
CHAPTER 7

DISTRIBUTION OF FROBENIUS ANGLES

Let C/Fq be a smooth projective curve over a finite field Fq. As we have seen earlier, the
(complex) zeroes of the zeta functions Z(C/Fq, T ) are all on the circle of radius |T | = q�1/2.
For various purposes it is important to know more about how those zeroes are distributed on
the circle. In this chapter, we give a very basic result about the distribution of zeroes of zeta
functions of curves.

7.1. “Frobenius angles” of curves

Let C be a smooth projective curve of genus g = g(C) defined over a finite field Fq. We have
seen that we can associate to C a set of ↵j 2 C, with j = 1, . . . , 2g. The functional equation
tells us that the set {↵1, . . . ,↵2g} is stable under the map ↵ 7! q/↵. Moreover, by the Riemann
Hypothesis of curves, we know that |↵j | = p

q. Thus, we can fix “angles” ✓j(C) 2] � ⇡,⇡] such
that

8j = 1, . . . , 2g, ↵j =
p
q · ei✓j(C).

The set {✓j(C)}j=1,...,2g(C) is called the set of Frobenius angles of C (note that we allow elements
to have a multiplicity, so it would be better to speak of the multiset of Frobenius angles). The
functional equation implies that the set {✓1(C), . . . , ✓2g(C)} is symmetric around 0 (i.e. stable
under the map ✓ 7! �✓).

In this chapter, we are interested in proving more properties of this set of angles. Recall that
2g
X

j=1

ei✓j(C) = q1/2 + q�1/2 � #C(Fq)

q1/2
.

Consequently, if we had more information about the arguments of vectors ei✓j(C) 2 C , we could
deduce a good bound on the left-hand side and thus we could have a better control on #C(Fq).
On one extreme, if the angles ✓j(C) are all very close to 0, say, then the sum

P

j e
i✓j(C) (which

is a real number) is big (i.e. close to 2g) so that C has very few Fq-rational points (not much
more than q + 1� 2g

p
q). If, on the other extreme, the angles are “almost randomly chosen” in

]�⇡,⇡], the sum
P

j e
i✓j(C) is rather small (i.e. much smaller than g) so that C has about q+1

rational points over Fq.
Obviously, this is very vague, but it shows that results on the distribution of the angles ✓j(C)

can lead to theorems on number of rational points on curves.

7.2. Equidistribution

Let us first give a precise definition for what it means for a set of points (or rather a sequence
of sets) to be equidistributed in an interval.
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Definition 7.1. — Let (XN )N�1 be a sequence of finite subsets XN ⇢ [0, 2⇡], with #XN = N .
We say that the sets XN become equidistributed in [�⇡,⇡] if and only if, for any interval
[a, b] ⇢ [�⇡,⇡],

lim
N!1

# {x 2 XN : x 2 [a, b]}
#XN

=
b� a

2⇡
.

(Note that we here allow elements of XN to have multiplicities, so maybe it would be better
to speak of XN as a finite sequence of elements of [0, 2⇡]). In other words, the sequence XN

becomes equidistributed if (in the limit N ! 1) an interval [a, b] ⇢ [�⇡,⇡] contains the right
proportion of elements of XN .

Example 7.2. — For any N � 1, consider the set XN := {�⇡ + 2k⇡/N, k 2 {0, . . . , N � 1}}.
The elements of XN are “evenly” distributed in [�⇡,⇡]. It can be checked that (XN )N�1 becomes
equidistributed in [�⇡,⇡] as N ! 1.

The usual way of proving that a sequence (XN ) becomes equidistributed is to use the following
criterion:

Theorem 7.3 (Weyl’s criterion). — A sequence (XN )N�1 becomes equidistributed in [�⇡,⇡]
if and only if:

8k 2 Z�1, lim
N!1

1

#XN

X

x2XN

eik·x = 0.

The criterion is very useful because it reduces the question of equidistribution to proving
bounds about exponential sums. We don’t go into the proof of Weyl’s criterion, the reader can
easily find one.

Example 7.4. — Let ↵ 2 [�⇡,⇡] r {0}. For any N � 1, consider the set XN := {k↵, k 2
{1, . . . , N}} of multiples of ↵ (where k↵ is to be understood modulo 2⇡ so that k↵ 2 [�⇡,⇡] for
all k).

With the help of Weyl’s criterion, you can show that (XN ) becomes equidistributed in [�⇡,⇡]
if and only if ↵ is not a rational multiple of ⇡.

7.3. Gonality of curves

In the following section, we prove a theorem of equidistribution for the Frobenius angles of
some special families of curves. To define them, we introduce a new invariant of curves:

If f 2 Fq(C) is a nonconstant function on a curve C, the field extension Fq(C)/Fq(f) is a
finite extension (since both fields have transcendance degree 1 over Fq, the extension is at least
algebraic; the detailed proof of the finiteness is to be found in [NX09, Chap. 3]). So, for all
nonconstant rational functions f 2 Fq(C), one can define the degree of f , denoted by deg f , to
be the degree of the field extension [Fq(C) : Fq(f)].

Definition 7.5. — Let C/Fq be a smooth projective curve over Fq. The gonality of C, denoted
by �q(C), is the smallest degree of a nonconstant rational function on C:

�q(C) := min {deg f, f 2 Fq(C)r Fq} .
Another point of view on the gonality is the following. A nonconstant rational function

f 2 Fq(C) induces an algebraic map f : C ! P1 (also denoted by f) defined over Fq, which is
actually surjective. And deg f is the the degree of f as a morphism. This means that, for all
points t 2 P1(Fq), the preimage f�1(t) = {P 2 C(Fq) : f(P ) = t} is nonempty and finite, it
has cardinality  d, and the cardinality is actually = d for almost all t’s (i.e. for all t except at
most finitely many, “the ramification points of f ”).

For example, P1 has gonality 1 and a hyperelliptic curve has gonality 2.
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With assumption of bounded gonality, one can prove upper bounds on the number of rational
points on a curve, without any reference to its genus. We give here two bounds, which are
certainly very far from optimal, but more than sufficient for our purpose.

Lemma 7.6. — Let C/Fq be a smooth projective curve defined over Fq, whose gonality �q(C)
is less than �. For all k � 1, one has

#C(Fqk)  2� · qk.
Proof. — Assume that a curve C has gonality �, and fix a nonconstant rational function f 2
Fq(C) of degree �. Then, as was mentioned above, the corresponding map f : C ! P1 is
surjective and has finite fibers, each of cardinality  deg f = �. The fibers are disjoint, and since
f is defined over Fq, the fibers above t 2 P1(Fqk) cover the whole of C(Fqk). Thus, for all k � 1:

#C(Fqk) 
X

t2P1(Fqk )

#f�1(t)  � ·#P1(Fqk) = �(qk + 1)  2� · qk.

7.4. Equidistribution of Frobenius angles of curves

We can now prove the aforementioned equidistribution theorem.

Theorem 7.7. — Let (Cn)n�1 be a sequence of smooth projective curves over a given finite field
Fq, such that their genus g(Cn) = gn tend to infinity when n ! 1, and that the curves Cn have
bounded gonality, i.e. 9 B > 0 such that �q(Cn)  B for all n � 1.

Then the Frobenius angles {✓j(Cn)}1j2gn become equidistributed in [�⇡,⇡] when n ! 1.

Proof. — We use Weyl’s criterion to prove equidistribution: let Cn be a curve in the sequence,
and {✓j(Cn)} be its Frobenius angles. To show equidistribution, we need to prove that the
exponential sums:

�k(Cn) :=
1

2gn

2gn
X

j=1

eik·✓j(Cn)

tend to zero when n ! 1, for all integers k � 1. We have a nice interpretation of �k(Cn): recall
that, for a given k 2 Z�1,

2gn
X

j=1

eik·✓k(Cn) = q�k/2
2gn
X

j=1

↵j(Cn)
k =

qk + 1

qk/2
� #Cn(Fqk)

qk/2
.

This identity can be seen as a variant of explicit formula (it gives a link between the zeroes of
the zeta function of Cn and the number of Fqk -rational points on Cn). By the triangle inequality

|�k(Cn)|  qk/2 + q�k/2

2gn
+

#Cn(Fqk)

2gn · qk/2 .

For a given (fixed) k � 1, the first term tends to 0 when n ! 1 (this is true for any sequence
of smooth projective curves whose genera ! 1). Now, under one of the assumptions in the
theorem, we can use one of Lemmas 7.6 and get an upper bound on #Cn(Fqk) of the form:

8k � 1, 8n � 1, #Cn(Fqk)  c(k),

where c(k) is a certain function of k, depending on �q(Cn)  B (the main point being that c(k)
is entirely independent of the genus of Cn). From this we deduce that

8k � 1, |�k(Cn)|  o(1) +
c(k) · q�k/2

2gn
= o(1) (when n ! 1).
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So that, for any integer k � 1, the exponential sums �k(Cn) have limit 0 when n ! 1 (under
assumption (1) or (2)). Weyl’s criterion for equidistribution is thus satisfied, and we can conclude
that the theorem holds.

Example 7.8. — Let us give an example of situation where this theorem applies. Let (fn)n�1

be a sequence of polynomials in Fq[x]. We assume that, for all n � 1, fn(x) is monic and
squarefree. Suppose that, as n ! 1, we have deg fn ! 1.

For all n � 1, consider the smooth projective hyperelliptic curve Cn/Fq defined by the affine
equation y2 = fn(x) (see Homework #2). Then, as n ! 1, the genus of Cn (which is roughly
(deg fn)/2) tends to infinity. And, as was noted above, �q(Cn) = 2 for all n because the rational
function Cn ! P1 extending the function (x, y) 7! x has degree 2.

This theorem is obviously a very basic result about the distribution of Frobenius angles. The
goal was only to illustrate uses of the explicit formulas and their variants.



CHAPTER 8

FURTHER BOUNDS ON NUMBER OF POINTS

In this chapter, we give two improved bounds on the number of Fq-rational points on curves
over Fq.

As a direct consequence of the Riemann Hypothesis for curves (Weil’s theorem), we have
already stated the so-called “Hasse-Weil bound”. More precisely, if C/Fq is a smooth projective
curve of genus g over a finite field Fq, we have

�2g ·pq  #C(Fq)� (q + 1)  2g ·pq,

or, equivalently,

(14) |#C(Fq)� (q + 1)|  b2g ·pqc .
Here, bxc denotes the integral part of a real number x (floor function).

For almost thirty years, there has been close to no investigation as to whether the Hasse-Weil
bound is sharp or not (i.e. given a curve C of some genus g over a finite field Fq, how close to the
upper or lower bound in the Hasse-Weil inequality can #C(Fq)� (q + 1) actually get?). In the
1980’s, new applications of curves over finite fields (to coding theory, to cryptography, etc) were
found and they required more precise bounds on the number of rational points. In particular,
for various applications, it is important to find curves over Fq with many Fq-rational points and
a moderate genus g. That is to say, given a finite field Fq and an integer g � 1, we would like to
find a curve a (smooth projective) curve C of genus g defined over Fq with #C(Fq) as big as is
allowed by the Hasse-Weil bound, or at least to know if such a curve can exist at all.

8.1. Serre’s bound

We start by stating a slight improvement on (14), proven by Jean Pierre Serre around 1982:

Theorem 8.1 (Serre’s bound). — Let Fq be a finite field, and C/Fq a smooth projective curve
of genus g. Then, for all n � 1,

(15) |#C(Fqn)� (qn + 1)|  g ·
j

2qn/2
k

.

As usual, we denote by L(C/Fq, T ) 2 Z[T ] the numerator of the zeta function of C/Fq, and
we fix complex numbers ↵j such that L(C/Fq, T ) =

Q2g
j=1(1 � ↵j · T ). Note that we may (and

will) assume that g > 0, since there is nothing to prove if g = 0. We make two preliminary
observations:

Lemma 8.2. — It is possible to choose a numbering of the ↵j’s such that

for all j = 1, . . . , g, ↵j+g = ↵j =
q

↵j
.

In the following, we will assume that such an ordering has been chosen.
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Proof. — First note that, by the Riemann hypothesis, ↵j · ↵j = |↵j |2 = q for all j = 1, . . . , 2g
(here, the bar denotes complex conjugation).

There is an even number 2g of ↵j ’s, and we basically need to show that we can pair them up.
Given j 2 {1, . . . , 2g}, either ↵j is real or it is distinct from its complex conjugate ↵j . When ↵j

is real, since |↵j | = p
q, it has to be ±p

q. If ↵j /2 R, we pair it with ↵j . Among the remaining
even number of ↵j , which are real, we need to show that there is an even number of “+p

q” and
an even number of “�p

q”. By construction of the ↵j ’s, we know that
Q2g

j=1 ↵j is the leading
coefficient of L(C/Fq, T ), which is = qg by the functional equation. In particular, there has to
be an even number of ↵j = �p

q (otherwise, the product
Q2g

j=1 ↵j would be negative). So we
have proved that, among the ↵j which are real, there is an even number of �p

q and thus, an
even number of +p

q. In other words, the orders of vanishing of T 7! L(C/Fq, T ) at T =
p
q

and at T = �p
q are even.

This proves that there exists a way of numbering the ↵j ’s such that the desired property
holds.

Lemma 8.3. — For all j = 1, . . . , g, the number ↵j is an algebraic integer.

Proof. — Write L(C/Fq, T ) =
P

ai · T i 2 Z[T ], and let f(T ) = T 2g · L(C/Fq, 1/T ). A
straightforward computation shows that

f(T ) =
2g
X

i=0

a2g�i · T i = T 2g + a1 · T 2g�1 + · · ·+ a2g�1 · T + qg.

In particular, f(T ) is a nonzero monic polynomial with integer coefficients. By definition of
f(T ), each ↵j is a root of f(T ).

In other words, for j 2 {1, . . . , 2g}, there exists a nonzero monic polynomial with integer
coefficients (namely f(T )) which vanishes at ↵j . This is exactly saying that ↵j is an algebraic
integer.

Proof of Theorem 5.1. — We can now give the proof of Serre’s bound. We assume that g > 0,
and we arrange the ↵j ’s such that ↵j+g = q/↵j for j = 1, . . . , g. We put M :=

⌅

2
p
q
⇧ 2 Z�1

and, for any j = 1, . . . , g,
xj := ↵j + ↵j+g +M + 1 2 C.

Then xj is a real number, because it is invariant under complex conjugation. Moreover, by the
Riemann Hypothesis for curves,

xj � M + 1� |↵j + ↵j+g| � M + 1� 2
p
q > 0.

Now define X :=
Qg

j=1 xj : by the above, X is a real positive number. Actually, I claim that X
is an integer. Assuming that claim for the time being, let us prove that it yields the Theorem.
Since X is a positive integer, it has to be � 1. Now, by the inequality between the arithmetic
and geometric means, one has

1

g

g
X

j=1

xj �
0

@

g
Y

j=1

xj

1

A

1/g

= X1/g � 1.

This implies that

M + 1� 1

g
(#C(Fq)� q � 1) =

1

g

g
X

j=1

xj � 1.

And reordering the terms, we obtain one half of the Theorem:

#C(Fq)� q � 1  g ·M.
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To prove the corresponding lower bound, we repeat the same argument with the xj ’s replaced
by

yj := M + 1� (↵j + ↵j+g), 8j = 1, . . . , g,

and we deduce that

M + 1 +
1

g
(#C(Fq)� q � 1) =

1

g

g
X

j=1

yj � 1,

which yields the other half of the Theorem: #C(Fq)� q � 1 � �g ·M .
Now it remains to prove the claim that X is an integer. Note first that each xj is an algebraic

integer (since it is defined as a sum of algebraic integers), so their product X is also an algebraic
integer. Now, seen as an algebraic number, X 2 Q is invariant under the action of Gal(Q/Q),
so X must be a rational number. But an algebraic integer which is rational is an element of Z!
So X 2 Z, as was to be shown.

More generally, the samed sort of argument would give the following fact (left as an exercise):

Lemma 8.4. — Let S = {↵1, . . . ,↵s} a set of s algebraic integers, such that there exists an
odd integer ! for which |↵i| = p!/2 for all i. We assume that S is stable under the action of
GQ = Gal(Q/Q). Then, s is even and

|↵1 + · · ·+ ↵s|  s

2
·
j

2p!/2
k

.

8.2. Ihara’s bound

We now state and prove an improvement on Serre’s bound:

Theorem 8.5 (Ihara). — Let Fq be a finite field, and C/Fq a smooth projective curve of genus
g. Then,

(16) #C(Fq)  q + 1 + g ·
✓

p

2q � 1

2

◆

.

This bound is based on the simple observation that, for a curve C defined over Fq, one has
C(Fq) ⇢ C(Fq2), so that #C(Fq)  #C(Fq2). Note that (16) provides only an upper bound,
whereas (14) and (15) also gave lower bounds (but see the end of the proof).

Proof. — Consider a smooth projective curve C of genus g defined over Fq. Let N = #C(Fq)
and denote by {↵j}j=1,...,2g the set of inverse roots of L(C/Fq, T ) (numbered as before). As was
observed earlier, one has:

(17) N = #C(Fq)  #C(Fq2) = q2 + 1�
2g
X

j=1

↵j
2 = q2 + 1�

g
X

j=1

(↵j
2 + ↵j

2).

Since ↵j ·↵j = q, one has ↵j
2+↵j

2 = (↵j+↵j)
2�2q, for all j = 1, . . . , g. By the Cauchy-Schwarz

inequality,
0

@

2g
X

j=1

↵j

1

A

2

=

0

@

g
X

j=1

(↵j + ↵j)

1

A

2

 g ·
g

X

j=1

(↵j + ↵j)
2 = g ·

0

@2q · g +
g

X

j=1

(↵j
2 + ↵j

2)

1

A .

Plugging this inequality into (17), and remembering that
P2g

j=1 ↵j = q + 1�N , we obtain that

N  q2 + 1� 2g · q � 1

g
· (q + 1�N)2,

which can be rewritten as
�(N) := N2 + (g � 2q � 2) ·N + (q + 1)2 + 2g2 · q � g(q2 + 1)  0.
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Now the map x 7! �(x) is a quadratic polynomial in x 2 R and has a positive leading coefficient.
Let z� < z+ be the roots of � in R. Since �(N)  0, N is in the interval [z�, z+] ⇢ R. Writing
out explicitely the values of z� and z+ in terms of g and q, we obtain that

N � (q + 1)  z+ � (q + 1) =
1

2

⇣

�g +
p

(8q + 1)g2 � 4g · q(q � 1)
⌘

.

And straightforward inequalities imply that
1

2

⇣

�g +
p

(8q + 1)g2 � 4g · q(q � 1)
⌘

 g ·
✓

p

2q � 1

2

◆

.

Note that one could also get a lower bound on N by working out the value of z� (exercise).

Remark 8.6. — Ihara’s bound is finer than the Hasse-Weil bound when

g >

p
q(
p
q � 1)

2
,

as follows from a simple computation. That is to say, (16) gives a better upper bound on #C(Fq)
than (14) when the genus is big with respect to q. This means that (16) is interesting only in
the “large genus limit”.

As an explicit example, let q = 2 and g = 100. The Hasse-Weil bound gives N2(100)  285,
Serre’s bound gives N2(100)  203 and Ihara’s gives N2(100)  150. Knowing only the Hasse-
Weil bound, we could start looking for a curve of genus 100 over F2 with, say, 151 rational points.
But Ihara’s bound tells us that such a curve can not exist!


