2.2. Exercises

Exercise 10. — Let J = (xy, yz, yz) in $\overline{k}[x, y, z]$. Find V = Z(J) in \mathbb{A}^3 . Is it a variety? Is it true that J = I(Z(J))? Prove that J cannot be generated by 2 elements.

Let $J' = (xy, (x - y)z) \subset \overline{k}[x, y, z]$. Find Z(J') and compute the radical rad(J').

Exercise 11. — Let $J = (x^2 + y^2 - 1, y - 1) \subset \overline{k}[x, y]$. Find an element $f \in I(Z(J)) \smallsetminus J$.

Exercise 12. — Let $J = (x^2 + y^2 + z^2, xy + xz + yz) \subset \overline{k}[x, y, z]$. Identify Z(J) and compute I(V(J)).

Exercise 13. — Let $f = x^2 - y^2$ and $g = x^3 + xy^2 - y^3 - x^2y - x + y$ in $\overline{k}[x, y]$ (assume that the characteristic of k is $\neq 2, 3$). Let $W = Z(f, g) \subset \mathbb{A}^2$. Is W an algebraic variety? If not, give a list of affine algebraic varieties V such that $V \subset W$. (*i.e.* give a list of factors of the ideal (f, g)).

Exercise 14. — For any field k, prove that an algebraic set in \mathbb{A}^1 is either finite or the whole of \mathbb{A}^1 . Identify the algebraic varieties among the algebraic sets.

Exercise 15. — Let k be a field.

(a) Let $f,g \in \overline{k}[x,y]$ be irreducible polynomials, not multiples of one another. Prove that $Z(f,g) \subset \mathbb{A}^2$ is finite.

Hint: write $K = \overline{k}(x)$, prove first that f, g have no common factor in the PID K[y]. Deduce that there exist $p, q \in K[y]$ such that pf + qg = 1. By clearing denominators in p, q, show that there exist $h \in \overline{k}[x]$ and $a, b \in \overline{k}[x, y]$ such that h = af + bg. Conclude that there are only finitely many possible values of the x-coordinate of points in Z(f, g).

(b) Prove that an algebraic set $V \subset \mathbb{A}^2$ is a finite union of points and curves. Identify the algebraic varieties among those.

Exercise 16. — In this exercise let $K = \overline{k}$ be the algebraic closure of any field.

(a) Let $f \in K[x_1, \ldots, x_n]$ be a nonconstant polynomial (that is $k \notin K$). Prove that Z(f) is a stric subset of \mathbb{A}^n .

Hint: suppose that f involves x_n and write $f = \sum_i f_i x_n^i$ where $f_i \in K[x_1, \ldots, x_{n-1}]$, use induction on n to conclude.

- (b) Let f be as above, suppose that f has degree m in x_n and let $f_m(x_1, \ldots, x_{n-1}) \cdot x_n^m$ be its leading term (in x_n). Show that, wherever f_m doesn't vanish, there is a finite nonempty set of points of $Z(f) \subset \mathbb{A}^n$ corresponding to every value of (x_1, \ldots, x_{n-1}) . Deduce that, in particular, Z(f) is infinite for $n \geq 2$.
- (c) Putting together the results of the last question and of the previous exercise, show that distinct irreducible polynomials $f, g \in K[x, y]$ define distinct algebraic sets Z(f), Z(g) in \mathbb{A}^2 .
- (d) Can you generalize the results of the last question to \mathbb{A}^n ?

Exercise 17. — Determine the singular points on the following curves in \mathbb{A}^2 :

$$\begin{array}{ll} \text{(a)} & y^2 = x^3 - x, \\ \text{(b)} & y^2 = x^3 - 6x^2 + 9x, \\ \text{(c)} & x^2y^2 + x^2 + y^2 + 2xy(x+y+1) = 0, \\ \text{(d)} & x^2 = x^4 + y^4, \end{array} \\ \begin{array}{ll} \text{(e)} & xy = x^6 + y^6, \\ \text{(f)} & x^3 = y^2 + x^4 + y^4, \\ \text{(g)} & x^2y + xy^2 = x^4 + y^4 \end{array} \\ \end{array}$$

Exercise 18. — Show that the hypersurface $X_d \subset \mathbb{P}^n$ defined by $x_0^d + \cdots + x_n^d = 0$ is nonsingular if the characteristic of k does not divide $d \in \mathbb{Z}_{\geq 1}$.

Exercise 19. — Prove that the intersection of a hypersurface $V \subset \mathbb{A}^n$ (that is not a hyperplane) with the tangent hyperplane $T_P V$ to V at $P \in V$ is singular at P.