb{F}_2 by $\alpha \overline{\mathbb{F}_2}$ satisfying $\alpha^2 + \alpha + 1 = 0$, *i.e.* $\mathbb{F}_4 = \{0, 1, \alpha, \alpha + 1\}$. Using the addition and multiplication tables in \mathbb{F}_4 and a case-by-case check, one computes that

$$C(\mathbb{F}_4) = \{(1,0), (1,1), (0,\alpha), (0,\alpha+1), (\alpha,0), (\alpha,1), (\alpha+1,0), (\alpha+1,1)\}.$$

As an example, we have $(\alpha + 1)^3 = (\alpha + 1)^2(\alpha + 1) = (\alpha^2 + 1)(-\alpha^2) = \alpha^3 = \alpha^2 \alpha = -\alpha^2 - \alpha = 1$. Thus, we see that C has 8 rational points over \mathbb{F}_4 .

Using the relation in the previous lemma, we deduce that C has 2 places of degree 1 (which correspond bijectively to \mathbb{F}_2 -rational points on C) and (8-2)/2 = 3 places of degree 2. The 3 places of degree 2 are

$$v_1 = \{(0, \alpha), (0, \alpha + 1)\}, \quad v_2 = \{(\alpha, 0), (\alpha + 1, 0)\}, \quad v_3 = \{(\alpha, 1), (\alpha + 1, 1)\}.$$

Indeed, elements of \mathbb{F}_2 are fixed by the action of $\operatorname{Gal}(\mathbb{F}_4/\mathbb{F}_2)$ and α , $\alpha + 1$ are permuted under this action.

3.1.2. Divisors. — One last thing we need before introducing the zeta function of a curve is the notion of divisors. The divisor group of C, denoted by Div(C), is the free abelian group generated by the places of C. More explicitly, a divisor $D \in \text{Div}(C)$ is a formal sum

$$D = \sum_{v \in |C|} n_v \cdot v$$
, where $n_v \in \mathbb{Z}$ and all but finitely many n_v are 0.

And divisors are added "component-wise". The degree of a divisor D is then defined to be deg $D = \sum_{v} n_v \cdot \deg v$. Clearly, deg : Div $(C) \to \mathbb{Z}$ is a homomorphism of groups. The subgroup of divisors of degree 0 on C, denoted by Div⁰(C), is the kernel of deg:

$$\operatorname{Div}^{0}(C) = \left\{ D = \sum_{v} n_{v} \cdot v \in \operatorname{Div}(C) : \deg v = \sum_{v} n_{v} \deg v = 0 \right\}.$$

A divisor $D = \sum n_v \cdot v$ is effective if all coefficients $n_v \in \mathbb{Z}$ are nonnegative: $n_v \ge 0$ for all $v \in |C|$. If D is effective, one writes that $D \ge 0$.

For any integer $d \ge 1$, let $A_d(C)$ be the cardinality of the set of divisors $D \in \text{Div}(C)$ such that $D \ge 0$ and deg(D) = d.

Lemma 3.8. — $A_d(C)$ is finite for all $d \ge 1$.

Proof. — Write that $D = \sum_{v} n_v \cdot v$ where $n_v \geq 0$ are integers. By definition of $\deg(D) = \sum n_v \deg v$, it suffices to show that there exists only finitely many places of C of a given degree d. But we have already proved this.

3.2. Riemann zeta function

We briefly recall a few facts about the Riemann zeta function. The Riemann zeta function $s \mapsto \zeta(s)$ is first defined in the complex half-plane $\operatorname{Re}(s) > 1$ by a converging Dirichlet series (or an Euler product):

$$\zeta(s) = \sum_{n=1}^{\infty} \frac{1}{n^s} = \prod_p \left(1 - \frac{1}{p^s}\right)^{-1},$$

the equality between the series on the left and the product on the right (where p ranges over the set of prime numbers) is an analytic version of the unique decomposition of an integer as a product of primes. The Gamma function is defined for all s with $\operatorname{Re}(s) > 0$ by

$$\Gamma(s) = \int_0^\infty \mathrm{e}^{-t} t^{s-1} \mathrm{d} t$$

and it is then extended to the whole complex plane by the relation $\Gamma(s+1) = s \cdot \Gamma(s)$.

- **Theorem 3.9** (Riemann). The Riemann zeta function has the following analytic properties: Analytic continuation : The zeta function $s \mapsto \zeta(s)$ can be extended to a meromorphic function on the whole complex plane, with a unique simple pole at s = 1 (with residue 1).
 - **Functional equation :** Let $\xi(s) := \pi^{s/2} \cdot \Gamma(s/2) \cdot \zeta(s)$ be the completed zeta function. This function satisfies the functional equation

$$\xi(1-s) = \xi(s).$$

Conjecture: Riemann Hypothesis : The zeroes of $\xi(s)$ have real part $\operatorname{Re}(s) = 1/2$.

Note that $\zeta(s)$ can not vanish on the half-plane $\operatorname{Re}(s) > 1$ (because of the convergence of the Euler product). Given the functional equation satisfied by ζ , and given that the Gamma function has simple poles at all s = -2n ($n \ge 1$ integer), the zeta function has trivial zeroes at these points (those are simple poles, they "compensate" the poles of $\Gamma(s)$ so that $\xi(s)$ is regular at these points). By the functional equation, the trivial zeroes are the only zeroes of $\zeta(s)$ in the half-plane $\operatorname{Re}(s) < 0$.

As for the zeroes of $\zeta(s)$ in the strip $0 \leq \operatorname{Re}(s) \leq 1$ (the so-called critical strip), one sees that they are the same as those of $\xi(s)$, and that they are symmetrically distributed with respect to the critical line $\operatorname{Re}(s) = 1/2$.

 $\zeta(s)$ is a major tool to study the repartition of the prime numbers. For example, the Prime Number Theorem is a consequence of the fact that $\zeta(s)$ does not vanish on the line $\operatorname{Re}(s) = 1$ (it says that the number $\pi(x)$ of primes $\leq x$ is $\sim x/\log x$ when $x \to \infty$). Inspired by the succes of this tool, people have tried to associate zeta functions to other objects than \mathbb{Z} . We will define a zeta function for curves over finite fields, and then describe the analogy with $\zeta(s)$, show that it satisfies a functional equation and that it can be extended to \mathbb{C} as a meromorphic function.

3.3. Zeta function of curves over finite fields

3.3.1. Counting rational points and zeta-functions. — Troughout this section, C is a smooth projective curve defined over a finite field $k = \mathbb{F}_q$, and we denote by $K = \mathbb{F}_q(C)$ its rational function field.

Definition 3.10. — The zeta-function of C/\mathbb{F}_q is defined as the formal series in $s \in \mathbb{C}$:

$$\zeta(C/\mathbb{F}_q, s) := \sum_{D \ge 0} \frac{1}{q^{\deg D \cdot s}} \in \mathbb{Z}[[q^{-s}]],$$

where the sum runs over the set of all effective divisors D on C.

One also defines another version of the zeta function, in terms of the formal variable $T = q^{-s}$ and denoted by $Z(C/\mathbb{F}_q, T)$:

$$Z(C/\mathbb{F}_q, T) = \sum_{D \ge 0} T^{\deg D} \in \mathbb{Z}[[T]].$$

In our previous notations, this can be rewritten as

$$Z(C/\mathbb{F}_q, T) = \sum_{d \ge 1} A_d(C) \cdot T^d \in \mathbb{Z}[[T]].$$

Lemma 3.11. — The Dirichlet series defining $\zeta(C/\mathbb{F}_q, s)$ converges on the half-plane $\operatorname{Re}(s) > 1$ in \mathbb{C} . In other words, $Z(C/\mathbb{F}_q, T)$ converges on the open disc $\{T \in \mathbb{C} : |T| < q^{-1}\}$.

 $\mathbf{42}$

Proof. — This follows from the estimate mentioned above: there exists a constant $\gamma_C > 0$ (depending only on C) such that

$$\forall m \ge 1; \quad \#C(\mathbb{F}_{q^m}) \le \gamma_C \cdot \#\mathbb{P}^1(\mathbb{F}_{q^m}) \le \gamma_C \cdot (q^m + 1).$$

Also note that $|T| = |q^{-s}| = q^{-\operatorname{Re}(s)}$.

3.3.2. Analogy with the Riemann zeta function. — Let us prove the following two relations

Proposition 3.12. — One has

$$Z(C/\mathbb{F}_q,T) = \prod_{v \in |C|} \left(1 - T^{\deg v}\right)^{-1} \quad or \quad \zeta(C/\mathbb{F}_q,s) = \prod_{v \in |C|} \left(1 - q^{-\deg v \cdot s}\right)^{-1},$$

where the product is over all places v of C over \mathbb{F}_q .

Note that $q^{\deg v}$ is the cardinality of the field of definition of v (*i.e.* the cardinality of the residue field of the corresponding valuation on $K = \mathbb{F}_q(C)$).

Proof. — Let us work within the ring of formal power series in T. Since every effective divisor is a (finite) \mathbb{Z} -linear combination of places (with nonnegative coefficients), one has

$$Z(C/\mathbb{F}_q, T) = \sum_{D \ge 0} T^{\deg D} = \sum_{(n_v)_{v \in |C|}} T^{\sum n_v \deg v} = \prod_{v \in |C|} \left(\sum_{n_v \ge 0} T^{n_v \deg v} \right)$$

Now use the known formula for the sum of the geometric series

$$\sum_{n_v \ge 0} (T^{\deg v})^{n_v} = \frac{1}{1 - T^{\deg v}} = \left(1 - T^{\deg v}\right)^{-1}.$$

Proposition 3.13. — One has

$$Z(C/\mathbb{F}_q, T) = \exp\left(\sum_{m \ge 1} \#C(\mathbb{F}_{q^m}) \cdot \frac{T^m}{m}\right).$$

Proof. — Expand $\log Z(C/\mathbb{F}_q, T)$ as a power series:

$$\log Z(C/\mathbb{F}_q, T) = \sum_{v} -\log(1 - T^{\deg v}) = \sum_{v} \sum_{m=1}^{\infty} \frac{(T^{\deg v})^m}{m} = \sum_{v} \sum_{m=1}^{\infty} \frac{T^{m \cdot \deg v}}{m}$$

This double sum can be rearranged into

$$\sum_{v} \sum_{m=1}^{\infty} \frac{T^{m \cdot \deg v}}{m} = \sum_{n=1}^{\infty} \left(\sum_{\substack{v,m \text{ s.t.} \\ m \deg v = n}} \frac{1}{m} \right) \cdot T^{n},$$

where, for all $n \ge 1$, one has

$$\sum_{\substack{v,m \text{ s.t.} \\ m \deg v = n}} \frac{1}{m} = \frac{1}{n} \sum_{\substack{v \in |C| \text{ s.t.} \\ \deg v|n}} \deg v = \frac{\#C(\mathbb{F}_{q^n})}{n}.$$

The last equality follows from a proposition above (relation between places and rational points).

3.3.3. Examples "by hand". — Let us start by computing the zeta function of \mathbb{P}^1 .

Example 3.14. — Let a_d be the number of places of \mathbb{P}^1 of degree d (for all $d \ge 1$). So $a_1 = \#\mathbb{A}^1(\mathbb{F}_q) + 1 = q + 1$ and for d > 1, a_d is the number of monic irreducible polynomials in $\mathbb{F}_q[X]$ of degree d. We have seen that

$$#\mathbb{P}^1(\mathbb{F}_{q^m}) = \sum_{d|m} d \cdot a_d = q^m + 1.$$

Therefore, a straightforward computation leads to

$$\log\left(\prod_{d\geq 1} (1-T^d)^{-a_d}\right) = \sum_{m\geq 1} \frac{1}{m} \sum_{d\mid m} da_d \frac{T^m}{m} = \sum_{m\geq 1} \frac{q^m + 1}{m} T^m.$$

And this easily implies that

$$Z(\mathbb{P}^1/\mathbb{F}_q,T) = \frac{1}{(1-T)(1-qT)}.$$

Or, in terms of the variable s:

$$\zeta(\mathbb{P}^1/\mathbb{F}_q, s) = \frac{1}{(1-q^{-s})(1-q^{1-s})}.$$

We see that the function $s \mapsto \zeta(\mathbb{P}^1/\mathbb{F}_q, s)$ is $2\pi i/\log q$ -periodic, that it has only poles at s = 0and s = 1 (modulo the period), and that it satisfies a functional equation

$$\zeta(1-s) = q^{1-s}\zeta(s)$$

Note also that the different expressions obtained for $Z(\mathbb{P}^1/\mathbb{F}_q,T)$ lead to

$$\begin{aligned} \forall d > 1, \# \left\{ v \in |\mathbb{P}^1| : \deg v = d \right\} &= \frac{1}{d} \sum_{e|d} \mu(e) q^{d/e} \\ &= \# \left\{ P \in \mathbb{F}_q[X] : P \text{ monic irreducible of degree } d \right\}, \end{aligned}$$

and $\#\mathbb{P}^1(\mathbb{F}_q) = q + 1$ is the number of places of degree 1.

Example 3.15. — Suppose that $k = \mathbb{F}_3$ and consider the projective smooth curve C, defined over \mathbb{F}_3 , whose affine equation is

$$C: y^2 = x^3 - x.$$

Then it follows from a special case of a computation of Koblitz (see [Kob75, pp. 204 - 208], article on the website of the course) that one has

$$Z(C/\mathbb{F}_3, T) = \frac{1+3T^2}{(1-T)(1-3T)}$$

The article [Kob75] uses elementary techniques to arrive at this result (but the proof is not the simplest...).

Example 3.16. — For $p \neq 3$, consider the projective curve C/\mathbb{F}_p defined by

$$C: x^3 + y^3 + z^3 = 0.$$

If $p \equiv 2 \mod 3$, one obtains

$$Z(C/\mathbb{F}_p, T) = \frac{1 + pT^2}{(1 - T)(1 - pT)}$$

If $p \equiv 1 \mod 3$, one can also obtain an expression, but it is more involved:

$$Z(C/\mathbb{F}_p, T) = \frac{1 - aT + pT^2}{(1 - T)(1 - pT)},$$

where $a \in \mathbb{R}$ has an explicit description (and satisfies $|a| \leq 2\sqrt{p}$). The first case is easier to deal with.

3.3.4. Behaviour under finite extension. — Again, let us assume that C is a smooth projective curve defined over \mathbb{F}_q . Then C is also defined over \mathbb{F}_{q^m} , for any finite extension $\mathbb{F}_{q^m}/\mathbb{F}_q$ of \mathbb{F}_q . One can relate the zeta functions $Z(C/\mathbb{F}_q, T)$ and $Z(C/\mathbb{F}_{q^m}, T)$ as follows:

Proposition 3.17. — Let C be as above. For any $m \ge 1$:

$$Z(C/\mathbb{F}_{q^m},T^m)=\prod_{\zeta^m=1}Z(C/\mathbb{F}_q,\zeta T),$$

where the product runs over all $\zeta \in \mathbb{C}$ such that $\zeta^m = 1$.

Proof. — See the first homework assignment.