
CHAPTER 6

SOME ARITHMETIC APPLICATIONS

In this chapter, we give another application of curves over finite fields. Namely, we give an
example where the Riemann hypothesis for curves yields good bounds on exponential sums. And
we use this fact to prove a theorem about the distribution of squares in Fp.

6.1. Some exponential sums

6.1.1. Legendre symbol. — For all odd prime numbers p, we denote by
⇣

·
p

⌘

the Legendre
symbol modulo p. It is defined as follows:

8a 2 Z,
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:=

8

>

<

>

:

0 if a ⌘ 0 mod p,

1 if a 6⌘ 0 mod p and a is a square modulo p,

�1 if a 6⌘ 0 mod p and a is not a square modulo p.

Clearly, this map on Z induces a map on Fp = Z/pZ because
⇣

a
p

⌘

only depends on the residue
class of a modulo p. So the Legendre symbol detects the squares in Fp. Moreover, it is not
difficult to check that

⇣

·
p

⌘

: F⇥
p ! C⇥ is a character of F⇥

p (i.e. a group homomorphism). This

provides a second interpretation of the Legendre symbol:
⇣

·
p

⌘

: F⇥
p ! C⇥ is the only non trivial

group homorphism whose square is the trivial homomorphism x 7! 1 (this group morphism is
then extended to the whole of Fp by setting

⇣

0
p

⌘

= 0).

Proposition 6.1. — Let p be an odd prime number. Then
X

a2Fp

✓

a

p

◆

= 0.

Proof. — Left as an exercise. Remember that the cyclic group F⇥
p (of order p � 1) contains

(p� 1)/2 squares, and as many nonsquares.

This proposition is basically a restatement of the fact that Fp contains as many squares as
nonsquares. In particular, the map

⇣

·
p

⌘

takes the value 1 as many times as it takes the value �1.
In other words, the probability that a “random” element of F⇥

p is a square (resp. a nonsquare) is
1/2.

6.1.2. Character sums. — Let f(x) 2 Z[x] be a monic polynomial in one variable. For all
odd prime number p, let us define the following sum:

S(f ; p) :=
X

x2Fp

✓

f(x)

p

◆

.
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In a sense, S(f ; p) measures the probability that f(x) is a square, given a random x 2 Fp.
Since

�

�

�

⇣
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 1 for all y 2 Fp, and since S(f ; p) 2 R is a sum of p terms, we have the trivial
bound:

|S(f ; p)|  p.

For many applications (see below) however, this bound is insufficient: one would like to find
bounds of the form

|S(f, p)|  Cf · p1�✏ (?),

for a certain constant Cf (depending only on f , and not on p) and a certain exponent ✏ 2 (0, 1).
Such a bound would lead to
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 Cf · p�✏ �! 0 (p ! 1).

In other words, in the “large p” limit, the polynomial f mod p takes roughly as many square
values as nonsquare values. As an example of this behaviour, see the Proposition above (in the
case where f(x) = x).

Of course, one can not hope that such a bound holds for any given f(x) 2 Z[x]: we need to
avoid trivial cases where the reasonning above fails. Say, for example, that f(x) = x2: in this
case, the polynomial f mod p takes only square values (except where it vanishes) and

S(x2; p)

p
=

1

p

X

x2Fp

✓

x2

p

◆

=
1

p

X

x2Fp

✓

x

p

◆2

=
p� 1

p
= 1 + o(1) (p ! 1).

Nonetheless, the theorem below tells us that a strong bound on S(f ; p) exists, provided that
one avoids this kind of “bad polynomials”.

Theorem 6.2 (Weil). — Let f(x) 2 Z[x] be a monic polynomial. We assume that f(x) has
no multiple factors in C[x]. For any odd prime number p such that f(x) mod p 2 Fp[x] has no
multiple factors in Fp[x], one has:

|S(f ; p)|  (deg f � 1) ·pp.

Proof. — Let p be as in the statement of the theorem. Note that

S(f ; p) = �p+
X

x2Fp

✓

1 +

✓

f(x)

p

◆◆

.

But, for any z 2 Fp,

1 +

✓

z

p

◆

=

8

>

<

>

:

1 if z = 0,

2 if z 6= 0 and z is a square inF⇥
p ,

0 if z 6= 0 and z is not a square inF⇥
p

= #{y 2 Fp : y2 = z}.

In other words, the map z 7! 1+
⇣

z
p

⌘

counts the number of square roots of z in Fp. Let U ⇢ A2

be the affine set over Fp defined by

U : y2 = f(x).

With our assumptions on f and p, it is not hard to see that U is an affine curve, and that U is
smooth. Moreover,

#U(Fp) = #{(x, y) 2 F2
p : y2 = f(x)} =

X

x2Fp

#{y 2 Fp : y2 = f(x)} = S(f, p) + p.

We would like to use the results about curves that we know. Unfortunately, U is not projective
so we can not directly apply Weil’s theorem... That being said, we have seen in Homework
#1 how to construct (explicitly) a smooth projective C, defined over Fp, which “completes” U .
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(Remember that, in general, C is not the homoegenisation of U in P2, which might be singular).
For our present purpose, it will be sufficient to know that:
• such a smooth projective curve C exists,
• one does not add too many Fp-rational points on passing from U to C:

#C(Fp)�#U(Fp) =

(

2 if deg f is even,
1 if deg f is odd.

• the genus of C is given by

g =

�

deg f � 1

2

⌫

=

(

deg f�2
2 if deg f is even,

deg f�1
2 if deg f is odd.

The Riemann hypothesis for curves implies that

|#C(Fp)� (p+ 1)|  2g ·pp.

From which one easily deduces that

|S(f ; p)| = |#U(Fp)� p| 
(

(deg f � 2) ·pp+ 1 if deg f is even,
(deg f � 1) ·pp if deg f is odd.

In both cases, one has
|S(f ; p)|  (deg f � 1) ·pp,

as required.

Remark 6.3. — Note that, even if f mod p has multiple factors in Fp[x], one can still prove a
bound as in the Theorem:

|S(f ; p)|  Cf,p ·pp,

for a constant Cf,p. It turns out that Cf,p  deg f � 1.

6.2. Distribution of quadratic residues

Let r � 2 be an integer, and p > r be a prime number. In the sequence of integers

(1, 2, 3, . . . , p� 1)

we look for subsequences (a+1, a+2, . . . , a+r) of r consecutive integers (where 0  a  p�r�1)
which are all quadratic residues modulo p. Do these subsequences exist at all? If so, how many
are there? We are particularly interested in the setting where r is fixed and p ! 1.

More generally, if we fix a sequence of signs " = ("1, "2, . . . , "r) 2 {±1}r, do there exist
sequences (a+ 1, a+ 2, . . . , a+ r) (with 0  a  p� r � 1) of consecutive integers such that

8i = 1, . . . , r,

✓

a+ i

p

◆

= "i ?

This problem was first considered (and solved) by Davenport in the 1930’s. The proof we give
here roughly follows the exposition in the book “Sommes exponentielles” by N. Katz (in French,
see §1.4 there).

For any " = ("1, . . . , "r) 2 {±1}r, we let

N("; p) := #

⇢

a 2 {0, 1, . . . , p� r � 1} :

✓

a+ i

p

◆

= "i for all i
�

be the number of “good sequences”. We have 0  N("; p)  p � r, and we want to know how
p 7! N("; p) behaves when p ! 1. The precise result, due to Davenport (and improved by
Weil), is as follows:
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Theorem 6.4. — Let r � 2, and " 2 {±1}r. Then, for all prime numbers p > r,
�

�

�

N("; p)� p

2r

�

�

�

 r � 1

2
+

✓

1� 1

2r

◆

(r � 1) ·pp.

From this theorem, one deduces the following result:

Corollary 6.5. — Let r � 2, and " 2 {±1}r. Then, for prime numbers p ! 1,

N("; p)

p� r
=

1

2r
+O(p�1/2),

where the constant in the O(.) is explicit (and depends only on r).

Note that the quantity on the left measures the proportion of “good sequences” among the
possible sequences (a+1, a+2, . . . , a+ r) of r consecutive integers. Note also that the estimates
in Theorem 7.4 and Corollary 7.5 are entirely independent on the choice of " 2 {±1}r! There
are 2r choices for ": is this a coincidence that the proportion N(";p)

p�r tends to 1/2r when p ! 1?

Proof of Theorem 7.4. — Note that, for all a 2 {0, 1, . . . , p � r � 1} and all i 2 {1, . . . , r}, one
has

1 + "i ·
✓

a+ i

p

◆

=

8

<

:

2 if
⇣

a+i
p

⌘

= "i,

0 if
⇣

a+i
p

⌘

6= "i.

So that, given a 2 {0, 1, . . . , p� r � 1},
r
Y

i=1

✓

1 + "i ·
✓

a+ i

p

◆◆

=

(

2r if the sequence (a+ 1, a+ 2, . . . , a+ r) is good,
0 otherwise.

So, up to normalization by a constant, this map is the characteristic function for the set of “good”
a’s inside the set of all a’s:

N("; p) =
X

a “good”

1 =

p�r�1
X

a=0

1

2r

r
Y

i=1

✓

1 + "i ·
✓

a+ i

p

◆◆

.

We “complete the sum” and remove the extra terms:

N("; p) =
p�1
X

a=0

1

2r

r
Y

i=1

✓

1 + "i ·
✓

a+ i

p

◆◆

�
p�1
X

a=p�r

1

2r

r
Y

i=1

✓

1 + "i ·
✓

a+ i

p

◆◆

.

We will treat these two sums separately.
Let us start by proving that the second sum gives an error-term. Note that, for a � p � r,

there is one index i 2 {1, . . . , r} such that a+ i = p: for this index i, one has 1 + "i ·
⇣

a+i
p

⌘

= 1

(and, for all other i’s, this term is  2). Thus, for a 2 {p� r, . . . , p� 1,

1

2r

r
Y

i=1

✓

1 + "i ·
✓

a+ i

p

◆◆

 1 · 2r�1

2r
=

1

2
.

Thus the second sum satisfies:

S2 :=

p�1
X

a=p�r

1

2r

r
Y

i=1

✓

1 + "i ·
✓

a+ i

p

◆◆

 r � 1

2
.
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We now estimate the first sum. Expanding the inner products, and exchanging the order of
summation, we get

S1 :=

p�1
X

a=0

1

2r

r
Y

i=1

✓

1 + "i ·
✓

a+ i

p

◆◆

=

p�1
X

a=0

1

2r

0

B

B

@

1 +
X

I⇢{1,...,r}
I 6=?

Y

i2I
"i ·

✓

a+ i

p

◆

1

C

C

A

=
1

2r

X

a2Fp

0

B

B

@

1 +
X

I⇢{1,...,r}
I 6=?

Y

i2I
"i ·

Y

i2I

✓

a+ i

p

◆

1

C

C

A

=
p

2r
+

X

I⇢{1,...,r}
I 6=?

Y

i2I
"i ·

0

@

X

a2Fp

Y

i2I

✓

a+ i

p

◆

1

A .

Remembering that
⇣

·
p

⌘

is multiplicative, we obtain that

S1 � p

2r
=

1

2r

X

I⇢{1,...,r}
I 6=?

Y

i2I
"i ·

0

@

X

a2Fp

✓

Q

i2I(a+ i)

p

◆

1

A .

Now we make use of the triangle inequality and we get
�
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�

S1 � p

2r

�

�
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2r

X

I⇢{1,...,r}
I 6=?

1 ·
�
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�

�

X

a2Fp
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Q

i2I(a+ i)
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For any subset I ⇢ {1, . . . , r} (I non-empty), let us put

fI(x) :=
Y

i2I
(x+ i) 2 Z[x].

Since p > r, this polynomial fI clearly satisfies all the assumptions of Theorem 7.2 (as we know
the factorization of fI(x)). Thus, it results that,

�

�

�

�

�

�

X
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✓

Q
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a2Fp
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fI(a)
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 (deg fI � 1) ·pp = (#I � 1) ·pp.

From which we deduce that
�

�

�

S1 � p

2r

�

�

�


p
p

2r

X

I⇢{1,...,r}
I 6=?

(#I � 1).

At this point, we are almost done: the remaining sum is easy to estimate and, in any case, the
sum depends only on r (not on p) so that we don’t need to be extra careful (improvements on
the upper bound will only lead to better constants in the right-hand side of Theorem 7.4). As
an example of upper bound, one has:

X

I⇢{1,...,r}
I 6=?

(#I � 1) =

r
X

k=1

✓

r

k

◆

(k � 1) 
r

X

k=1

✓

r

k

◆

(r � 1) = (r � 1)(2r � 1).

In conclusion, we have proved that
�

�

�

S1 � p

2r

�

�

�


✓

1� 1

2r

◆

(r � 1) ·pp.

And, putting everything together, we arrive at the desired result:
�
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�

N("; p)� p
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�

S1 + S2 � p
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+ |S2|  r � 1

2
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✓

1� 1

2r

◆

(r � 1) ·pp.
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Hence the theorem. Note that all our estimates are explicit and entirely independent of ": this
means that, for a given r � 2 (and any " 2 {±1}r), it should be possible to compute a bound
Pr > 0 such that, for all primes p > Pr, one has N("; p) � 1 (i.e. for all primes p > Pr, there is
at least one sequence satisfying our requirements).


