
CHAPTER 5

THE RIEMANN HYPOTHESIS FOR CURVES OVER
FINITE FIELDS

We now turn to the statement and the proof of the main theorem in this course, namely the
Riemann hypothesis for curves over finite fields.

More precisely, we prove the following theorem

Theorem 5.1 (Weil). — Let C/Fq be a smooth projective curve of genus g, defined over a finite
field Fq. Denote by L(C/Fq, T ) the numerator of its zeta function and write this polynomial as
a product

L(C/Fq, T ) =
2g
Y

j=1

(1� ↵j · T ).

Then |↵j | = p
q for all j = 1, . . . , 2g.

The name "Riemann hypothesis" comes from the fact that this theorem can be translated into
the following statement, which is reminiscent of the “classical” Riemann hypothesis:

Corollary 5.2 (Riemann hypothesis). — Let C/Fq be a smooth projective curve of genus g,
defined over a finite field Fq. Then the zeroes of the zeta function s 7! ⇣(C/Fq, s) = Z(C/Fq, q�s)
all have real part 1/2.

5.1. Proof of Theorem 5.1

We now set out to prove the Theorem of Weil. To do so, we roughly follow a proof given by
Stepanov in the 1970’s. His proof was subsequently simplified by Bombieri (see his Bourbaki
talk). There are nice accounts of these proofs, among which: one by Schoof in lecture notes to a
summer school in Abuja in 1990, a short proof by Hindry (in French) in conference proceedings
to “Journées X/UPS”, and you can also have a look at [NX09, §4.2].

5.1.1. Preliminary reduction. — To prove Theorem 4.1, we start by making a few reduc-
tions. Let C/Fq be a smooth projective curve over a finite field. Assume that C has genus g and
that its L-function factors as L(C/Fq, T ) =

Q2g
j=1(1� ↵j · T ).

Lemma 5.3. — Let notations be as above, and let Fqm/Fq be a finite extension. Then

L(C/Fqm , T ) =
2g
Y

j=1

(1� ↵m
j · T ).

Proof. — Immediate from the definition of L(C/Fq, T ) and the “base change formula” for
Z(C/Fq, T ) (see Proposition 2.36).
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The lemma above tells us that, given the L-function of C/Fq and a finite extension Fqm/Fq, we
can compute right away the “inverse zeroes” of the L-function of C/Fqm . But, since |↵m

j | = |↵j |m
for all j = 1, . . . , 2g, this implies the following equivalence:

C/Fq satisfies the RH for curves () C/Fqm does (for some m).

So, given our curve C/Fq, if will be enough to prove that C/Fqm satisfies the Riemann Hypothesis
(for some integer m � 1) to deduce that the original C/Fq does. We can thus “replace q by qm”
but, for simplicity of notation, we will just write q for qm and assume that q is “big enough”.

The second reduction step is the following:

Lemma 5.4. — Hypothesese being as above. The following statements are equivalent:
(i) |↵j | = p

q for all j = 1, . . . , 2g,
(ii) |↵j |  p

q for all j = 1, . . . , 2g,
(iii) For some m � 1, there exists a constant �m > 0 such that, for all large enough n � n0, one

has
�

�#C(Fq2nm)� (q2nm + 1)
�

�  �m · qmn.

Proof. — See second homework assignment.

This latter statement is seemingly weaker, but it will be enough to prove the full Riemann
Hypothesis. We thus need to prove two inequalities: given a curve C/Fq with q “big enough”
(i.e. up to replacing q by qm, or qnm, for some m), find constants C1 > 0, C2 > 0 such that

�C1 · q1/2  #C(Fq)� (q + 1)  C2 · q1/2.
We start by proving the corresponding upper bound, and we will then show the lower bound.

5.1.2. Proof of the upper bound. —

Lemma 5.5. — Assume that q = q20 is a square and that q > (g + 1)4. Then

#C(Fq) < q + 1 + 2g ·pq.

The idea behind the proof is simple enough. Assume that we can construct a rational function
z 2 Fq(C)⇥ such that z vanishes to high order m at all the Fq-rational points of C except possibly
one, say Q 2 C(Fq), where z has a pole of order  n. Then, we would deduce that

m · (#C(Fq)� 1)  # {zeroes of z} = # {poles of z}  n,

and #C(Fq)  n
m + 1. And then, we need to choose the parameters m,n so that this upper

bound is good enough for our purpose (and such that such a z exists).

Proof. — See Homework 2, Exercise 2.

5.1.3. Proof of the lower bound. — We start by proving the required lower bound in a
special case. The general case is given in the following subsection, for completeness (the idea
is the same, but the details are slightly trickier and the general proof requires more technology
than we developped so far).

The special case we consider is the following. Let Fq be a finite field of characteristic p. Let
f(x) 2 Fq[x] be a square-free polynomial of degree e � 1, and d � 1 be an integer, coprime to
pe. Consider a smooth projective curve C over Fq with affine equation

C : yd = f(x).

It turns out that C has only one point at infinity Q1 and that this point is Fq-rational (i.e. when
counting Fq-rational points on C, except for this one point at infinity, we need only count solutions
(x, y) 2 (Fq)2 to the affine equation above). Note that C has genus g = b(d� 1)(e� 1)/2c.

We assume (as we may) that q is a square, that q > (g+1)4 and that, moreover, µd(Fq) ⇢ F⇥
q .

This last condition that the d-th roots of unity are Fq-rational is equivalent to q � 1 ⌘ 0 mod d.
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Now denote by a1 = 1, a2, . . . , ad a choice of representatives in F⇥
q of the quotient F⇥

q /(F⇥
q )

d

(the quotient of F⇥
q by the subgroup of d-th powers in F⇥

q ). In other words, one has

F⇥
q = (F⇥

q )
d t a2 · (F⇥

q )
d t · · · t ad · (F⇥

q )
d.

For all a 2 F⇥
q , consider the auxiliary affine curves Ca ⇢ A2 given by the equation

Ca : a · yd = f(x).

All these curves are smooth and have the same genus g as C. Of course, for a = 1, one has that
C1 = C r {Q1} is just the affine part of C. By the previous lemma, applied to Ca, we get:
(9) 8a 2 F⇥

q , #Ca(Fq) < q + 1� 1 + 2g ·pq = q + 2g ·pq.

We now count rational points. Let Z0 = {x 2 Fq : f(x) = 0} be the zet of Fq-rational zeroes
of f , and put Z = {(x, 0), x 2 Z0} ⇢ F2

q . By definition, all the sets Ca(Fq) (a 2 F⇥
q ) contain Z

since (x, 0) 2 A2(Fq) satisfies the equation for Ca.
Now, if x 2 Fq r Z0, then f(x) 2 F⇥

q and there exists a unique i 2 {1, . . . , d} (depending on
x) such that f(x) 2 ai · (F⇥

q )
d. Then the equation f(x) = ai · yd has exactly d solutions y 2 F⇥

q

(by construction, there is at least one, and at most d; but given one such y, you can construct
d� 1 others by multiplying y by non trivial d-th roots of unity). Thus, any x 2 Fq rZ0 induces
d distinct Fq-rational points on exactly one of the Cai (i 2 {1, . . . , d}). So

d ·#(Fq r Z0) =
d
X

i=1

#(Cai(Fq)r Z).

Writing r = #Z0 = #W , this point-count gives:

d · (q � r) = �d · r +
d
X

i=1

#Cai(Fq) = �d · r +#C(Fq)� 1 +
d
X

i=2

#Cai(Fq).

Using the upper bound (9), we get

#C(Fq)� 1 = d · q �
d
X

i=2

#Cai(Fq) � d · q � (d� 1) · (q + 2g ·pq)) � q � (d� 1) · 2g ·pq.

And this gives the lower bound:
#C(Fq)� (q + 1) � �� ·pq,

for some constant � which depends only on the genus of C.
This concludes the proof of the desired lower bound, and thus, of the Riemann hypothesis in

this special case.

5.2. Bonus track: a proof of the lower bound in the general case

Let us prove the following estimate:

Lemma 5.6. — Let C/Fq be a smooth projective curve of genus g over a finite field Fq. Assume
that q = q20 is a square, and that q > (g + 1)4. Then, for k � 1 large enough, one has

#C(Fqk) = qk +O(qk/2),

where the implicit constant in O(.) depends only on C/Fq.

Proof. — Let f 2 Fq(C)⇥ be a non constant rational function. Then f induces a morphism
of curves f : C ! P1, also denoted by f . The inclusion Fq(P1) ⇢ Fq(C) induced by f , gives
us an extension of function fields: let us put K0 = Fq(P1) and K = Fq(C). This extension is
finite but not necessarily Galois, but one can make a further finite extension L/K so that L/K0

is Galois (i.e. take L to be the Galois closure of K/K0 in K). Something we haven’t talked



62 CHAPTER 5. THE RIEMANN HYPOTHESIS FOR CURVES OVER FINITE FIELDS

about so far is the fact that there is an equivalence of categories between function fields over Fq

and smooth projective curves (see Chapter 2 in Silverman’s book [Sil09]). This means that L
is the function field of a certain smooth projective curve Y/Fq of genus gY , and that there is a
morphism g : Y ! P1 extending f .

We denote by G := Gal(L/K0) and H := Gal(L/K) ⇢ G. For any integer k � 1, let
Ak ⇢ Y (Fq) the set of unramified points for g : Y ! P1, whose image in P1 is Fqk -rational. Since
#P1(Fqk) = qk + 1, we have first

(10) 8k � 1, #Ak = #G · (qk + 1) +O(1),

the O(1) accounting for the finitely many ramification points of g (this O(1) is independent of k).
For every point P 2 Ak, the point FrqP maps to the same point in P1 under g (because g is

“defined over Fq”). So, by Galois theory, there exists a unique � 2 G such that FrqP = �(P )
(some people call this � the Frobenius substitution at P ). This allows us to further partition Ak

according to which � is associated to points: for all � 2 G, let Ak,� := {P 2 Ak : FrqP = �(P )}.
Then Ak is a disjoint union of the Ak,� for � 2 G.

For k large enough, one has qk > (gY + 1)4 (and q is a square, so qk is one too) and we can
argue as for the upper bound in Lemma 4.5, this time with Ak,� instead of C. Doing so, we
obtain an upper bound

(11) #Ak,�  qk + 1 + 2gY · qk/2.
Hence,

#Ak =
X

�2G
#Ak,� = #G · (qk + 1) +O(qk/2).

Since #Ak = #G · (qk + 1) +O(1), this means that, for all � 2 G, #Ak = qk +O(qk/2).
By Galois theory, we have

G

�2H
Ak,� =

�

P 2 Y : the image of P in X is Fqk -rational
 

,

where the union is disjoint. Therefore,
X

�2H
#Ak,� = #H ·#X(Fqk) +O(1) = #H · qk +O(qk/2),

by what we have proved. Dividing by #H and reordering terms, we have proved the claim.

Again, the proof of this lemma finishes the proof of the Riemann hypothesis for curves over
finite fields.

5.3. Consequences: Hasse-Weil inequality, etc.

Corollary 5.7. — For all n � 1, one has the bound

|#C(Fqn)� qn � 1|  2g · qn/2,
which is called the Hasse-Weil bound. In other words,

8n � 1, #C(Fqn) = qn +O(qn/2),

where the implicit constant in the O(.) depends only on the genus of C.

This corollary follows easily from Theorem 5.1 and relation (8).

Remark 5.8. — Write L(C/Fq, T ) =
P2g

i=0 aiT
i. The estimate |↵j | = p

q allows us to deduce
a bound on the coefficients ai of L(C/Fq, T ):

8i = 0, . . . , 2g, |ai| 
✓

2g

i

◆

qi/2.
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This is a simple exercise (use the relation between coefficients and roots of a polynomial).

Another interesting consequence of the Riemann hypothesis is a bound on the class-number
of curves:

Corollary 5.9. — Let C/Fq be a smooth projective curve of genus g over a finite field Fq. Then
the class-number of C satisfies

(
p
q � 1)2g  h(C) = #Pic0(C)  (

p
q + 1)2g.

Proof. — Recall that L(C/Fq, 1) = h(C). In particular, L(C/Fq, 1) is a positive integer and
|L(C/Fq, 1)| = L(C/Fq, 1). Now, for all j = 1, . . . , 2g, the triangle inequality implies that

p
q � 1 = |↵j |� 1  |1� ↵j |  1 + |↵j | = p

q + 1.

The product over all j’s of these inequalities yields

(
p
q � 1)2g 

2g
Y

j=1

|1� ↵j | = |L(C/Fq, 1)|  (
p
q + 1)2g.

5.4. Extra: further bounds on the number of rational points

As a direct consequence of the Riemann Hypothesis for curves (Weil’s Theorem 5.1 above),
we have already stated the so-called “Hasse-Weil bound”. More precisely, if C/Fq is a smooth
projective curve of genus g over a finite field Fq, we have

�2g ·pq  #C(Fq)� (q + 1)  2g ·pq,

or, equivalently,

(12) |#C(Fq)� (q + 1)|  b2g ·pqc .
Here, bxc denotes the integral part of a real number x (floor function).

For almost thirty years, there has been close to no investigation as to whether the Hasse-Weil
bound is sharp or not (i.e. given a curve C of some genus g over a finite field Fq, how close to the
upper or lower bound in the Hasse-Weil inequality can #C(Fq)� (q + 1) actually get?). In the
1980’s, new applications of curves over finite fields (to coding theory, to cryptography, etc) were
found and they required more precise bounds on the number of rational points. In particular,
for various applications, it is important to find curves over Fq with many Fq-rational points and
a moderate genus g. That is to say, given a finite field Fq and an integer g � 1, we would like to
find a curve a (smooth projective) curve C of genus g defined over Fq with #C(Fq) as big as is
allowed by the Hasse-Weil bound, or at least to know if such a curve can exist at all.

In this short section, we will state and prove a slight improvement on (12), proven by Jean
Pierre Serre around 1982:

Theorem 5.10 (Serre’s bound). — Let Fq be a finite field, and C/Fq a smooth projective
curve of genus g. Then, for all n � 1,

(13) |#C(Fqn)� (qn + 1)|  g ·
j

2qn/2
k

.

As usual, we denote by L(C/Fq, T ) 2 Z[T ] the numerator of the zeta function of C/Fq, and
we fix complex numbers ↵j such that L(C/Fq, T ) =

Q2g
j=1(1 � ↵j · T ). Note that we may (and

will) assume that g > 0, since there is nothing to prove if g = 0. We make two preliminary
observations:
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Lemma 5.11. — It is possible to choose a numbering of the ↵j’s such that

for all j = 1, . . . , g, ↵j+g = ↵j =
q

↵j
.

In the following, we will assume that such an ordering has been chosen.

Proof. — First note that, by the Riemann hypothesis, ↵j · ↵j = |↵j |2 = q for all j = 1, . . . , 2g
(here, the bar denotes complex conjugation).

There is an even number 2g of ↵j ’s, and we basically need to show that we can pair them up.
Given j 2 {1, . . . , 2g}, either ↵j is real or it is distinct from its complex conjugate ↵j . When ↵j

is real, since |↵j | = p
q, it has to be ±p

q. If ↵j /2 R, we pair it with ↵j . Among the remaining
even number of ↵j , which are real, we need to show that there is an even number of “+p

q” and
an even number of “�p

q”. By construction of the ↵j ’s, we know that
Q2g

j=1 ↵j is the leading
coefficient of L(C/Fq, T ), which is = qg by the functional equation. In particular, there has to
be an even number of ↵j = �p

q (otherwise, the product
Q2g

j=1 ↵j would be negative). So we
have proved that, among the ↵j which are real, there is an even number of �p

q and thus, an
even number of +p

q. In other words, the orders of vanishing of T 7! L(C/Fq, T ) at T =
p
q

and at T = �p
q are even.

This proves that there exists a way of numbering the ↵j ’s such that the desired property
holds.

Lemma 5.12. — For all j = 1, . . . , g, the number ↵j is an algebraic integer.

Proof. — Write L(C/Fq, T ) =
P

ai · T i 2 Z[T ], and let f(T ) = T 2g · L(C/Fq, 1/T ). A
straightforward computation shows that

f(T ) =
2g
X

i=0

a2g�i · T i = T 2g + a1 · T 2g�1 + · · ·+ a2g�1 · T + qg.

In particular, f(T ) is a nonzero monic polynomial with integer coefficients. By definition of
f(T ), each ↵j is a root of f(T ).

In other words, for j 2 {1, . . . , 2g}, there exists a nonzero monic polynomial with integer
coefficients (namely f(T )) which vanishes at ↵j . This is exactly saying that ↵j is an algebraic
integer.

Proof of Theorem 5.1. — We can now give the proof of Serre’s bound. We assume that g > 0,
and we arrange the ↵j ’s such that ↵j+g = q/↵j for j = 1, . . . , g. We put M :=

⌅

2
p
q
⇧ 2 Z�1

and, for any j = 1, . . . , g,
xj := ↵j + ↵j+g +M + 1 2 C.

Then xj is a real number, because it is invariant under complex conjugation. Moreover, by the
Riemann Hypothesis for curves,

xj � M + 1� |↵j + ↵j+g| � M + 1� 2
p
q > 0.

Now define X :=
Qg

j=1 xj : by the above, X is a real positive number. Actually, I claim that X
is an integer. Assuming that claim for the time being, let us prove that it yields the Theorem.
Since X is a positive integer, it has to be � 1. Now, by the inequality between the arithmetic
and geometric means, one has

1

g

g
X

j=1

xj �
0

@

g
Y

j=1

xj

1

A

1/g

= X1/g � 1.

This implies that

M + 1� 1

g
(#C(Fq)� q � 1) =

1

g

g
X

j=1

xj � 1.
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And reordering the terms, we obtain one half of the Theorem:
#C(Fq)� q � 1  g ·M.

To prove the corresponding lower bound, we repeat the same argument with the xj ’s replaced
by

yj := M + 1� (↵j + ↵j+g), 8j = 1, . . . , g,

and we deduce that

M + 1 +
1

g
(#C(Fq)� q � 1) =

1

g

g
X

j=1

yj � 1,

which yields the other half of the Theorem: #C(Fq)� q � 1 � �g ·M .
Now it remains to prove the claim that X is an integer. Note first that each xj is an algebraic

integer (since it is defined as a sum of algebraic integers), so their product X is also an algebraic
integer. Now, seen as an algebraic number, X 2 Q is invariant under the action of Gal(Q/Q),
so X must be a rational number. But an algebraic integer which is rational is an element of Z!
So X 2 Z, as was to be shown.

More generally, the samed sort of argument would give the following fact (left as an exercise):

Lemma 5.13. — Let S = {↵1, . . . ,↵s} a set of s algebraic integers, such that there exists an
odd integer ! for which |↵i| = p!/2 for all i. We assume that S is stable under the action of
GQ = Gal(Q/Q). Then, s is even and

|↵1 + · · ·+ ↵s|  s

2
·
j

2p!/2
k

.


