CHAPTER 4

RIEMANN-ROCH AND THE RATIONALITY OF ZETA
FUNCTIONS

4.1. More on divisors

In this section, C' will be a smooth projective curve over a finite field F,.
In the last chapter, we defined divisors on C' as Z-linear combinations of [F,-places of C"

Div(C) := Z Ny -V @ Ny € Z almost all 0

The set Div(C) is naturally endowed with the structure of an abelian group (“component-wise”
addition). We have also defined a degree map:

deg : Div(C) — Z, ch‘v — va‘degv,

which is a group homomorphism (i.e. deg(D + D’) = deg D + deg D’). This map is well-defined
because the sum is actually finite. We can thus consider its kernel

Div?(C) = ker (deg : Div(C) — Z),

a subgroup of Div(C).
Our next goal is to explain how to associate a divisor to each rational function f € F,(C)*,
and to give some of the properties of such divisors.

4.1.1. Places and valuations. — Let P € C. Since C is smooth, P is a smooth point of
C and the local ring Oc p C F,(C) is a discrete valuation ring. More concretely, it means that
there is a valuation

ordp : Oc.p — Z U {0}, f—=ordp(f) =max{v € Z~y : f€Mp},

giving, for each f € O¢ p, the order of vanishing of f at P as a function C' — P!. One can
extend ordp to the whole of F,(C) by setting

Vf, 9 €Fq(C) xFo(C)*,  ordp(f/g) := ordp(f) — ordp(g).

We then restrict the obtained map to F,(C) C F,(C): we still denote by ordp : Fy(C) — ZU{oo}
the resulting valuation. We use the usual terminology: for f € F,(C)*, if ordp f > 0 (resp.
ordp f > 0, resp. ordp f < 0), one says that f is regular (resp. has a zero, resp. has a pole) at
P € C. These terms refer implicitly to the map f : C' — P! that can be canonically associated
to f € Fy(C) by:

[f(P):1] if f is regular at P

[1:0] =00 otherwise.

f:C — P PGCH{

The rational function f € F,(C') and the map above are usually identified without comments.
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Lemma 4.1. — Let P and Q) be two I[Tq—mtional points on C. Then
ordp = ordg on Fy(C) < P and Q are Gal(F,/F,)-conjugate points,
i.e. P and Q give rise to the “same” ord function if and only if they belong to the same Fy-place
of C.
As a consequence, to each place v of C, we can define a map

ord, : Fy(C) = Z U {00}, f—ordp f (any choice of P € v).

Proof. — Recall that there are Gal(F,/F,)-actions on C(F;) and on F,(C), and that those
actions are compatible in the sense that

Vo € Gal(Fy/Fy), Vf € Fy(O), VP € C(Fy), o(f(P)) =o(f)(o(P)).
As a consequence, one can check that, for all f € E(C),
ordp o(f) = ordy(p)(f)-

Here the functions we consider are elements of F,(C) and thus, are Gal(F,/F,)-invariants. Hence,
for all P € C(F,), and all f € F,(C), we have

Ol"dp f = ordg(p) f
This proves that two conjugates points on C give rise to the same function ord : F,(C) — ZU{oo}.
We only sketch the proof of the converse statement. Let P, @ be two points on C and assume
that they are not conjugate under Gal(F,/F,), that is P € v and @ € w belong to two distinct
places of C. We need to prove that ordp # ordg on F,(C).

Recall that for each point R € C, the fact that Oc g is a discrete valuation ring implies the
existence of uniformizers at R: these are functions tp € F,(C) which “vanish at order 1 at R” i.e.
such that ordrtp = 1 (the existence is a consequence of: O¢ g is discrete valuation ring if and
only if the maximal ideal 9Mp is principal). Then we can define a rational function g € F,(C)*

by the (finite) product:
g = H to H tp/il e F,(C)™.
Q' ew Pev
One can check that ordpr g = —1 at all points P’ € v, while ordg g = 1 at all Q" € w. Now fix
a big enough finite extension Fym /IF, such that P, Q are Fym-rational, and g is defined over Fgm.

Let o
h = II 9 eFy0)
ocGal(Fym /Fy)

Now, by construction of h as a product of Galois conjugate, one checks that h € F,(C)*. By
the properties of ordg, one has that
ordph = —m and ordg h = m.

So, two non conjugate points (P and @) define distinct valuations ordp and ordg on Fy(C). O

4.1.2. Zeroes and poles. — We now gather some more properties on the valuation maps
ord, : Fy(C)* — Z that we have just defined.

Proposition 4.2. — Let f € F (C). Then:
(1) If f has no poles, then f is constant (i.e. f € F, CF,(C)).
(ii) If the map f : C — P! is not constant, then it is surjective.
(i1i) Hence, if f € Fq(C) Ny (one says that f is nonconstant), then f has a least a zero and
at least a pole.
(iv) In general, f has finitely many zeroes and poles.

We don’t prove this here, but see [NX09, Prop 3.3.1, Coro 3.3.2|, Fulton’s book [Ful89|, or
[Har77].
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Ezample 4.3. — As examples, consider the following two elements of Fy(z) = F,(P'), seen as
rational functions on C' = P

(2P 41)
Jz) = (x+1)3(22+1)’

For any place v of P!, you can write down the values of ord, f and ord, g.

g(z) = 2.

4.1.3. Divisors of functions. — For all f € F,(C)*, we put

div(f) :== Z ordy(f) - v.
ve|C|
The last item in the previous proposition implies that this sum is actually finite: indeed, if v is
neither a pole or a zero of f, then ord,(f) = 0 and this happens for all but finitely many places
v. We thus obtain a map

div : F(C)* — Div(C),  f = div(f),

which is a group homomorphism : div(fg) = div(f) + div(g) for all f,g € F,(C)*. We denote
by Princ(C') the image of div, divisors in the subgroup Princ(C) are called principal.

Proposition 4.4. — The following statements hold:
(i) For f € Fy(C)*, div(f) = 0 if and only if f is a constant function (i.e. f € Fy CF,(C)*).
(ii) Two nonzero rational functions f,g have the same image under div if and only if there
exists ¢ € F)¢ such that f =c-g.
(i11) Most importantly, for all f € Fq(C)*, one has

deg(div(f)) = 0.

That is, “a rational function has as many poles as zeroes (counted with multiplicities)”.

Example 4.5. — Write down the divisors of the functions f,g of the previous example and
check that the last item of the Lemma is true.

Proof. — Ttem (i) is a direct consequence of the previous proposition (a nonconstant function
has at least a pole and a zero). Item (ii) follows from item (i) because div(f/g) = div(f)—div(g).
We don’t prove item (iii), which is a bit more difficult: for details, see [NX09, Thm. 3.4.2, Coro.
3.4.3). O

4.1.4. Class group of curves. — From the previous proposition, we deduce that Princ(C)
is actually a subgroup of Div?(C). We can thus define the two following groups:

Definition 4.6. — The Picard group of C is the quotient
Pic(C) := Div(C)/ Princ(C);
and the class-group of C' is the “part of degree 0 of Pic(C)™:
Pic’(C) := Div’(C)/ Princ(C).

We have implicitly used the fact that deg : Div(C') — Z induces a homorphism deg : Pic(C) —
Z (this follows from the fact that we mod out Div(C) by Princ(C) C ker deg).

Two divisors D, D’ € Div(C) are called (linearly) equivalent if they have the same image
in Pic(C), that is, if there exists a rational function f € Fy(C)* such that D = D’ + div(f).
The linear equivalence of divisors is indeed an equivalence relation (exercise). Note that two
equivalent divisors have the same degree.

The class-group is an important invariant of a curve, it has several interpretations : it is the
analogue of the class-group of a number field, it is also the set of F,-rational points on a variety
canonically associated to C' (the Jacobian variety).
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Example 4.7. — On C = P!, every divisor of degree 0 is principal. This implies that Pic?(P')
is the trivial group. To prove this, assume that D = )", n, - v has degree 0, fix a point P, in
each place v with n, # 0, and write each P, in homogeneous coordinates P, = [zp : yp] € P
Now let fp be the rational function

ez

fo=1] 11 (o(yp)X —o(zp)Y)
ve|PY \o€Gal(Fq(v)/Fq)
nvio

It is easy to check that fp is indeed a rational function, that fp € Fy(C)* and that div(fp) = D.
Note that Y n,degv = 0: this ensures that fp € F,(P!).

It follows that, in the case of P!, the degree map deg : Pic(P!) — Z is an isomorphism! The
converse is also true: if C'is a smooth projective curve with Pic(C) ~ Z, then C ~ P*.

Example 4.8. — Assume that char(FF;) # 2 and let e, ez, e3 € F; be distinct. Consider the
(projective) curve C'/IF, defined by the (affine) equation:

C:y?=(x—ep)(x—es)(x —e3).
One can check that C is smooth and that it has a single point at infinity, which we denote by
Py. Fori=1,2,3,let P, = (e;,0) € C. Then

div(zr —e;) =2- P, —2- Py, diviy) =P+ P+ P;—3- Pw.

Note that all the points involved are Fy-rational, so the associated places have degree 1 (i.e.
contain only the point in question), so the notation makes sense.

4.2. Riemann-Roch theorem

Recall that a divisor D = > n, - v € Div(C) is called effective (some people say positive),
denoted by D > 0, if n, > 0 for all places v € |C|. Warning: the set of effective divisors is
not a subgroup of Div(C'). Similarly, for two divisors Dy, Dy € Div(C'), one writes Dy > Dy if
D1 — Dy > 0 (note that this is a set of inequalities on the “components” of Dy, Ds).

This defines a partial order on Div(C'), which is compatible with the degree: if D1 > Ds, then
deg D1 > deg Ds.

4.2.1. Riemann-Roch spaces. — Writing down inequalities between divisors (of functions)
is a convenient way to describe their poles and zeroes:

Example 4.9. — Let f € Fy(C)* be a function that is regular everywhere, except at a place
v € |C|, and assume that it has a pole of order at most n at v. These conditions on f can be
summarized in one inequality:
div(f) > —n-wv.
As another example, the inequality
div(f)>2-w—n-v

means that f is regular everywhere except maybe at v € |C| where it has a pole of order < n,
and f has a zero of order > 2 at w € |C/|.

Definition 4.10. — Let D € Div(C') be a divisor on C. We associate to D the set:
L(D):={f €Fy(C)* : div(f) > =D} U{0}.

In words, £(D) is a set of functions on C' having poles and zeroes “bounded” in terms of D. We
add the 0 function for a reason that will become obvious in a minute.

Let us gather a few facts about these sets £(D):
Proposition 4.11. — Let D, D’ € Div(C).
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(i) If deg D < 0, then L(D) = {0}.
(it) The set L(D) is a Fq-vector space, and L(D) has finite dimension over Fy.
(iii) If D' and D have the same class in Pic(C) (i.e. they differ by a principal divisor: D' =
D +div(g) for some g € k(C)*), then L(D) ~ L(D").

Proof. — Let f € L(D) be a nonzero function. Then, degdiv(f) = 0 (see above) and this implies
that

0 = deg(div(f)) > deg(—D) = —deg(D).
So, the existence of f € £L(D) ~\ {0} forces deg(D) > 0. The fact that £(D) is a F,-vector space
is not difficult to prove: use the definition of div(f) and the properties of ord, :

Vi, f2 € Fy(C)*, VA € Fy, ord,(f1 + f2) > min{ord, fi,ord, fa}, ordy,(A- f1) = ord, fi.

The hardest part of (ii) is showing that the dimension of £(D) is finite: the proof of this is
not that difficult, but it would take us a bit too far (for details, see [Har77, I11.5.19], [Ful89]
or [NXO09, §3.4] or |?]). The idea is simple enough: D is a finite formal sum of places, so one
can do an induction argument on the number of places that “appear” in D (more precisely on
> |ny|). If one can understand what happens to D — £(D) on “ removing a point”, i.e. replacing
D by D — v, we would be done. Indeed, one has £(0) = F, (0 the zero divisor = the empty
sum) because a function that has no poles is constant. One can prove that, if D; < Dy, then
L(D1) C L(D2) (easy) and dimp, (£(D2)/L(D1)) < deg Dy — deg D1 (more difficult). The proof

even gives a trivial upper bound on the dimension:
dimg, £(D) < deg D + 1.
Finally, if D’ = D + div(g) for some g € F,(C)*, one can check that the map
L(D') = L(D), frfg
gives the desired isomorphism. O

Given a divisor D € Div(C), we can define
{(D) := dimg, L(D).

So far, we have proved that ¢(D) is finite for all D, that ¢(D) = 0 if deg D < 0, that ¢(0) = 1,
and that ¢(D) = ¢(D’) if D and D’ have the same class in Pic(C'). And we have mentioned that
(D) < degD + 1.

4.2.2. Riemman-Roch. — We can now state a fundamental result in the algebraic geometry
of curves. Its importance lies in its ability to tell us whether there are functions on a curve having
prescribed zeroes and poles and if so, how many. More precisely, it computes the quantifty ¢(D)
in terms of deg D and of an invariant of C' (which does not depend on D) called the genus of C:

Theorem 4.12 (“Weak Riemann-Roch”). — Let C be a smooth projective curve. There
exists an integer g > 0, called the genus of C' such that:

(1) for all D € Div(C),

(D) >degD — g+ 1;
(2) moreover, if deg D > 2g — 1, there is equality:

(D) =degD —g+1.

We shall also need the stronger version:

Theorem 4.13 (Riemann-Roch). — Let C be a smooth projective curve over Fy. There exists
a dwisor class K¢ € Pic(C) (the canonical class of C), and an integer g > 0 called the genus of
C, such that:

VD € Div(C), 4(D)—4{¢(Kc—D)=degD —g+ 1.
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We won’t prove this theorem, but you can have a look at [NX09, §3.5- §3.6], or [Har77],
[Ful89|. Let us show that the stronger version implies the weaker one. Here is a corollary of the
strong version:

Corollary 4.14. — Let C be a smooth projective curve.
(i) {(Kc) =g,

(11) deg Ko =29 — 2,

(#ii) if deg D > 2g — 2, then £(D) =deg D — g + 1.

Proof. — For part (i), take D = 0 in the Theorem: we obtain the claimed equality. For part
(ii), apply Riemann-Roch to D = K¢ and use part (i). Finally, for part (iii), use Riemann-Roch
and the fact that (D) = 0 whenever deg D < 0. O

The identities in the Corollary directly imply that the “strong Riemann-Roch theorem” implies
“weak Riemann-Roch”.

Example 4.15. — Note that P! has genus 0. Moreover, there are two main situations where
we will need to know how to compute the genus of a curve.

(1) Plane smooth curves. Let C' C P? be a smooth projective curve given by a single homogenous

equation F(z,y,2) € Fylx,y, 2] (we implicitly assume that F is irreducible in Fy[z,y, 2]). If

F' is homogeneous of degree d, then the genus of C' is given by:

(d—1)(d—2)

= 5 .
Warning: this formula is only valid for a smooth curve C'!

(2) Hyperelliptic curves. Let F, be a finite field of odd characteristic, and f(z) € Fylz] be a
squarefree polynomial of degree > 3. Let C' be the smooth projective curve over I, associated
to the affine plane curve Cy of equation y? = f(z) as in Homework #1 (so we have Cy C A?
and C C PV for some N depending only on deg f) . Then the genus of C is given by

9(C)

deg f—1
o1 ||
4.2.3. Finiteness of Pic’(C). — As a first application of the Riemann-Roch theorem, we

prove the following important finiteness result:

Theorem 4.16. — Let C be a smooth projective curve over a finite field Fy. Then its class-group
Pic’(C) is a finite abelian group.

Proof. — The fact that Pic?(C) is abelian is obvious: Pic(C) is defined as the quotient of an
abelian group. So we now turn to the proof of the finiteness statement. Given an integer d > 0,
we have proved at the beginning of this chapter that the following set is finite:

{E €Div(C) : E>0and degE =d}.

Choose a big enough integer d > 0 (say, d > g): for any divisor D € Div(C) of degree d,
the (weak) Riemann-Roch theorem tells us that ¢(D) > d 4+ 1 — g, i.e. that ¢(D) > 0. This
implies that there exists a nonzero function f € £(D). By definition, this means that the divisor
E := D +div(f) is effective and deg E = deg D = d.

We have just proved that, for any D € Div(C') of degree d > g, there exists an effective divisor
E € Div(C) which lies in the same class in Pic(C). This shows that there is a surjection from
the set of effective divisors of degree d to the set of divisor classes of degree d. Since the set of
effective divisors of degree d is finite (see above), we conclude that the set of divisor classes in
Pic(C) of degree d is finite.

To finish the proof, it remains to note that there is a bijection between Pic%(C) (the set of
divisor classes of degree 0) and the set Pic?(C) of divisor classes of degree d: indeed, the map
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[D] € Pic? — [D — Dg] € Pic®, where Dy € Div(C) is a fixed divisor of degree d, gives such a
bijection. H

The order of Pic’(C) is called the class-number of C, denoted by h(C). This is another
important invariant of C': it serves as a more geometric analogue of the class-number of number
fields. Later on (spoiler alert), we will see how to recover h(C) from the zeta function of C'.

4.3. Rationality and functional equation of the zeta function

4.3.1. Preliminary results. — Let us first prove two more lemmas about divisors on curves.

Lemma 4.17. — Let D € Div(C) be a divisor, then

|
q—1

In words: the class [D] € Pic(C) of D contains (¢"P) —1)/(q — 1) effective divisors.

#{E €Div(C) : E>0 and [E] =[D] in Pic(C)} =

Proof. — For a divisor G € Div(C) in the class [D] of D, there is a function f € F,(C)* such
that G = D + div(f). Then G is effective if and only if f € £(D) \ {0} (see above).

There are exactly ¢“?) — 1 nonzero functions in £(D) (because £(D) ~ (F,)*P) as F -vector
spaces), and two of them give rise to the same divisor if and only if they differ by a (multiplicative)
constant ¢ € . Hence the result. O

Given our curve C, the image of the degree map deg : Div(C) — Z is a subgroup of Z: by the
structure theorem of such subgroups, there exists an integer ¢ > 1 such that

deg(Div(C)) =Z - oc.
For any integer n > 0, let
Ap(C):={D eDiv(C) : D>0and degD =n}.

Recall that the zeta function of C'/F, can be written under the form

Z(C/Fy,T) =Y TP = iAn(C) T =1+ iAn(C
n=0 n=1

D>0

Thus, it will be of interest to be able to “compute” A, (C) for many values of n. We now give a
formula for this number A, (C) of effective divisors on C of a given degree n € Z~, at least for
some n:

Lemma 4.18. — Let C be a smooth projective curve over F, of genus g. For all integers n > 1
such that ¢ | n and n > max{0,2g — 1}, one has

_ h(C) n+g—1
An(C) = -1 (q 1),
where h(C) = # Pic®(C) is the class-number of C.

Proof. — Let h = h(C), and fix representatives D1, ..., Dy in Div(C) of all divisor classes of
degree n (remember that there is a bijection between the finite set Pic’(C) and the set of all
divisors classes of degree n on C'). Then, by the previous Lemma, we obtain:

h ¢"P) 1
#{D>0:degD =n} =Y {D>0: [D]= D] € Pic(C)} = Z

i=1 i=1 q—1
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Now by the weak Riemann-Roch theorem, for n > max{0,2¢ — 1}, we have ¢(D;) = deg D; +
1—g=n+1—g (for all € [1,h]). This leads to the result:

h (D) h o nti1—g
q -1 q -1 h 1—
A = = = . n+l—g _ 1).
0= =Y = )
i=1 =1
The use of the hypothesis that d¢c divides n is implicit, where have we made use of it? O

4.3.2. Rationality of (. — Let C//F; be a smooth projective curve over a finite field F,. For
any integer n > 0, let A,,(C) be the number of effective divisors on C' of degree n (we have seen
earlier that this number is finite). Recall that

Z(C[F,T) = > =Y Au(C)T" € Z[T]].
Ppue

To know more about the zeta function, we “compute” as many coefficients A, (C) as possible.
We start by proving the following result.
Theorem 4.19. — The exists a divisor of degree 1 on C'. In other words, éc = 1.

Proof. — We make use of the previous Lemma: denoting by h(C) = # Pic’(C) the class-number
of C, we have proved that, for all n > 1 such that d¢ | n and n > max{0,2g — 1},

h(C
A4,(C) = M griea 1y
q—1
Note that A,(C) = 0 for all n > 1 that are not divisible by dc (by construction of §c, which
generates the image of the degree map). This shows that

Z(C/F,,T) = i An(C)-T" = f: Aps.(C) - THC
n=0

= k=0
= Y Ap(O)TMC 4+ N Ay (C)THC
kéc<2g—1 kéc>2g—1
= F\(T%) + ne) . Z (¢"ct1=9 — 7). koo
7 kde>29-1

where F} is a polynomial with integral coeffcicients. Computing the last sum (which is the sum
of two geometric series), we obtain that

h(C)-q'9  h(0O)

(3) (4=1) Z(C/Fe, T) = B(T°) + T~ poie ~ T 70

where Fj is a polynomial with integral coefficients. This already shows that Z(C/F,,T) is a
rational function of 7°¢, and moreover that Z(C /Fq,T) has a simple pole at ' = 1 (because
1-T°=(1-T)-(T°' +---+1) vanishes at order 1 at T = 1).

Let us now consider the “base changed” situation: C' being defined over F,, it makes sense
to consider it as a curve over F where ¢ = gc. Doing the same computation as above with
C/Fy instead of C/F,, we would get that Z(C/F,,T) has a simple pole at T =1 (even if the
“§” of C/F, is different from that of C//F,). Thus, the rational function Z(C/F,,T°¢) also has
a simple pole at T' = 1. Now recall from the last lecture the “base change relation” for zeta
functions:

Z(C[Fy,T°¢) = [] 2(C/Fy,¢-T),

=1
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where the product is over the complex d¢c-th roots of unity. For each such ¢, since Z(C/F,,T) is
actually a rational function in 7°¢ (see (3)), we have Z(C/F,,¢-T) = Z(C/F,, T). In particular,

Z(C/Fy,T°¢) = [[ 2(C/Fy,T) = Z(C/Fy,T)*¢.

¢o=1
Both Z(C/F,,T°¢) and Z(C/F,,T) have a simple pole at T' = ¢!, so that this last relation
implies that dc = 1. ]
Remark 4.20. — Note that the existence of a divisor of degree 1 on a curve C' does not imply

the existence of a rational point.
For example, consider the curve C/Fs defined by

C: y? = —(2° —x)* — 1.

The curve C' has genus 2, and one checks that C' has no Fs-rational points (sample check: if
x =0, then —(2® — x)2 — 1 = —1 = 2 is not a square in F3, ...). Denote by a1, as the roots
of 22 = —1 in F3: a1 and ay are conjugate under the Galois group Gal(F3/F3) (actually, under
Gal(Fg/F3) ~ Z/27Z) and the two points (0, 1), (0,a2) on C are also conjugate. In particular,
they define the same Fs-place vo of degree 2 on C'. Similarly, denote by (1, 32, 83 the roots of
23 — 2z = —1in F3: the §;’s are of degree 3 over F3 and they are Galois conjugates, so that the
three points (f1,1), (82,1) and (B3,1) on C generate the same Fs-place vs of degree 3 on C. Let
D=1 v3—1-vg € Div(C): the divisor D on C has degree 3 — 2 = 1.

The theorem above allows us to prove an important rationality result on Z(C/F,,T): the
following is based on Lemma 3.18, which is a consequence of the “weak Riemann-Roch” theorem.
Later on, we make use of the “strong Riemman-Roch” theorem to give a more precise version.

Theorem 4.21 (Rationality I). — Let C/F, ba a smooth projective curve of genus g over a
finite field Fy. The zeta function Z(C/F,,T) is a rational function of T'. Moreover, it is of the
form

L(C/F,, T)
(1-T)(1—qT)’
where L(C/Fq,T) € Z[T) is a polynomial with integral coefficients, of degree < 2g and which
satisfies L(C'/Fy,0) =1 and L(C/Fy,1) = h(C).

(4) Z(C[Fy, T) =

-1
Thus, by a similar computation to that we did in the proof of 3.19, we have

Z(C[Fq, T) = Y An(C)-T"+ > A,(C)-T"

Proof. — 1If the genus of C' is ¢ = 0, there is nothing to prove. So we now assume that g > 1.
In this situation, Lemma 3.18 and Theorem 3.19 imply that
h
Wnz=2g-1, A0y = MO (prime_yy
q

n<2g—1 n>2g—1
h
= F(T) + % : Z ("9 —1). 1"
q n>2g—1
h
R+ D ey
n>0

h(C)-q'79 1 hC) 1

g—1 1—-qT q—-1 1-T°
where F1 and F3 are certain polynomials with integral coefficients, of degree < 2g — 2. Thus
B(C) g0 h(C)

1—-¢gT 1-T’

= F(T) +

(5) (¢ =1)-Z(C/Fy,T) = F3(T) +



54 CHAPTER 4. RIEMANN-ROCH AND THE RATIONALITY OF ZETA FUNCTIONS

where F3 is a polynomial with integral coefficients (all divisible by ¢ — 1), of degree < 2g — 2.
Summing the three contributions and simplifying the denominators, we obtain the first assertion
of the Theorem. The fact that the degree of L(C/F,,T) is < 2g follows from the fact that
deg F3 < 2g — 2. Finally, we compute the values of L(C/F,,T) at T'=0 and T' = 1 as follows.
First, by definition of Z(C/F,,T), we have Z(C/F,,0) = Ao(C)-T°+0 = 1; on the other hand,
(4) gives Z(C/F,,0) = L(C/F,,0). To evaluate L(C/Fy, T) at T' = 1, first multiply (4) by 1 —T
and then put 7' = 1: we get L(C/F4,1)/(1—q) = ((1-T) - Z(C/F,,T)) (T = 1). On the other
hand, multiplying (5) by 1 — T and evaluating at 7' = 1 gives the desired value. OJ

The numerator L(C/Fy,T) of Z(C/F,,T) is called the L-polynomial or the L-function of
C/F,. We see from (4) that L(C/F,,T) is the “interesting part” of the zeta function, since the
denominator does not really depend on C//F,. This L-function has several important properties,
among which is the following.

4.3.3. Functional equation. — Let us now make use of the strong Riemann-Roch theorem
and prove the theorem below, which is a very nice complement to Theorem 3.21:

Theorem 4.22 (Functional Equation). — Let C/FF, be a smooth projective curve of genus g
over a finite field F,. The zeta function Z(C/F4,T) satisfies the functional equation:

(6) Z(CJF,,T) = ¢ 'T?72%. 7 (C/Fq, qlT> .

As an exercise, translate this relation (given in terms of the variable T') into a relation in
terms of the “s-variable” (with 7' = ¢~®). You should obtain a relation between ((C/F,,s)
and ((C/F4,1 — s), that you should compare to the functional equation satisfied by the usual
Riemann zeta function.

Proof. — Again, in the case where g = 0, there is nothing to prove: we already know that
L(C/F4,T) is a polynomial with degree < 0 whose value at "= 0 is 1, so that L(C/F,,T) =1
and a direct substitution T' <+ 1/¢T in Z(C/F,,T) = (1 —T)"1(1 — ¢T)~! gives (6). We now
assume that g > 1.

To prove (6), it suffices to prove that the rational function

X:Tw—T"9. Z(C/F,,T)

is invariant under the transformation 7"+ 1/¢T. Lemma 3.17 above implies that, for all n > 0,

D) _ 1
q
An(C) = z To—1
Djepic(cy ¢
deg[D]=n

the sum ranging over all divisor classes of degree n in Pic(C') (note that £(D) depends only on
the class of D in Pic(C)). Since there are exactly h(C) divisor classes of degree n in Pic(C)
(recall the bijection between Pic?(C') and that set), we obtain that

o

(q—1)-X(T)=(q—1)-T"9-Z(C/F, T)=T"9-> | > P -1|.1"
n=0 | [D]€Pic(C)
deg[D]=n
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Denote by D the set of divisor classes [D] € Pic(C) with 0 < deg[D] < 2¢g — 2. Separating terms
with 0 < n < 2¢g — 2 from those with n > 2¢g — 1 in the last displayed equation, we get:

(¢—1) X(T) = Z (an) _ 1) Tl-g+degD | Z Z ¢ 1|

[DleD n>2g—1 | [D]€Pic(C)
deg[D]=n
_ Z /(D)1 —g+deg D _ Z pl-g+degD | Z Z 4O 1|
[DleD [D]eD n>2g—1 | [D]ePic(C)
deg[D]=n
The middle sum is easy to compute:
29—2 2g—1 1—
797" -1 T9 —T"79
T17g+degD — .Tlfg+n _ .Tlfg Rl s
> > C) h(C) w1 = MO
[D]eD n=0

The last sum has (essentially) already been computed in the proof of the rationality of the zeta
function (based on the fact that ¢(D) = deg D + 1 — g when deg D > 2g — 1):

1—g Tl—g
o) 1| = ey (W0
SN D SRR I, h(C’)(l_qT ).
n>2g—1 \ [D]€Pic(C)
deg[D]=n

So we have proved that

979 T1-9
—1)- X(T) = UD)pl-g+degD 4 p(cr ( a4 — >
(¢—1) - X(T) [DE}GDQ (©) - 1-7

=Xo(T)

=X (T)

The fact that the second part X5 (7") is invariant under the substitution 7' — 1/¢T can be checked
by a direct computation. It remains to see why X;(7T") = X;(1/¢T) and we will be done.
We have

Xl(l/qT) _ Z qZ(D) . (qT>—degD—1+g _ Z qE(D)—degD—l-‘rg .p—deg D—1+g
[DleD [DleD
Now, choose a divisor K¢ in the canonical class [K¢] € Pic(C') (whose existence is asserted by

the Riemann-Roch theorem). Recall that deg Ko = 2g—2. Further, the map D — D' = Ko —D
is a permutation of D. Now, by the Riemann-Roch theorem, we have

UD) —degD — 1+ g = (K¢ — D),

and thus
X(1/qT) = Z qZ(chD) . pdeg(Ke=D)+1-g _ Z qZ(D') .qdegD'+1—g _ X1(T).
[D]eD [D’]eD
Finally, we have X (1/¢T) = X(T') because both X; and X» satisfy such a relation. Which proves
the functional equation (6) for the zeta function! O

From (6), one deduces immediately the following result.
Corollary 4.23 (Rationality IT). — Let L(C/F,,T) be the numerator of the zeta function of
C/Fq. The L-polynomial L(C/Fq,T) € Z[T| has degree 2g and satisfies

(7) L(C/F,,T) = ¢T% - L (C/]Fq, qlT> )
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4.3.4. Consequences of the functional equation. — Let us review what we know so far
about the numerator L.

Let C/F, be a smooth projective curve of genus g over a finite field F,. Write its zeta function
as

L(C/Fy,T)
(1-T)(1—qT)

The denominator of Z(C/F,,T) does not really depend on C, but only on the base field ;. So,
to compute Z(C/F,,T) for a given curve C, we need only compute the numerator L(C/F,,T).

We already know that L(C/F,, T') has integral coefficients and degree 2¢, and that L(C/F4,0) =
1. Moreover this polynomial satisfies a functional equation

Z(C[Fy,T) =

L(C/F,,T) = (¢T?)¢ - L <C/Fq, qlT> )

As a consequence, one deduces:
Proposition 4.24. — Write L(C/Fy,T) = 3.2 a;,T", with a; € Z. Then
Vi e {Oa"-vg}7 a2g—i :qgii'a%

In particular, since ag = 1, we have azg = ¢7.

Proof. — The relation follows from the functional equation (7):
29 29
(qT?)? - L(C/Fy, (¢T) ") = Z ¢'T% -a; - q 'T™" = Z ¢ la; - T
i=0 i=0

2g 29
=Y Yy T =) a; T'=L(C/[F,,T).

It remains to identify coefficients of T O

Since we know that ag = 1, that asy = ¢9 and that we can deduce agy1,...,a2y—1 from
ai,...,aq, it remains to find a way to compute these g coefficients. These can be computed
recursively if we know #C(Fgn) for sufficiently many small values of n (n = 1,...,g will do).

More precisely, factor L(C/F,,T) as a product

L(C/F,,T) = ﬁ(l —a; - T),

=1

for some complex numbers o; € C* (this factorization certainly exists because L(C/F,,0) = 1,
the a; are then the inverses of the roots of L in C). With this notation:

Proposition 4.25. — For all integers n > 1,
2g

(8) #C(Fp)=q"+1-) af.
j=1

The set {a}j=1,. 24 is stable under the map o — q/cv.

Proof. — We start with the relation:

(1=T)(1—qT)- Z(C/Fe, T) = [[(1 — o - 7).

J=1
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We take a (formal) logarithm of this expression and expand the resulting power series, using that
—log(l—2-T)=>,+ (1)" " we obtain that:

n

29 n
I A
J

1

n .

S (gt #CE) = Y

n>1 n>1 \ j=

Which leads to the desired relation, by identification of coefficients of T. The second statement
follows from the functional equation because

29 29
(T2 - L(C/Fy (7)) =[] (1 e T) “ [ - ;- T) = L(C/F,.T).

Jj=1 Jj=1

Note also that H?g: 1 @; = ¢ because the leading coefficient agy of L is ¢9. O

Now, for all n > 1, put
29
on(C) = #COFp) =" —1= -3 ar.
j=1

It is clear that ¢, (C) can be expressed in terms of the symmetric polynomials in the «; (by
the so-called Newton’s formulae). Moreover, by the relations between the coefficients and the
roots of a polynomial, there is a link between the a; and the inverse roots «;. The detailed
computation (left as an exercise) leads to the recursive relation:

i—1
Vizl,...,g, i-ai=ZJi_j(C)-aj.
j=0

It is now clear that the computation of the zeta function of C'/F, requires only the knowledge of
#C(Fgn) forn=1,---,g.

Again, computing Z(C/F,,T) (a power series defined in terms of #C(Fgn) for all n) is
equivalent to knowing only #C(Fg») for a very small number of small n! This is more or
less standard nowadays, but it is still surprising.

4.3.5. Examples. — Before moving on to the next chapter, let us give a few examples of how
to actually compute zeta functions.

Example 4.26. — Let k = F3 and consider the curve Cj defined over F3 with affine equation
CoC A?: o2 =232

We denote by C' C IP? the projective closure of Cy (i.e. the curve in P? defined by homogenizing

the equation for Cj). It is readily checked that C' is indeed a curve, and that it is smooth. Since

C' is a smooth plane curve defined by a cubic equation (that is, by homogeneous polynomial of

degree 3), it has genus g = 1.

By the above, to compute the zeta function of C/Fs, we need only compute #C(F3). The
affine curve Cy has 3 points over Fs: (0,0), (1,0) and (2,0) (as can be seen by a direct check),
and C' has only one point at infinity, with projective coordinates [0 : 1 : 0] € C. Since this last
point is clearly Fs-rational, we have #C(F3) = 4.

After a quick computation using facts in the previous subsection, we find that

T2 +1 1+4V3-T)(1—ivV3-T
2(C/Fy. T) 37% + _ (1+4V3- 7)1 -iV3-T)
(1-T)1-3T) (1-T)(1-3T)
Ezxample 4.27. — Now set k = Fy and consider the two curves

C1/Fy: y? +axy=a3+uz, Co/Fy: y? +y =21
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As in the previous example, we only give their affine equations, but we are really dealing with
the underlying projective curves. Both C7 and Cy are smooth projective curves over Fo, and
they both have genus 1, and one point at infinity co = [0 : 1 : 0] which is Fa-rational (i.e. when
counting rational points, we count the affine points, which are basically solutions to the affine
equations above, and we add 1 to the result). Again, computing only #C(F3) and #C5(Fq) will
yield their zeta functions. And again, by a direct case-by-case computation, we find that

C1(Fy) = {(0,0),(1,0),(1,1),00}, and Cy(F2) = {(0,0),(0,1), 00}.
The arguments above lead to expressions for the zeta functions:

2T2 + T +1 272 + 1
a-ma o) W ZACET) = e oy

Note that the numerator of the first zeta function can be factored as

M2 4+ T41= (1_W.T> <1_W.T>,

Z(C1/F3,T) =

2 2

where %ﬁ has magnitude /2.

Example 4.28. — Let p be a prime number such that p = 2 mod 3, and consider the projective
curve C'/F,, defined by the homogeneous equation

CcP’: X’+Y3+2Z°=0.
One checks that this curve is irreducible and smooth (remember that p has to be # 3), and that
it has genus 1.

Since p = 2 mod 3, the map = — ° is a bijection F, — F, (this map always sends 0 to 0,
and its restriction to F} — IF ¥ is a group isomorphism because 3 is coprime to the order of F;).
In particular, we deduce that there is a bijection between C(F,) C P?(F,) and H(F,) C P*(F,),
where H C P? is the line H : 2 +y + z = 0. Thus, #C(Fp) is the same as the number of
[F,-rational points on a projective line, that is to say #C(F,) = #P1(F,) =p+ 1.

From this, one easily deduces that

pT? +1
2O T = oy =y
Note that, if p = 1 mod 3, the curve C/F), still makes sense, and is still smooth of genus 1. But

we can not use the simple argument above to compute #C(F,). Nonetheless, we know that the
zeta function of C'//IF, has the form

T +a-TH+1
Z(C/Fp,T) = (1-7)(1-pT)’

for some integer a. A more intricate computation of #C(IF,) involving character sums gives a
closed formula for a in terms of p.

Example 4.29. — As a final example for this type of computation, let us consider the smooth
projective curve M /F3 defined as the projective closure of the curve given by the affine equation
M/Fs: 33 +y =2z
One checks that M is irreducible and smooth. It has genus g = 3. To compute its zeta function,

we need only find #M (F3), #M (Fy) and #M (Fa7). Either by a direct case by case computation,
or with a more clever point count (see Homework #1), one finds:

27T0 + 27T* + 972 + 1
Z(M/F3,T) =




