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5.6. Proof of Theorem 5.8 and its Corollary

Before we give the proof, let us explain how explicit formulas lead to (upper) bounds on the
number of rational points on curves.

Example 5.13. — Consider the trigonometric polynomial

f(ei✓) :=
1

2
· (1 +

p
2 · cos ✓)2 = 1 +

p
2 · cos ✓ + 1

2
· cos(2✓).

The second expression follows from the first by an esay computation involving some trigonometric
identities. This map f(ei✓) corresponds to

F (t) =
1p
2
· t+ 1

4
· t2.

We apply the explicit formula to this F (t) (i.e. for the choice c1 = 1/
p
2 and c2 = 1/4). Recall

that #C(Fq)  #C(Fq2), so that

F (
p
q�1) ·#C(Fq)  c1p

q
·#C(Fq) +

c2
q

·#C(Fq2) =
X

n�1

cn ·#C(Fqn)

qn/2
.

Notice that, by construction, f(ei✓) � 0 for all ✓ 2 [0,⇡]: this yields

g �
g
X

j=1

f(ei✓j )  g.

Together with these two bound, the explicit formula leads to

F (
p
q�1) ·#C(Fq)  F (

p
q) + F (

p
q�1) + g.

Plugging in the definition of F (t), we get

#C(Fq)  1 +
4q · g + q2 + 1 +

p
8q(q + 1)p

8q + 1
.

If one assumes that g  (q � 1) ·pq/2, this simplifies to

#C(Fq)  q2 + 1.

We have thus obtained an upper bound on #C(Fq), which is slightly better that the Hasse-Weil
bound, when the genus is “not too big” with respect to q. In other words,

If g  (q � 1) ·
p

q/2, Nq(g)  q2 + 1.

In this range of g, the Hasse-Weil bound would only give that

Nq(g)  q2p
2
+ q + 1.

Example 5.14. — With the same sort of arguments one could also prove the following upper
bound:

If g  q � 1

2
·pq ·

⇣

p

3(q � 1) +
p
q
⌘

, Nq(g)  q3 + 1.

The proof is left as an exercise. You may use the trigonometric polynomial

f(ei✓) =
1

3
· (cos ✓)2 ·

⇣p
3 + 2 · cos ✓

⌘2
.

In both examples above, we get a good bound on Nq(g) when g is “not too big” compared to
q. But to prove Theorem 5.8 (and especially its Corollary 5.9), we typically need to get rid of
this constraint (since A(q) is an asymptotic invariant defined “in the large genus limit”, i.e. when
g ! 1).
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Lemma 5.15. — Let F (t) =
P

n�1 cnt
n 2 R[t] be a polynomial as above, and f(ei✓) be the

associated “trigonometric function”. Assume that

(1) cn � 0 for all n � 1 (2) f(ei✓) � 0 for all ✓ 2 [0,⇡].

Then, any smooth projective curve C/Fq of genus g satisfies

#C(Fq)  Nq(g)  1 +
g + F (

p
q)

F (
p
q�1)

.

Proof. — Using assumption (1) and the “growth condition” #C(Fqn) � #C(Fq) (for all n � 1),
we get that

F (
p
q�1) ·#C(Fq) =

X

n�1

cn ·#C(Fq)

qn/2

X

n�1

cn ·#C(Fqn)

qn/2
.

On the right-hand side of the explicit formula, we use assumption (2):

g �
g
X

j=1

f(ei✓j )  g.

Using the explicit formula to link these two inequalities we obtain that

F (
p
q�1) ·#C(Fq)  F (

p
q) + F (

p
q�1) + g.

Which is exactly what we need (note that F (
p
q�1) > 0).

Lemma 5.16. — Under assumptions (1) and (2) in the previous lemma, one has

A(q)  1

F (
p
q�1)

.

Proof. — By definition of A(q), the lemma follows directly from the previous one, upon taking
the limit when g ! 1.

It remains to find a “good” test function F . We want to find coefficients cn such that F satisfies
both (1) and (2), and such that the bounds in Lemmas 5.15 and 5.16 are as good as possible.

As a first observation, note that the bound in Lemma 5.16 is tighter when F (
p
q�1) is bigger.

So we need to choose the coefficients cn as big as possible. However, note that assumption (2)
implies:

1� cn =
1

⇡

Z ⇡

0
f(ei✓) · (1� cos(n✓))d✓ � 0,

so that 0  cn  1, with (1). To maximize F (
p
q�1), the best we can do is thus to choose cn = 1

for all n � 1. But F (t) has to be a polynomial, so we can not really do this because almost
all cn have to be 0. What we can do however, is to “cut-off” this first choice: let cn = 1 for all
n = 1, . . . , N and cn = 0 for all n > N (for some parameter N � 1). That is to say, choose

FN (t) =
N
X

n=1

tn =
t(tN � 1)

t� 1
.

In that situation, a straightforward computation leads to

fN (ei✓) =
cos(N✓)� cos((N + 1)✓)

1� cos ✓
.

Hypothesis (1) is satisfied in this case, but not (2)! Here are graphs of fN on [�⇡,⇡] for different
values of N (N = 5 in green, N = 10 in orange and N = 20 in red):
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So we need to be somewhat more subtle in the choice of cn. We choose the next best F (t),
which has coefficients that are “close to 1” but still satisfies (2). For a parameter N 2 Z�1, let

FN (t) :=
N
X

n=1

⇣

1� n

N

⌘

tn.

Then, FN (t) satisfies (1), and a quick computation shows that

fN (ei✓) =
1

N
· 1� cos(N✓)

1� cos ✓
,

which shows that assumption (2) is also satisfied here! You might recognize from Fourier analysis
that fN is essentially the Féjer kernel. For comparison, here are graphs of fN on [�⇡,⇡] for
N = 5, 10, 20:
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Using Lemma 5.15 with this choice of FN gives that,

8N � 1, #C(Fq)  Nq(g)  1 +
FN (

p
q) + g

FN (
p
q�1)

.

This bound is exactly the Drinfeld-Vladuts bound (for N = k + 1). To deduce Corollary 5.9, it
suffices to take a limit as N ! 1 after dividing by g. More precisely, the last displayed equation
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implies that

8N � 1,
Nq(g)

g
 1

FN (
p
q�1)

+
1

g
·
 

1 +
FN (

p
q)

FN (
p
q�1)

!

.

Now, remark that

lim
N!1

FN (
p
q�1) =

1p
q � 1

.

For any ✏ > 0, choose N0 such that

8N � N0, FN (
p

q�1)�1  p
q � 1 +

✏

2

and g0 such that

8g � g0,
1

g
·
 

1 +
FN0(

p
q)

FN0(
p
q�1)

!

 ✏

2
.

We have proved that, for all ✏ > 0, there is a g0 such that, for all g � g0,
Nq(g)

g
 p

q � 1 + ✏.

This assertion is equivalent to
A(q)  p

q � 1.

This concludes the proof of Corollary 5.9.

5.7. Another application of explicit formulas

To conclude this chapter and to illustrate how useful explicit formulas can be, let us give a
very basic result about the distribution of zeroes of zeta functions of curves.

5.7.1. “Frobenius angles” of curves. — Let C be a smooth projective curve of genus g
defined over a finite field Fq. We have seen that we can associate to C a set of ↵j 2 C, with
j = 1, . . . , 2g. The functional equation tells us that the set {↵1, . . . ,↵2g} is stable under the map
↵ 7! q/↵. Moreover, by the Riemann Hypothesis of curves, we know that |↵j | = p

q. Thus, we
can fix “angles” ✓j(C) 2]� ⇡,⇡] such that

8j = 1, . . . , 2g, ↵j =
p
q · ei✓j(C).

Note that these angles are not quite the same as those we used before. The functional equation
implies that the set {✓1(C), . . . , ✓2g(C)} is symmetric around 0 (i.e. stable under the map
✓ 7! �✓).

In this section, we are interested in proving more properties of this set of angles. Recall that
2g
X

j=1

ei✓j(C) = q1/2 + q�1/2 � #C(Fq)

q1/2
.

Consequently, if we had more information about the arguments of vectors ei✓j(C) 2 C , we could
deduce a good bound on the left-hand side and thus we could have a better control on #C(Fq).
On one extreme, if the angles ✓j(C) are all very close to 0, say, then the sum

P

j e
i✓j(C) (which

is a real number) is big (i.e. close to 2g) so that C has a lot of Fq-rational points (almost
q + 1 + 2g

p
q). If, on the other extreme, the angles are “almost randomly chosen” in ] � ⇡,⇡],

the sum
P

j e
i✓j(C) is rather small so that C has about q + 1 rational points over Fq.

Obviously, this is very vague, but it shows that results on the distribution of the angles ✓j(C)
can lead to theorems on number of rational points on curves.



5.7. ANOTHER APPLICATION OF EXPLICIT FORMULAS 71

5.7.2. Equidistribution. — Let us first give a precise definition for what it means for a set
of points (or rather a sequence of sets) to be equidistributed in an interval.

Definition 5.17. — Let (XN )N�1 be a sequence of finite subsets XN ⇢ [0, 2⇡], with #XN = N .
We say that the sets XN become equidistributed in [0, 2⇡] if and only if, for any interval
[a, b] ⇢ [0, 2⇡],

lim
N!1

# {x 2 XN : x 2 [a, b]}
#XN

=
b� a

2⇡
.

(Note that we here allow elements of XN to have multiplicities, so maybe it would be better
to speak of XN as a finite sequence of elements of [0, 2⇡]). In other words, the sequence XN

becomes equidistributed if (in the limit N ! 1) an interval [a, b] ⇢ [0, 2⇡] contains the right
proportion of elements of XN .

The usual way of proving that a sequence (XN ) becomes equidistributed is to use the following
criterion:

Theorem 5.18 (Weyl’s criterion). — A sequence (XN )N�1 becomes equidistributed in [0, 2⇡]
if and only if:

8k 2 Z�1, lim
N!1

1

#XN

X

x2XN

eik·x = 0.

The criterion is very useful because it reduces the question of equidistribution to proving
bounds about exponential sums. We don’t go into the proof of Weyl’s criterion, the reader can
easily find one.

5.7.3. Two invariants of curves. — In the following subsection, we prove a theorem of
equidistribution for the Frobenius angles of somes special families of curves. To define them, we
introduce two new invariants for curves:

Definition 5.19. — Let C/Fq be a smooth projective curve over Fq. The Fq-dimension of C,
denoted by Dq(C), is the smallest integer m � 1 such that there is an embedding C ,! Pm

defined over Fq.

For example, Dq(P1) = 1. For a less trivial example, consider the affine curve C0/Fq defined
by

C0 ⇢ A2 : y2 + y = x3 + 1,

C0 is smooth, and its projectivization C ⇢ P2 (see previous chapters) is also smooth. So that C
can be embedded into P2 in a smooth manner, over Fq. So Dq(C) = 2. More generally, if C0 is
an affine plane curve ⇢ A2 (so C0 is given by one equation) and if the projective closure C ⇢ P2

of C in P2 is smooth, then Dq(C)  2. Note that there are curves with larger Fq-dimension.
If f 2 Fq(C) is a nonconstant function on a curve C, the field extension Fq(C)/Fq(f) is a

finite extension (since both fields have transcendance degree 1 over Fq, the extension is at least
algebraic; the detailed proof of the finiteness is to be found in [NX09, Chap. 3]). So, for all
nonconstant rational functions f 2 Fq(C), one can define the degree of f , denoted by deg f , to
be the degree of the field extension [Fq(C) : Fq(f)].

Definition 5.20. — Let C/Fq be a smooth projective curve over Fq. The gonality of C, denoted
by �q(C), is the smallest degree of a nonconstant rational function on C:

�q(C) := min {deg f, f 2 Fq(C)r Fq} .
Another point of view on the gonality is the following. A nonconstant rational function

f 2 Fq(C) induces an algebraic map f : C ! P1 (also denoted by f) defined over Fq, which is
actually surjective. And deg f is the the degree of f as a morphism. This means that, for all
points t 2 P1(Fq), the preimage f�1(t) = {P 2 C(Fq) : f(P ) = t} is nonempty and finite, it
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has cardinality  d, and the cardinality is actually = d for almost all t’s (i.e. for all t except at
most finitely many, “the ramification points of f ”).

With assumption of bounded Fq-dimension or bounded gonality, one can prove upper bounds
on the number of rational points on a curve, without any reference to its genus. We give here
two bounds, which are certainly very far from optimal, but more than sufficient for our purpose.

Lemma 5.21. — Let C/Fq be a smooth projective curve defined over Fq, whose Fq-dimension
Dq(C) is less than M . For all k � 1, one has

#C(Fqk)  M · qkM .

Proof. — Fix an embedding C ⇢ Pm (with m  M). Then #C(Fqk)  #Pm(Fqk) and

#C(Fqk  qmk � 1

qk � 1
= q(m�1)k + q(m�2)k + · · ·+ qk + 1  mq(m�1)k  MqMk.

Lemma 5.22. — Let C/Fq be a smooth projective curve defined over Fq, whose gonality �q(C)
is less than �. For all k � 1, one has

#C(Fqk)  2� · qk.
Proof. — Assume that a curve C has gonality �, and fix a nonconstant rational function f 2
Fq(C) of degree �. Then, as was mentioned above, the corresponding map f : C ! P1 is
surjective and has finite fibers, each of cardinality  deg f = �. The fibers are disjoint, and since
f is defined over Fq, the fibers above t 2 P1(Fqk) cover the whole of C(Fqk). Thus, for all k � 1:

#C(Fqk) 
X

t2P1(Fqk )

#f�1(t)  � ·#P1(Fqk) = �(qk + 1)  2� · qk.

5.7.4. Equidistribution of Frobenius angles of curves. — We can now prove the afore-
mentioned equidistribution theorem.

Theorem 5.23. — Let (Cn)n�1 be a sequence of smooth projective curves over a given finite
field Fq, such that their genus g(Cn) = gn tend to infinity when n ! 1. Assume one of the
following:
(1) either the curves Cn have bounded Fq-dimension, i.e. 9 M > 0, Dq(Cn)  M for all n � 1.
(2) or the curves Cn have bounded gonality, i.e. 9 � > 0 such that �q(Cn)  � for all n � 1.

Then the Frobenius angles {✓j(Cn)}1j2gn become equidistributed when n ! 1.

Proof. — We use Weyl’s criterion to prove equidistribution: let Cn be a curve in the sequence,
and {✓j(Cn)} be its Frobenius angles. To show equidistribution, we need to prove that the
exponential sums:

�k(Cn) :=
1

2gn

2gn
X

j=1

eik·✓j(Cn)

tend to zero when n ! 1, for all integers k � 1. Luckily, we have a nice interpretation of
�k(Cn): recall that, for a given k 2 Z�1,

2gn
X

j=1

eik·✓k(Cn) = q�k/2
2gn
X

j=1

↵j(Cn)
k =

qk + 1

qk/2
� #Cn(Fqk)

qk/2
.
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This identity can be seen as a variant of explicit formula (it gives a link between the zeroes of
the zeta function of Cn and the number of Fqk -rational points on Cn). So that, by the triangle
inequality

|�k(Cn)|  qk/2 + q�k/2

2gn
+

#Cn(Fqk)

2gn · qk/2 .

For a given (fixed) k � 1, the first term tends to 0 when n ! 1 (this is true for any sequence
of smooth projective curves whose genera ! 1). Now, under one of the assumptions in the
theorem, we can use one of Lemmas 5.21 or 5.22, and get an upper bound on #Cn(Fqk) of the
form:

8k � 1, 8n � 1, #Cn(Fqk)  c(k),

where c(k) is a certain function of k, depending on M or � (the main point being that c(k) is
entirely independent of the genus of Cn). From this we deduce that

8k � 1, |�k(Cn)|  o(1) +
c(k) · q�k/2

2gn
= o(1) (when n ! 1).

So that, for any integer k � 1, the exponential sums �k(Cn) have limit 0 when n ! 1 (under
assumption (1) or (2)). Weyl’s criterion for equidistribution is thus satisfied, and we can conclude
that the theorem holds.

This theorem is obviously a very basic result about the distribution of Frobenius angles. The
goal was only to illustrate uses of the explicit formulas and their variants.


