CHAPTER 4

RIEMANN-ROCH AND THE RATIONALITY OF ZETA FUNCTIONS

4.1. More on divisors

In this section, C will be a smooth projective curve over a finite field \mathbb{F}_q . In the last chapter, we defined divisors on C as \mathbb{Z} -linear combinations of \mathbb{F}_q -places of C:

$$\operatorname{Div}(C) := \left\{ \sum_{v \in |C|} n_v \cdot v : n_v \in \mathbb{Z} \text{ almost all } 0 \right\}.$$

The set Div(C) is naturally endowed with the structure of an abelian group ("component-wise" addition). We have also defined a degree map:

$$\deg: \operatorname{Div}(C) \to \mathbb{Z}, \quad \sum n_c \cdot v \mapsto \sum n_v \cdot \deg v,$$

which is a group homomorphism (*i.e.* $\deg(D + D') = \deg D + \deg D'$). This map is well-defined because the sum is actually finite. We can thus consider its kernel

$$\operatorname{Div}^{0}(C) = \ker (\operatorname{deg} : \operatorname{Div}(C) \to \mathbb{Z}),$$

a subgroup of Div(C).

Our next goal is to explain how to associate a divisor to each rational function $f \in \mathbb{F}_q(C)^{\times}$, and to give some of the properties of such divisors.

4.1.1. Places and valuations. — Let $P \in C$. Since C is smooth, P is a smooth point of C and the local ring $\mathcal{O}_{C,P} \subset \overline{\mathbb{F}_q}(C)$ is a discrete valuation ring. More concretely, it means that there is a valuation

$$\operatorname{ord}_P: \mathcal{O}_{C,P} \to \mathbb{Z} \cup \{\infty\}, \quad f \mapsto \operatorname{ord}_P(f) = \max\left\{\nu \in \mathbb{Z}_{>0} : f \in \mathfrak{M}_P^{\nu}\right\},$$

giving, for each $f \in \mathcal{O}_{C,P}$, the order of vanishing of f at P as a function $C \to \mathbb{P}^1$. One can extend ord_P to the whole of $\overline{\mathbb{F}_q}(C)$ by setting

$$\forall f, g \in \overline{\mathbb{F}_q}(C) \times \overline{\mathbb{F}_q}(C)^{\times}, \quad \operatorname{ord}_P(f/g) := \operatorname{ord}_P(f) - \operatorname{ord}_P(g).$$

We then restrict the obtained map to $\mathbb{F}_q(C) \subset \overline{\mathbb{F}_q}(C)$: we still denote by $\operatorname{ord}_P : \mathbb{F}_q(C) \to \mathbb{Z} \cup \{\infty\}$ the resulting valuation. We use the usual terminology: for $f \in \mathbb{F}_q(C)^{\times}$, if $\operatorname{ord}_P f \geq 0$ (resp. $\operatorname{ord}_P f > 0$, resp. $\operatorname{ord}_P f < 0$), one says that f is regular (resp. has a zero, resp. has a pole) at $P \in C$. These terms refer implicitly to the map $f : C \to \mathbb{P}^1$ that can be canonically associated to $f \in \mathbb{F}_q(C)$ by:

$$f: C \to \mathbb{P}^1, \qquad P \in C \mapsto \begin{cases} [f(P):1] & \text{if } f \text{ is regular at } P\\ [1:0] = \infty & \text{otherwise.} \end{cases}$$

The rational function $f \in \mathbb{F}_q(C)$ and the map above are usually identified without comments.

Lemma 4.1. — Let P and Q be two $\overline{\mathbb{F}_q}$ -rational points on C. Then

 $\operatorname{ord}_P = \operatorname{ord}_Q \text{ on } \mathbb{F}_q(C) \Leftrightarrow P \text{ and } Q \text{ are } \operatorname{Gal}(\overline{\mathbb{F}_q}/\mathbb{F}_q)\text{-conjugate points},$

i.e. P and Q give rise to the "same" ord function if and only if they belong to the same \mathbb{F}_q -place of C.

As a consequence, to each place v of C, we can define a map

$$\operatorname{ord}_v : \mathbb{F}_q(C) \to \mathbb{Z} \cup \{\infty\}, \qquad f \mapsto \operatorname{ord}_P f \text{ (any choice of } P \in v).$$

Proof. — Recall that there are $\operatorname{Gal}(\overline{\mathbb{F}_q}/\mathbb{F}_q)$ -actions on $C(\overline{\mathbb{F}}_q)$ and on $\overline{\mathbb{F}_q}(C)$, and that those actions are compatible in the sense that

$$\forall \sigma \in \operatorname{Gal}(\overline{\mathbb{F}_q}/\mathbb{F}_q), \ \forall f \in \mathbb{F}_q(C), \ \forall P \in C(\overline{\mathbb{F}_q}), \quad \sigma(f(P)) = \sigma(f)(\sigma(P)).$$

As a consequence, one can check that, for all $f \in \overline{\mathbb{F}_q}(C)$,

$$\operatorname{ord}_P \sigma(f) = \operatorname{ord}_{\sigma(P)}(f).$$

Here the functions we consider are elements of $\mathbb{F}_q(C)$ and thus, are $\operatorname{Gal}(\overline{\mathbb{F}_q}/\mathbb{F}_q)$ -invariants. Hence, for all $P \in C(\overline{\mathbb{F}_q})$, and all $f \in \mathbb{F}_q(C)$, we have

$$\operatorname{ord}_P f = \operatorname{ord}_{\sigma(P)} f.$$

This proves that two conjugates points on C give rise to the same function $\operatorname{ord} : \mathbb{F}_q(C) \to \mathbb{Z} \cup \{\infty\}$. We only sketch the proof of the converse statement. Let P, Q be two points on C and assume that they are not conjugate under $\operatorname{Gal}(\overline{\mathbb{F}_q}/\mathbb{F}_q)$, that is $P \in v$ and $Q \in w$ belong to two distinct places of C. We need to prove that $\operatorname{ord}_P \neq \operatorname{ord}_Q$ on $\mathbb{F}_q(C)$.

Recall that for each point $R \in C$, the fact that $\mathcal{O}_{C,R}$ is a discrete valuation ring implies the existence of uniformizers at R: these are functions $t_R \in \overline{\mathbb{F}_q}(C)$ which "vanish at order 1 at R" *i.e.* such that $\operatorname{ord}_R t_R = 1$ (the existence is a consequence of: $\mathcal{O}_{C,R}$ is discrete valuation ring if and only if the maximal ideal \mathfrak{M}_R is principal). Then we can define a rational function $g \in \overline{\mathbb{F}_q}(C)^{\times}$ by the (finite) product:

$$g := \prod_{Q' \in w} t_{Q'} \cdot \prod_{P' \in v} t_{P'}^{-1} \in \overline{\mathbb{F}_q}(C)^{\times}.$$

One can check that $\operatorname{ord}_{P'} g = -1$ at all points $P' \in v$, while $\operatorname{ord}_{Q'} g = 1$ at all $Q' \in w$. Now fix a big enough finite extension $\mathbb{F}_{q^m}/\mathbb{F}_q$ such that P, Q are \mathbb{F}_{q^m} -rational, and g is defined over \mathbb{F}_{q^m} . Let

$$h = \prod_{\sigma \in \operatorname{Gal}(\mathbb{F}_{q^m}/\mathbb{F}_q)} \sigma(g) \in \overline{\mathbb{F}_q}(C).$$

Now, by construction of h as a product of Galois conjugate, one checks that $h \in \mathbb{F}_q(C)^{\times}$. By the properties of ord_R , one has that

$$\operatorname{ord}_P h = -m$$
 and $\operatorname{ord}_Q h = m$.

So, two non conjugate points (P and Q) define distinct valuations ord_P and ord_Q on $\mathbb{F}_q(C)$. \Box

4.1.2. Zeroes and poles. — We now gather some more properties on the valuation maps $\operatorname{ord}_v : \mathbb{F}_q(C)^{\times} \to \mathbb{Z}$ that we have just defined.

Proposition 4.2. — Let $f \in \mathbb{F}_q(C)$. Then:

- (i) If f has no poles, then f is constant (i.e. $f \in \mathbb{F}_q \subset \mathbb{F}_q(C)$).
- (ii) If the map $f: C \to \mathbb{P}^1$ is not constant, then it is surjective.
- (iii) Hence, if $f \in \mathbb{F}_q(C) \setminus \mathbb{F}_q$ (one says that f is nonconstant), then f has a least a zero and at least a pole.
- (iv) In general, f has finitely many zeroes and poles.

We don't prove this here, but see [NX09, Prop 3.3.1, Coro 3.3.2], Fulton's book [Ful89], or [Har77].

Example 4.3. — As examples, consider the following two elements of $\mathbb{F}_q(x) = \mathbb{F}_q(\mathbb{P}^1)$, seen as rational functions on $C = \mathbb{P}^1$:

$$f(x) = \frac{x^2(x^3+1)}{(x+1)^3(x^2+1)}, \quad g(x) = x^3.$$

For any place v of \mathbb{P}^1 , you can write down the values of $\operatorname{ord}_v f$ and $\operatorname{ord}_v g$.

4.1.3. Divisors of functions. — For all $f \in \mathbb{F}_q(C)^{\times}$, we put

$$\operatorname{div}(f) := \sum_{v \in |C|} \operatorname{ord}_v(f) \cdot v$$

The last item in the previous proposition implies that this sum is actually finite: indeed, if v is neither a pole or a zero of f, then $\operatorname{ord}_v(f) = 0$ and this happens for all but finitely many places v. We thus obtain a map

$$\operatorname{div}: \mathbb{F}_q(C)^{\times} \to \operatorname{Div}(C), \qquad f \mapsto \operatorname{div}(f),$$

which is a group homomorphism : $\operatorname{div}(fg) = \operatorname{div}(f) + \operatorname{div}(g)$ for all $f, g \in \mathbb{F}_q(C)^{\times}$. We denote by $\operatorname{Princ}(C)$ the image of div, divisors in the subgroup $\operatorname{Princ}(C)$ are called principal.

Proposition 4.4. — The following statements hold:

- (i) For $f \in \mathbb{F}_q(C)^{\times}$, $\operatorname{div}(f) = 0$ if and only if f is a constant function (i.e. $f \in \mathbb{F}_q^{\times} \subset \mathbb{F}_q(C)^{\times}$).
- (ii) Two nonzero rational functions f, g have the same image under div if and only if there exists $c \in \mathbb{F}_q^{\times}$ such that $f = c \cdot g$.
- (iii) Most importantly, for all $f \in \mathbb{F}_q(C)^{\times}$, one has

$$\deg(\operatorname{div}(f)) = 0.$$

That is, "a rational function has as many poles as zeroes (counted with multiplicities)".

Example 4.5. — Write down the divisors of the functions f, g of the previous example and check that the last item of the Lemma is true.

Proof. — Item (i) is a direct consequence of the previous proposition (a nonconstant function has at least a pole and a zero). Item (ii) follows from item (i) because $\operatorname{div}(f/g) = \operatorname{div}(f) - \operatorname{div}(g)$. We don't prove item (iii), which is a bit more difficult: for details, see [**NX09**, Thm. 3.4.2, Coro. 3.4.3].

4.1.4. Class group of curves. — From the previous proposition, we deduce that Princ(C) is actually a subgroup of $Div^{0}(C)$. We can thus define the two following groups:

Definition 4.6. — The Picard group of C is the quotient

$$\operatorname{Pic}(C) := \operatorname{Div}(C) / \operatorname{Princ}(C);$$

and the class-group of C is the "part of degree 0 of Pic(C)":

$$\operatorname{Pic}^{0}(C) := \operatorname{Div}^{0}(C) / \operatorname{Princ}(C).$$

We have implicitly used the fact that deg : $\text{Div}(C) \to \mathbb{Z}$ induces a homorphism deg : $\text{Pic}(C) \to \mathbb{Z}$ (this follows from the fact that we mod out Div(C) by $\text{Princ}(C) \subset \ker \text{deg}$).

Two divisors $D, D' \in \text{Div}(C)$ are called (linearly) equivalent if they have the same image in Pic(C), that is, if there exists a rational function $f \in \mathbb{F}_q(C)^{\times}$ such that D = D' + div(f). The linear equivalence of divisors is indeed an equivalence relation (exercise). Note that two equivalent divisors have the same degree.

The class-group is an important invariant of a curve, it has several interpretations : it is the analogue of the class-group of a number field, it is also the set of \mathbb{F}_q -rational points on a variety canonically associated to C (the Jacobian variety).

Example 4.7. — On $C = \mathbb{P}^1$, every divisor of degree 0 is principal. This implies that $\operatorname{Pic}^0(\mathbb{P}^1)$ is the trivial group. To prove this, assume that $D = \sum_v n_v \cdot v$ has degree 0, fix a point P_v in each place v with $n_v \neq 0$, and write each P_v in homogeneous coordinates $P_v = [x_P : y_P] \in \mathbb{P}^1$. Now let f_D be the rational function

$$f_D := \prod_{\substack{v \in |\mathbb{P}^1| \\ n_V \neq 0}} \left(\prod_{\sigma \in \operatorname{Gal}(\mathbb{F}_q(v)/\mathbb{F}_q)} (\sigma(y_P)X - \sigma(x_P)Y) \right)^{n_v}$$

It is easy to check that f_D is indeed a rational function, that $f_D \in \mathbb{F}_q(C)^{\times}$ and that $\operatorname{div}(f_D) = D$. Note that $\sum n_v \operatorname{deg} v = 0$: this ensures that $f_D \in \overline{\mathbb{F}_q}(\mathbb{P}^1)$.

It follows that, in the case of \mathbb{P}^1 , the degree map deg : $\operatorname{Pic}(\mathbb{P}^1) \to \mathbb{Z}$ is an isomorphism! The converse is also true: if C is a smooth projective curve with $\operatorname{Pic}(C) \simeq \mathbb{Z}$, then $C \simeq \mathbb{P}^1$.

Example 4.8. — Assume that $\operatorname{char}(\mathbb{F}_q) \neq 2$ and let $e_1, e_2, e_3 \in \mathbb{F}_q$ be distinct. Consider the (projective) curve C/\mathbb{F}_q defined by the (affine) equation:

$$C: y^{2} = (x - e_{1})(x - e_{2})(x - e_{3}).$$

One can check that C is smooth and that it has a single point at infinity, which we denote by P_{∞} . For i = 1, 2, 3, let $P_i = (e_i, 0) \in C$. Then

$$\operatorname{div}(x - e_i) = 2 \cdot P_i - 2 \cdot P_{\infty}, \quad \operatorname{div}(y) = P_1 + P_2 + P_3 - 3 \cdot P_{\infty}.$$

Note that all the points involved are \mathbb{F}_q -rational, so the associated places have degree 1 (*i.e.* contain only the point in question), so the notation makes sense.

4.2. Riemann-Roch theorem

Recall that a divisor $D = \sum n_v \cdot v \in \text{Div}(C)$ is called effective (some people say positive), denoted by $D \ge 0$, if $n_v \ge 0$ for all places $v \in |C|$. Warning: the set of effective divisors is not a subgroup of Div(C). Similarly, for two divisors $D_1, D_2 \in \text{Div}(C)$, one writes $D_1 \ge D_2$ if $D_1 - D_2 \ge 0$ (note that this is a set of inequalities on the "components" of D_1, D_2).

This defines a partial order on Div(C), which is compatible with the degree: if $D_1 \ge D_2$, then $\deg D_1 \ge \deg D_2$.

4.2.1. Riemann-Roch spaces. — Writing down inequalities between divisors (of functions) is a convenient way to describe their poles and zeroes:

Example 4.9. — Let $f \in \mathbb{F}_q(C)^{\times}$ be a function that is regular everywhere, except at a place $v \in |C|$, and assume that it has a pole of order at most n at v. These conditions on f can be summarized in one inequality:

$$\operatorname{div}(f) \ge -n \cdot v.$$

As another example, the inequality

$$\operatorname{div}(f) \ge 2 \cdot w - n \cdot v$$

means that f is regular everywhere except maybe at $v \in |C|$ where it has a pole of order $\leq n$, and f has a zero of order ≥ 2 at $w \in |C|$.

Definition 4.10. — Let $D \in Div(C)$ be a divisor on C. We associate to D the set:

$$\mathcal{L}(D) := \left\{ f \in \mathbb{F}_q(C)^{\times} : \operatorname{div}(f) \ge -D \right\} \cup \{0\}.$$

In words, $\mathcal{L}(D)$ is a set of functions on C having poles and zeroes "bounded" in terms of D. We add the 0 function for a reason that will become obvious in a minute.

Let us gather a few facts about these sets $\mathcal{L}(D)$:

Proposition 4.11. — Let $D, D' \in Div(C)$.

- (i) If deg D < 0, then $\mathcal{L}(D) = \{0\}$.
- (ii) The set $\mathcal{L}(D)$ is a \mathbb{F}_q -vector space, and $\mathcal{L}(D)$ has finite dimension over \mathbb{F}_q .
- (iii) If D' and D have the same class in Pic(C) (i.e. they differ by a principal divisor: $D' = D + \operatorname{div}(g)$ for some $g \in \overline{k}(C)^{\times}$), then $\mathcal{L}(D) \simeq \mathcal{L}(D')$.

Proof. — Let $f \in \mathcal{L}(D)$ be a nonzero function. Then, deg div(f) = 0 (see above) and this implies that

$$0 = \deg(\operatorname{div}(f)) \ge \deg(-D) = -\deg(D).$$

So, the existence of $f \in \mathcal{L}(D) \setminus \{0\}$ forces $\deg(D) \ge 0$. The fact that $\mathcal{L}(D)$ is a \mathbb{F}_q -vector space is not difficult to prove: use the definition of $\operatorname{div}(f)$ and the properties of ord_v :

$$\forall f_1, f_2 \in \mathbb{F}_q(C)^{\times}, \ \forall \lambda \in \mathbb{F}_q^{\times}, \qquad \operatorname{ord}_v(f_1 + f_2) \ge \min\{\operatorname{ord}_v f_1, \operatorname{ord}_v f_2\}, \quad \operatorname{ord}_v(\lambda \cdot f_1) = \operatorname{ord}_v f_1.$$

The hardest part of (ii) is showing that the dimension of $\mathcal{L}(D)$ is finite: the proof of this is not that difficult, but it would take us a bit too far (for details, see [Har77, II.5.19], [Ful89] or [NX09, §3.4] or [?]). The idea is simple enough: D is a finite formal sum of places, so one can do an induction argument on the number of places that "appear" in D (more precisely on $\sum |n_v|$). If one can understand what happens to $D \mapsto \mathcal{L}(D)$ on " removing a point", *i.e.* replacing D by D - v, we would be done. Indeed, one has $\mathcal{L}(0) = \mathbb{F}_q$ (0 the zero divisor = the empty sum) because a function that has no poles is constant. One can prove that, if $D_1 \leq D_2$, then $\mathcal{L}(D_1) \subset \mathcal{L}(D_2)$ (easy) and $\dim_{\mathbb{F}_q}(\mathcal{L}(D_2)/\mathcal{L}(D_1)) \leq \deg D_2 - \deg D_1$ (more difficult). The proof even gives a trivial upper bound on the dimension:

$$\dim_{\mathbb{F}_a} \mathcal{L}(D) \le \deg D + 1.$$

Finally, if $D' = D + \operatorname{div}(g)$ for some $g \in \mathbb{F}_q(C)^{\times}$, one can check that the map

$$\mathcal{L}(D') \to \mathcal{L}(D), \quad f \mapsto fg$$

gives the desired isomorphism.

Given a divisor $D \in \text{Div}(C)$, we can define

$$\ell(D) := \dim_{\mathbb{F}_a} \mathcal{L}(D).$$

So far, we have proved that $\ell(D)$ is finite for all D, that $\ell(D) = 0$ if deg D < 0, that $\ell(0) = 1$, and that $\ell(D) = \ell(D')$ if D and D' have the same class in $\operatorname{Pic}(C)$. And we have mentioned that $\ell(D) \leq \deg D + 1$.

4.2.2. Riemman-Roch. — We can now state a fundamental result in the algebraic geometry of curves. Its importance lies in its ability to tell us whether there are functions on a curve having prescribed zeroes and poles and if so, how many. More precisely, it computes the quantifity $\ell(D)$ in terms of deg D and of an invariant of C (which does not depend on D) called the genus of C:

Theorem 4.12 ("Weak Riemann-Roch"). — Let C be a smooth projective curve. There exists an integer $g \ge 0$, called the genus of C such that: (1) for all $D \in \text{Div}(C)$,

$$\ell(D) > \deg D - q + 1$$

(2) moreover, if deg $D \ge 2g - 1$, there is equality:

$$\ell(D) = \deg D - g + 1.$$

We shall also need the stronger version:

Theorem 4.13 (Riemann-Roch). — Let C be a smooth projective curve over \mathbb{F}_q . There exists a divisor class $K_C \in \text{Pic}(C)$ (the canonical class of C), and an integer $g \ge 0$ called the genus of C, such that:

$$\forall D \in \operatorname{Div}(C), \quad \ell(D) - \ell(K_C - D) = \deg D - g + 1.$$

We won't prove this theorem, but you can have a look at [NX09, §3.5- §3.6], or [Har77], [Ful89]. Let us show that the stronger version implies the weaker one. Here is a corollary of the strong version:

Corollary 4.14. — Let C be a smooth projective curve.

(i) $\ell(K_C) = g$, (ii) $\deg K_C = 2g - 2$, (iii) if $\deg D > 2g - 2$, then $\ell(D) = \deg D - g + 1$.

Proof. — For part (i), take D = 0 in the Theorem: we obtain the claimed equality. For part (ii), apply Riemann-Roch to $D = K_C$ and use part (i). Finally, for part (iii), use Riemann-Roch and the fact that $\ell(D) = 0$ whenever deg D < 0.

The identities in the Corollary directly imply that the "strong Riemann-Roch theorem" implies "weak Riemann-Roch".

Example 4.15. — Note that \mathbb{P}^1 has genus 0. Moreover, there are two main situations where we will need to know how to compute the genus of a curve.

(1) Plane smooth curves. Let $C \subset \mathbb{P}^2$ be a smooth projective curve given by a single homogenous equation $F(x, y, z) \in \mathbb{F}_q[x, y, z]$ (we implicitly assume that F is irreducible in $\overline{\mathbb{F}_q}[x, y, z]$). If F is homogeneous of degree d, then the genus of C is given by:

$$g(C) = \frac{(d-1)(d-2)}{2}.$$

Warning: this formula is only valid for a smooth curve C!

(2) Hyperelliptic curves. Let \mathbb{F}_q be a finite field of odd characteristic, and $f(x) \in \mathbb{F}_q[x]$ be a squarefree polynomial of degree ≥ 3 . Let C be the smooth projective curve over \mathbb{F}_q associated to the affine plane curve C_0 of equation $y^2 = f(x)$ as in Homework #1 (so we have $C_0 \subset \mathbb{A}^2$ and $C \subset \mathbb{P}^N$ for some N depending only on deg f). Then the genus of C is given by

$$g(C) = \left\lfloor \frac{\deg f - 1}{2} \right\rfloor.$$

4.2.3. Finiteness of $Pic^0(C)$. — As a first application of the Riemann-Roch theorem, we prove the following important finiteness result:

Theorem 4.16. — Let C be a smooth projective curve over a finite field \mathbb{F}_q . Then its class-group $\operatorname{Pic}^0(C)$ is a finite abelian group.

Proof. — The fact that $\operatorname{Pic}^{0}(C)$ is abelian is obvious: $\operatorname{Pic}^{0}(C)$ is defined as the quotient of an abelian group. So we now turn to the proof of the finiteness statement. Given an integer $d \geq 0$, we have proved at the beginning of this chapter that the following set is finite:

$$\{E \in \operatorname{Div}(C) : E \ge 0 \text{ and } \deg E = d\}$$

Choose a big enough integer $d \ge 0$ (say, $d \ge g$): for any divisor $D \in \text{Div}(C)$ of degree d, the (weak) Riemann-Roch theorem tells us that $\ell(D) \ge d + 1 - g$, *i.e.* that $\ell(D) > 0$. This implies that there exists a nonzero function $f \in \mathcal{L}(D)$. By definition, this means that the divisor E := D + div(f) is effective and deg E = deg D = d.

We have just proved that, for any $D \in \text{Div}(C)$ of degree $d \ge g$, there exists an effective divisor $E \in \text{Div}(C)$ which lies in the same class in Pic(C). This shows that there is a surjection from the set of effective divisors of degree d to the set of divisor classes of degree d. Since the set of effective divisors of degree d is finite (see above), we conclude that the set of divisor classes in Pic(C) of degree d is finite.

To finish the proof, it remains to note that there is a bijection between $\operatorname{Pic}^{0}(C)$ (the set of divisor classes of degree 0) and the set $\operatorname{Pic}^{d}(C)$ of divisor classes of degree d: indeed, the map

 $[D] \in \operatorname{Pic}^d \mapsto [D - D_0] \in \operatorname{Pic}^0$, where $D_0 \in \operatorname{Div}(C)$ is a fixed divisor of degree d, gives such a bijection.

The order of $\operatorname{Pic}^{0}(C)$ is called the class-number of C, denoted by h(C). This is another important invariant of C: it serves as a more geometric analogue of the class-number of number fields. Later on (spoiler alert), we will see how to recover h(C) from the zeta function of C.

4.3. Rationality and functional equation of the zeta function

4.3.1. Preliminary results. — Let us first prove two more lemmas about divisors on curves.

Lemma 4.17. — Let $D \in Div(C)$ be a divisor, then

$$\# \{ E \in \text{Div}(C) : E \ge 0 \text{ and } [E] = [D] \text{ in } \text{Pic}(C) \} = \frac{q^{\ell(D)} - 1}{q - 1}.$$

In words: the class $[D] \in Pic(C)$ of D contains $(q^{\ell(D)} - 1)/(q - 1)$ effective divisors.

Proof. — For a divisor $G \in \text{Div}(C)$ in the class [D] of D, there is a function $f \in \mathbb{F}_q(C)^{\times}$ such that G = D + div(f). Then G is effective if and only if $f \in \mathcal{L}(D) \setminus \{0\}$ (see above).

There are exactly $q^{\ell(D)} - 1$ nonzero functions in $\mathcal{L}(D)$ (because $\mathcal{L}(D) \simeq (\mathbb{F}_q)^{\ell(D)}$ as \mathbb{F}_q -vector spaces), and two of them give rise to the same divisor if and only if they differ by a (multiplicative) constant $c \in \mathbb{F}_q^{\times}$. Hence the result.

Given our curve C, the image of the degree map deg : $\text{Div}(C) \to \mathbb{Z}$ is a subgroup of \mathbb{Z} : by the structure theorem of such subgroups, there exists an integer $\delta_C \geq 1$ such that

$$\deg(\operatorname{Div}(C)) = \mathbb{Z} \cdot \delta_C.$$

For any integer $n \ge 0$, let

$$A_n(C) := \{ D \in \text{Div}(C) : D \ge 0 \text{ and } \deg D = n \}.$$

Recall that the zeta function of C/\mathbb{F}_q can be written under the form

$$Z(C/\mathbb{F}_q, T) = \sum_{D \ge 0} T^{\deg D} = \sum_{n=0}^{\infty} A_n(C) \cdot T^n = 1 + \sum_{n=1}^{\infty} A_n(C) \cdot T^n.$$

Thus, it will be of interest to be able to "compute" $A_n(C)$ for many values of n. We now give a formula for this number $A_n(C)$ of effective divisors on C of a given degree $n \in \mathbb{Z}_{>0}$, at least for some n:

Lemma 4.18. — Let C be a smooth projective curve over \mathbb{F}_q of genus g. For all integers $n \ge 1$ such that $\delta_C \mid n \text{ and } n \ge \max\{0, 2g - 1\}$, one has

$$A_n(C) = \frac{h(C)}{q-1} \cdot (q^{n+g-1} - 1),$$

where $h(C) = \# \operatorname{Pic}^{0}(C)$ is the class-number of C.

Proof. — Let h = h(C), and fix representatives D_1, \ldots, D_h in Div(C) of all divisor classes of degree n (remember that there is a bijection between the finite set $\text{Pic}^0(C)$ and the set of all divisors classes of degree n on C). Then, by the previous Lemma, we obtain:

$$\# \{ D \ge 0 : \deg D = n \} = \sum_{i=1}^{h} \{ D \ge 0 : [D] = [D_i] \in \operatorname{Pic}(C) \} = \sum_{i=1}^{h} \frac{q^{\ell(D_i)} - 1}{q - 1}.$$

Now by the weak Riemann-Roch theorem, for $n \ge \max\{0, 2g - 1\}$, we have $\ell(D_i) = \deg D_i + 1 - g = n + 1 - g$ (for all $i \in [1, h]$). This leads to the result:

$$A_n(C) = \sum_{i=1}^h \frac{q^{\ell(D_i)} - 1}{q - 1} = \sum_{i=1}^h \frac{q^{n+1-g} - 1}{q - 1} = \frac{h}{q - 1} \cdot (q^{n+1-g} - 1).$$

The use of the hypothesis that δ_C divides n is implicit, where have we made use of it?

4.3.2. Rationality of ζ . — Let C/\mathbb{F}_q be a smooth projective curve over a finite field \mathbb{F}_q . For any integer $n \geq 0$, let $A_n(C)$ be the number of effective divisors on C of degree n (we have seen earlier that this number is finite). Recall that

$$Z(C/\mathbb{F}_q, T) = \sum_{\substack{D \in \text{Div}(C) \\ D \ge 0}} = \sum_{n \ge 0} A_n(C)T^n \in \mathbb{Z}[[T]].$$

To know more about the zeta function, we "compute" as many coefficients $A_n(C)$ as possible. We start by proving the following result.

Theorem 4.19. — The exists a divisor of degree 1 on C. In other words, $\delta_C = 1$.

Proof. — We make use of the previous Lemma: denoting by $h(C) = \# \operatorname{Pic}^{0}(C)$ the class-number of C, we have proved that, for all $n \geq 1$ such that $\delta_{C} \mid n$ and $n \geq \max\{0, 2g - 1\}$,

$$A_n(C) = \frac{h(C)}{q-1} \cdot (q^{n+1-g} - 1).$$

Note that $A_n(C) = 0$ for all $n \ge 1$ that are not divisible by δ_C (by construction of δ_C , which generates the image of the degree map). This shows that

$$Z(C/\mathbb{F}_q, T) = \sum_{n=0}^{\infty} A_n(C) \cdot T^n = \sum_{k=0}^{\infty} A_{k\delta_C}(C) \cdot T^{k\delta_C}$$
$$= \sum_{k\delta_C < 2g-1} A_{k\delta_C}(C) T^{k\delta_C} + \sum_{k\delta_C \ge 2g-1} A_{k\delta_C}(C) T^{k\delta_C}$$
$$= F_1(T^{\delta_C}) + \frac{h(C)}{q-1} \cdot \sum_{k\delta_C \ge 2g-1} (q^{k\delta_C+1-g} - 1) \cdot T^{k\delta_C},$$

where F_1 is a polynomial with integral coefficients. Computing the last sum (which is the sum of two geometric series), we obtain that

(3)
$$(q-1) \cdot Z(C/\mathbb{F}_q, T) = F_2(T^{\delta_C}) + \frac{h(C) \cdot q^{1-g}}{1 - q^{\delta_C} T^{\delta_C}} - \frac{h(C)}{1 - T^{\delta_C}},$$

where F_2 is a polynomial with integral coefficients. This already shows that $Z(C/\mathbb{F}_q, T)$ is a rational function of T^{δ_C} , and moreover that $Z(C/\mathbb{F}_q, T)$ has a simple pole at T = 1 (because $1 - T^{\delta} = (1 - T) \cdot (T^{\delta - 1} + \cdots + 1)$ vanishes at order 1 at T = 1).

Let us now consider the "base changed" situation: C being defined over \mathbb{F}_q , it makes sense to consider it as a curve over $\mathbb{F}_{q'}$ where $q' = q^{\delta_C}$. Doing the same computation as above with $C/\mathbb{F}_{q'}$ instead of C/\mathbb{F}_q , we would get that $Z(C/\mathbb{F}_{q'},T)$ has a simple pole at T = 1 (even if the " δ " of $C/\mathbb{F}_{q'}$ is different from that of C/\mathbb{F}_q). Thus, the rational function $Z(C/\mathbb{F}_{q'},T^{\delta_C})$ also has a simple pole at T = 1. Now recall from the last lecture the "base change relation" for zeta functions:

$$Z(C/\mathbb{F}_{q'}, T^{\delta_C}) = \prod_{\zeta^{\delta_C} = 1} Z(C/\mathbb{F}_q, \zeta \cdot T),$$

where the product is over the complex δ_C -th roots of unity. For each such ζ , since $Z(C/\mathbb{F}_q, T)$ is actually a rational function in T^{δ_C} (see (3)), we have $Z(C/\mathbb{F}_q, \zeta \cdot T) = Z(C/\mathbb{F}_q, T)$. In particular,

$$Z(C/\mathbb{F}_{q'}, T^{\delta_C}) = \prod_{\zeta^{\delta_C} = 1} Z(C/\mathbb{F}_q, T) = Z(C/\mathbb{F}_q, T)^{\delta_C}$$

Both $Z(C/\mathbb{F}_{q'}, T^{\delta_C})$ and $Z(C/\mathbb{F}_q, T)$ have a simple pole at $T = q^{-1}$, so that this last relation implies that $\delta_C = 1$.

Remark 4.20. — Note that the existence of a divisor of degree 1 on a curve C does not imply the existence of a rational point.

For example, consider the curve C/\mathbb{F}_3 defined by

C

:
$$y^2 = -(x^3 - x)^2 - 1.$$

The curve *C* has genus 2, and one checks that *C* has no \mathbb{F}_3 -rational points (sample check: if x = 0, then $-(x^3 - x)^2 - 1 = -1 = 2$ is not a square in \mathbb{F}_3 , ...). Denote by α_1 , α_2 the roots of $z^2 = -1$ in $\overline{\mathbb{F}_3}$: α_1 and α_2 are conjugate under the Galois group $\operatorname{Gal}(\overline{\mathbb{F}_3}/\mathbb{F}_3)$ (actually, under $\operatorname{Gal}(\mathbb{F}_9/\mathbb{F}_3) \simeq \mathbb{Z}/2\mathbb{Z}$) and the two points $(0, \alpha_1)$, $(0, \alpha_2)$ on *C* are also conjugate. In particular, they define the same \mathbb{F}_3 -place v_2 of degree 2 on *C*. Similarly, denote by $\beta_1, \beta_2, \beta_3$ the roots of $z^3 - z = -1$ in $\overline{\mathbb{F}_3}$: the β_i 's are of degree 3 over \mathbb{F}_3 and they are Galois conjugates, so that the three points $(\beta_1, 1), (\beta_2, 1)$ and $(\beta_3, 1)$ on *C* generate the same \mathbb{F}_3 -place v_3 of degree 3 on *C*. Let $D = 1 \cdot v_3 - 1 \cdot v_2 \in \operatorname{Div}(C)$: the divisor *D* on *C* has degree 3 - 2 = 1.

The theorem above allows us to prove an important rationality result on $Z(C/\mathbb{F}_q, T)$: the following is based on Lemma 3.18, which is a consequence of the "weak Riemann-Roch" theorem. Later on, we make use of the "strong Riemann-Roch" theorem to give a more precise version.

Theorem 4.21 (Rationality I). — Let C/\mathbb{F}_q be a smooth projective curve of genus g over a finite field \mathbb{F}_q . The zeta function $Z(C/\mathbb{F}_q,T)$ is a rational function of T. Moreover, it is of the form

(4)
$$Z(C/\mathbb{F}_q, T) = \frac{L(C/\mathbb{F}_q, T)}{(1-T)(1-qT)}$$

2

where $L(C/\mathbb{F}_q, T) \in \mathbb{Z}[T]$ is a polynomial with integral coefficients, of degree $\leq 2g$ and which satisfies $L(C/\mathbb{F}_q, 0) = 1$ and $L(C/\mathbb{F}_q, 1) = h(C)$.

Proof. — If the genus of C is g = 0, there is nothing to prove. So we now assume that $g \ge 1$. In this situation, Lemma 3.18 and Theorem 3.19 imply that

$$\forall n \ge 2g - 1, \qquad A_n(C) = \frac{h(C)}{q - 1} \cdot \left(q^{n+1-g} - 1\right).$$

Thus, by a similar computation to that we did in the proof of 3.19, we have

$$Z(C/\mathbb{F}_q, T) = \sum_{n < 2g-1} A_n(C) \cdot T^n + \sum_{n \ge 2g-1} A_n(C) \cdot T^n$$

= $F_1(T) + \frac{h(C)}{q-1} \cdot \sum_{n \ge 2g-1} (q^{n+1-g} - 1) \cdot T^n$
= $F_2(T) + \frac{h(C)}{q-1} \cdot \sum_{n \ge 0} (q^{n+1-g} - 1) \cdot T^n$
= $F_2(T) + \frac{h(C) \cdot q^{1-g}}{q-1} \cdot \frac{1}{1-qT} - \frac{h(C)}{q-1} \cdot \frac{1}{1-T},$

where F_1 and F_2 are certain polynomials with integral coefficients, of degree $\leq 2g-2$. Thus

(5)
$$(q-1) \cdot Z(C/\mathbb{F}_q, T) = F_3(T) + \frac{h(C) \cdot q^{1-g}}{1-qT} - \frac{h(C)}{1-T},$$

where F_3 is a polynomial with integral coefficients (all divisible by q-1), of degree $\leq 2g-2$. Summing the three contributions and simplifying the denominators, we obtain the first assertion of the Theorem. The fact that the degree of $L(C/\mathbb{F}_q, T)$ is $\leq 2g$ follows from the fact that deg $F_3 \leq 2g-2$. Finally, we compute the values of $L(C/\mathbb{F}_q, T)$ at T=0 and T=1 as follows. First, by definition of $Z(C/\mathbb{F}_q, T)$, we have $Z(C/\mathbb{F}_q, 0) = A_0(C) \cdot T^0 + 0 = 1$; on the other hand, (4) gives $Z(C/\mathbb{F}_q, 0) = L(C/\mathbb{F}_q, 0)$. To evaluate $L(C/\mathbb{F}_q, T)$ at T=1, first multiply (4) by 1-Tand then put T=1: we get $L(C/\mathbb{F}_q, 1)/(1-q) = ((1-T) \cdot Z(C/\mathbb{F}_q, T))$ (T=1). On the other hand, multiplying (5) by 1-T and evaluating at T=1 gives the desired value.

The numerator $L(C/\mathbb{F}_q, T)$ of $Z(C/\mathbb{F}_q, T)$ is called the *L*-polynomial or the *L*-function of C/\mathbb{F}_q . We see from (4) that $L(C/\mathbb{F}_q, T)$ is the "interesting part" of the zeta function, since the denominator does not really depend on C/\mathbb{F}_q . This *L*-function has several important properties, among which is the following.

4.3.3. Functional equation. — Let us now make use of the strong Riemann-Roch theorem and prove the theorem below, which is a very nice complement to Theorem 3.21:

Theorem 4.22 (Functional Equation). — Let C/\mathbb{F}_q be a smooth projective curve of genus g over a finite field \mathbb{F}_q . The zeta function $Z(C/\mathbb{F}_q, T)$ satisfies the functional equation:

(6)
$$Z(C/\mathbb{F}_q,T) = q^{g-1}T^{2g-2} \cdot Z\left(C/\mathbb{F}_q,\frac{1}{qT}\right).$$

As an exercise, translate this relation (given in terms of the variable T) into a relation in terms of the "s-variable" (with $T = q^{-s}$). You should obtain a relation between $\zeta(C/\mathbb{F}_q, s)$ and $\zeta(C/\mathbb{F}_q, 1-s)$, that you should compare to the functional equation satisfied by the usual Riemann zeta function.

Proof. — Again, in the case where g = 0, there is nothing to prove: we already know that $L(C/\mathbb{F}_q, T)$ is a polynomial with degree ≤ 0 whose value at T = 0 is 1, so that $L(C/\mathbb{F}_q, T) = 1$ and a direct substitution $T \leftrightarrow 1/qT$ in $Z(C/\mathbb{F}_q, T) = (1 - T)^{-1}(1 - qT)^{-1}$ gives (6). We now assume that $g \geq 1$.

To prove (6), it suffices to prove that the rational function

$$X: T \mapsto T^{1-g} \cdot Z(C/\mathbb{F}_q, T)$$

is invariant under the transformation $T \mapsto 1/qT$. Lemma 3.17 above implies that, for all $n \ge 0$,

$$A_n(C) = \sum_{\substack{[D] \in \operatorname{Pic}(C) \\ \deg[D] = n}} \frac{q^{\ell(D)} - 1}{q - 1},$$

the sum ranging over all divisor classes of degree n in $\operatorname{Pic}(C)$ (note that $\ell(D)$ depends only on the class of D in $\operatorname{Pic}(C)$). Since there are exactly h(C) divisor classes of degree n in $\operatorname{Pic}(C)$ (recall the bijection between $\operatorname{Pic}^{0}(C)$ and that set), we obtain that

$$(q-1) \cdot X(T) = (q-1) \cdot T^{1-g} \cdot Z(C/\mathbb{F}_q, T) = T^{1-g} \cdot \sum_{n=0}^{\infty} \left(\sum_{\substack{[D] \in \operatorname{Pic}(C) \\ \deg[D]=n}} q^{\ell(D)} - 1 \right) \cdot T^n.$$

Denote by \mathcal{D} the set of divisor classes $[D] \in \operatorname{Pic}(C)$ with $0 \leq \deg[D] \leq 2g - 2$. Separating terms with $0 \leq n \leq 2g - 2$ from those with $n \geq 2g - 1$ in the last displayed equation, we get:

$$\begin{aligned} (q-1) \cdot X(T) &= \sum_{[D] \in \mathcal{D}} \left(q^{\ell(D)} - 1 \right) T^{1-g + \deg D} + \sum_{n \ge 2g-1} \left(\sum_{\substack{[D] \in \operatorname{Pic}(C) \\ \deg[D] = n}} q^{\ell(D)} - 1 \right) \cdot T^n \\ &= \sum_{[D] \in \mathcal{D}} q^{\ell(D)} T^{1-g + \deg D} - \sum_{[D] \in \mathcal{D}} T^{1-g + \deg D} + \sum_{n \ge 2g-1} \left(\sum_{\substack{[D] \in \operatorname{Pic}(C) \\ \deg[D] = n}} q^{\ell(D)} - 1 \right) \cdot T^n. \end{aligned}$$

The middle sum is easy to compute:

$$\sum_{[D]\in\mathcal{D}} T^{1-g+\deg D} = \sum_{n=0}^{2g-2} h(C) \cdot T^{1-g+n} = h(C) \cdot T^{1-g} \cdot \frac{T^{2g-1}-1}{T-1} = h(C) \cdot \frac{T^g - T^{1-g}}{T-1}.$$

The last sum has (essentially) already been computed in the proof of the rationality of the zeta function (based on the fact that $\ell(D) = \deg D + 1 - g$ when $\deg D \ge 2g - 1$):

$$\sum_{\substack{n \ge 2g-1 \\ \deg[D]=n}} \left(\sum_{\substack{[D] \in \operatorname{Pic}(C) \\ \deg[D]=n}} q^{\ell(D)} - 1 \right) \cdot T^n = h(C) \cdot \left(\frac{(qT)^{1-g}}{1-qT} - \frac{T^{1-g}}{1-T} \right).$$

So we have proved that

$$(q-1) \cdot X(T) = \underbrace{\sum_{[D] \in \mathcal{D}} q^{\ell(D)} T^{1-g+\deg D}}_{:=X_1(T)} + \underbrace{h(C) \cdot \left(\frac{q^g T^g}{1-qT} - \frac{T^{1-g}}{1-T}\right)}_{:=X_2(T)}.$$

The fact that the second part $X_2(T)$ is invariant under the substitution $T \mapsto 1/qT$ can be checked by a direct computation. It remains to see why $X_1(T) = X_1(1/qT)$ and we will be done.

We have

$$X_1(1/qT) = \sum_{[D]\in\mathcal{D}} q^{\ell(D)} \cdot (qT)^{-\deg D - 1 + g} = \sum_{[D]\in\mathcal{D}} q^{\ell(D) - \deg D - 1 + g} \cdot T^{-\deg D - 1 + g}.$$

Now, choose a divisor K_C in the canonical class $[K_C] \in \text{Pic}(C)$ (whose existence is asserted by the Riemann-Roch theorem). Recall that deg $K_C = 2g - 2$. Further, the map $D \mapsto D' = K_C - D$ is a permutation of \mathcal{D} . Now, by the Riemann-Roch theorem, we have

$$\ell(D) - \deg D - 1 + g = \ell(K_C - D),$$

and thus

$$X(1/qT) = \sum_{[D]\in\mathcal{D}} q^{\ell(K_C-D)} \cdot T^{\deg(K_C-D)+1-g} = \sum_{[D']\in\mathcal{D}} q^{\ell(D')} \cdot T^{\deg D'+1-g} = X_1(T).$$

Finally, we have X(1/qT) = X(T) because both X_1 and X_2 satisfy such a relation. Which proves the functional equation (6) for the zeta function!

From (6), one deduces immediately the following result.

Corollary 4.23 (Rationality II). — Let $L(C/\mathbb{F}_q, T)$ be the numerator of the zeta function of C/\mathbb{F}_q . The L-polynomial $L(C/\mathbb{F}_q, T) \in \mathbb{Z}[T]$ has degree 2g and satisfies

(7)
$$L(C/\mathbb{F}_q, T) = q^g T^{2g} \cdot L\left(C/\mathbb{F}_q, \frac{1}{qT}\right).$$

4.3.4. Consequences of the functional equation. — Let us review what we know so far about the numerator L.

Let C/\mathbb{F}_q be a smooth projective curve of genus g over a finite field \mathbb{F}_q . Write its zeta function as

$$Z(C/\mathbb{F}_q,T) = \frac{L(C/\mathbb{F}_q,T)}{(1-T)(1-qT)}$$

The denominator of $Z(C/\mathbb{F}_q, T)$ does not really depend on C, but only on the base field \mathbb{F}_q . So, to compute $Z(C/\mathbb{F}_q, T)$ for a given curve C, we need only compute the numerator $L(C/\mathbb{F}_q, T)$.

We already know that $L(C/\mathbb{F}_q, T)$ has integral coefficients and degree 2g, and that $L(C/\mathbb{F}_q, 0) = 1$. Moreover this polynomial satisfies a functional equation

$$L(C/\mathbb{F}_q, T) = (qT^2)^g \cdot L\left(C/\mathbb{F}_q, \frac{1}{qT}\right).$$

As a consequence, one deduces:

Proposition 4.24. — Write $L(C/\mathbb{F}_q, T) = \sum_{i=0}^{2g} a_i T^i$, with $a_i \in \mathbb{Z}$. Then

$$\forall i \in \{0, \dots, g\}, \quad a_{2g-i} = q^{g-i} \cdot a_i.$$

In particular, since $a_0 = 1$, we have $a_{2g} = q^g$.

Proof. — The relation follows from the functional equation (7):

$$(qT^{2})^{g} \cdot L(C/\mathbb{F}_{q}, (qT)^{-1}) = \sum_{i=0}^{2g} q^{g}T^{2g} \cdot a_{i} \cdot q^{-i}T^{-i} = \sum_{i=0}^{2g} q^{g-i}a_{i} \cdot T^{2g-i}$$
$$= \sum_{j=0}^{2g} q^{j-g}a_{2g-j} \cdot T^{j} = \sum_{i=0}^{2g} a_{i} \cdot T^{i} = L(C/\mathbb{F}_{q}, T).$$

It remains to identify coefficients of T.

Since we know that $a_0 = 1$, that $a_{2g} = q^g$ and that we can deduce $a_{g+1}, \ldots, a_{2g-1}$ from a_1, \ldots, a_g , it remains to find a way to compute these g coefficients. These can be computed recursively if we know $\#C(\mathbb{F}_{q^n})$ for sufficiently many small values of n $(n = 1, \ldots, g$ will do). More precisely, factor $L(C/\mathbb{F}_q, T)$ as a product

$$L(C/\mathbb{F}_q, T) = \prod_{j=1}^{2g} (1 - \alpha_j \cdot T),$$

for some complex numbers $\alpha_j \in \mathbb{C}^*$ (this factorization certainly exists because $L(C/\mathbb{F}_q, 0) = 1$, the α_j are then the inverses of the roots of L in \mathbb{C}). With this notation:

Proposition 4.25. — For all integers $n \ge 1$,

(8)
$$\#C(\mathbb{F}_{q^n}) = q^n + 1 - \sum_{j=1}^{2g} \alpha_j^n.$$

The set $\{\alpha_j\}_{j=1,\dots,2g}$ is stable under the map $\alpha \mapsto q/\alpha$.

Proof. — We start with the relation:

$$(1-T)(1-qT) \cdot Z(C/\mathbb{F}_q, T) = \prod_{j=1}^{2g} (1-\alpha_j \cdot T).$$

We take a (formal) logarithm of this expression and expand the resulting power series, using that $-\log(1-z \cdot T) = \sum_{n \ge 1} \frac{(zT)^n}{n}$, we obtain that:

$$\sum_{n \ge 1} (1 + q^n + \#C(\mathbb{F}_{q^n})) \frac{T^n}{n} = \sum_{n \ge 1} \left(\sum_{j=1}^{2g} \alpha_j^n \right) \cdot \frac{T^n}{n}.$$

Which leads to the desired relation, by identification of coefficients of T. The second statement follows from the functional equation because

$$(qT^2)^g \cdot L(C/\mathbb{F}_q, (qT)^{-1}) = \prod_{j=1}^{2g} \left(1 - \frac{q}{\alpha_i} \cdot T\right) = \prod_{j=1}^{2g} (1 - \alpha_j \cdot T) = L(C/\mathbb{F}_q, T).$$

Note also that $\prod_{j=1}^{2g} \alpha_j = q^g$ because the leading coefficient a_{2g} of L is q^g .

Now, for all $n \ge 1$, put

$$\sigma_n(C) = \#C(\mathbb{F}_{q^n}) - q^n - 1 = -\sum_{j=1}^{2g} \alpha_j^n.$$

It is clear that $\sigma_n(C)$ can be expressed in terms of the symmetric polynomials in the α_j (by the so-called Newton's formulae). Moreover, by the relations between the coefficients and the roots of a polynomial, there is a link between the a_i and the inverse roots α_j . The detailed computation (left as an exercise) leads to the recursive relation:

$$\forall i = 1, \dots, g, \qquad i \cdot a_i = \sum_{j=0}^{i-1} \sigma_{i-j}(C) \cdot a_j.$$

It is now clear that the computation of the zeta function of C/\mathbb{F}_q requires only the knowledge of $\#C(\mathbb{F}_{q^n})$ for $n = 1, \dots, g$.

Again, computing $Z(C/\mathbb{F}_q, T)$ (a power series defined in terms of $\#C(\mathbb{F}_{q^n})$ for all n) is equivalent to knowing only $\#C(\mathbb{F}_{q^n})$ for a very small number of small n! This is more or less standard nowadays, but it is still surprising.

4.3.5. Examples. — Before moving on to the next chapter, let us give a few examples of how to actually compute zeta functions.

Example 4.26. — Let $k = \mathbb{F}_3$ and consider the curve C_0 defined over \mathbb{F}_3 with affine equation

$$C_0 \subset \mathbb{A}^2: \quad y^2 = x^3 - x.$$

We denote by $C \subset \mathbb{P}^2$ the projective closure of C_0 (*i.e.* the curve in \mathbb{P}^2 defined by homogenizing the equation for C_0). It is readily checked that C is indeed a curve, and that it is smooth. Since C is a smooth plane curve defined by a cubic equation (that is, by homogeneous polynomial of degree 3), it has genus g = 1.

By the above, to compute the zeta function of C/\mathbb{F}_3 , we need only compute $\#C(\mathbb{F}_3)$. The affine curve C_0 has 3 points over \mathbb{F}_3 : (0,0), (1,0) and (2,0) (as can be seen by a direct check), and C has only one point at infinity, with projective coordinates $[0:1:0] \in C$. Since this last point is clearly \mathbb{F}_3 -rational, we have $\#C(\mathbb{F}_3) = 4$.

After a quick computation using facts in the previous subsection, we find that

$$Z(C/\mathbb{F}_3,T) = \frac{3T^2 + 1}{(1-T)(1-3T)} = \frac{(1+i\sqrt{3}\cdot T)(1-i\sqrt{3}\cdot T)}{(1-T)(1-3T)}.$$

Example 4.27. — Now set $k = \mathbb{F}_2$ and consider the two curves

$$C_1/\mathbb{F}_2: \quad y^2 + xy = x^3 + x, \qquad C_2/\mathbb{F}_2: \quad y^2 + y = x^3.$$

As in the previous example, we only give their affine equations, but we are really dealing with the underlying projective curves. Both C_1 and C_2 are smooth projective curves over \mathbb{F}_2 , and they both have genus 1, and one point at infinity $\infty = [0:1:0]$ which is \mathbb{F}_2 -rational (*i.e.* when counting rational points, we count the affine points, which are basically solutions to the affine equations above, and we add 1 to the result). Again, computing only $\#C_1(\mathbb{F}_2)$ and $\#C_2(\mathbb{F}_2)$ will yield their zeta functions. And again, by a direct case-by-case computation, we find that

$$C_1(\mathbb{F}_2) = \{(0,0), (1,0), (1,1), \infty\}, \text{ and } C_2(\mathbb{F}_2) = \{(0,0), (0,1), \infty\}.$$

The arguments above lead to expressions for the zeta functions:

$$Z(C_1/\mathbb{F}_2, T) = \frac{2T^2 + T + 1}{(1 - T)(1 - 2T)}$$
, and $Z(C_2/\mathbb{F}_2, T) = \frac{2T^2 + 1}{(1 - T)(1 - 2T)}$

Note that the numerator of the first zeta function can be factored as

$$2T^{2} + T + 1 = \left(1 - \frac{-1 + i\sqrt{7}}{2} \cdot T\right) \left(1 - \frac{-1 - i\sqrt{7}}{2} \cdot T\right),$$

where $\frac{-1\pm i\sqrt{7}}{2}$ has magnitude $\sqrt{2}$.

Example 4.28. — Let p be a prime number such that $p \equiv 2 \mod 3$, and consider the projective curve C/\mathbb{F}_p defined by the homogeneous equation

$$C \subset \mathbb{P}^2: \quad X^3 + Y^3 + Z^3 = 0$$

One checks that this curve is irreducible and smooth (remember that p has to be $\neq 3$), and that it has genus 1.

Since $p \equiv 2 \mod 3$, the map $x \mapsto x^3$ is a bijection $\mathbb{F}_p \to \mathbb{F}_p$ (this map always sends 0 to 0, and its restriction to $\mathbb{F}_p^{\times} \to \mathbb{F}_p^{\times}$ is a group isomorphism because 3 is coprime to the order of \mathbb{F}_p^{\times}). In particular, we deduce that there is a bijection between $C(\mathbb{F}_p) \subset \mathbb{P}^2(\mathbb{F}_p)$ and $H(\mathbb{F}_p) \subset \mathbb{P}^2(\mathbb{F}_p)$, where $H \subset \mathbb{P}^2$ is the line H : x + y + z = 0. Thus, $\#C(\mathbb{F}_p)$ is the same as the number of \mathbb{F}_p -rational points on a projective line, that is to say $\#C(\mathbb{F}_p) = \#\mathbb{P}^1(\mathbb{F}_p) = p + 1$.

From this, one easily deduces that

$$Z(C/\mathbb{F}_p, T) = \frac{pT^2 + 1}{(1 - T)(1 - pT)}$$

Note that, if $p \equiv 1 \mod 3$, the curve C/\mathbb{F}_p still makes sense, and is still smooth of genus 1. But we can not use the simple argument above to compute $\#C(\mathbb{F}_p)$. Nonetheless, we know that the zeta function of C/\mathbb{F}_p has the form

$$Z(C/\mathbb{F}_p, T) = \frac{pT^2 + a \cdot T + 1}{(1 - T)(1 - pT)}$$

for some integer a. A more intricate computation of $\#C(\mathbb{F}_p)$ involving character sums gives a closed formula for a in terms of p.

Example 4.29. — As a final example for this type of computation, let us consider the smooth projective curve M/\mathbb{F}_3 defined as the projective closure of the curve given by the affine equation

$$M/\mathbb{F}_3: \quad y^3 + y = x^4.$$

One checks that M is irreducible and smooth. It has genus g = 3. To compute its zeta function, we need only find $\#M(\mathbb{F}_3)$, $\#M(\mathbb{F}_9)$ and $\#M(\mathbb{F}_{27})$. Either by a direct case by case computation, or with a more clever point count (see Homework #1), one finds:

$$Z(M/\mathbb{F}_3, T) = \frac{27T^6 + 27T^4 + 9T^2 + 1}{(1 - T)(1 - 3T)}$$