
CHAPTER 6

ERROR-CORRECTING CODES

6.1. Generalities on codes

The idea behind coding is the following. Suppose you want to send a message to someone
through a noisy channel, then your message is likely to get altered along the way and the receiver
might not be able to understand the received message. A code is an extra bit of information that
you add to your message so that, even if some errors occured during transmission, the receiver
can decide whether something went wrong and, in the best case, even reconstruct the original
message. The applications of coding theory are numerous: error-correcting codes are used in
CDs, DVDs, etc, in transmission of images from spatial probes to Earth, ...

6.1.1. Vocabulary. — To transmit messages, we use a finite alphabet A, with q letters. We
send words of a fixed length n � 1, so that a word is an element of An. Most of the time, we
choose A = Fq a finite field (this puts limitations on the possible number of letters/symbols,
but there is then a richer structure on A). The set of words An is endowed with the Hamming
distance d(�,�):

8w = (w1, . . . , wn), w
0 = (w0

1, . . . , w
0
n), d(w,w0) = #

�

i 2 {1, . . . , n} : wi 6= w0
i

.

One can show that this is indeed a distance (for a reasonnable definition of distance; namely, it
should satisfy axioms like: two words are equal if and only if they are at distance 0 from each
other, distance is symmetric, and there is a triangle inequality). If we send a word w to someone,
we expect that he receives a word w0 which is “close to” the original one, in the sense that most
of the letters are correct and that only a few errors have been made during transmission (i.e.
d(w,w0) is small).

A code is a subset C ⇢ An such that #C � 2. Elements of C are called codewords (or valid
words). The distance of C is defined by:

d(C) = min
�

d(w,w0), w, w0 2 C s.t. w 6= w0 .

The principle of coding is then the following: one we have chosen a code C, we only send
words w 2 C; if the receiver gets a word w0 2 An, he can then check whether w0 is in C or not. If
w0 is not in C, then he will know that something went wrong during the transmission (i.e. that
an error has been made).

Better still, if t errors have been made, with t d(C)� 1, then we can systematically detect
that one or more errors occured. Even better, if t errors occured during transmission and if
2t + 1 d(C), then there exists a unique word ew 2 C such that d(w0, ew) t (proof left as an
exercise), so that ew = w. And thus, the receiver can reconstruct the original message w from
the blurred one he received (if one assumes that not too many errors occured), i.e. C allows us
to correct t errors. From the previous paragraph one deduces that:

76 CHAPTER 6. ERROR-CORRECTING CODES

Lemma 6.1. — Let C be a code with distance d(C). Let t be the maximum number of errors
that C can systematically correct. Then

t =

�

d(C)� 1

2

⌫

,

where b.c is the floor function. We then say that C is t-correcting.

There are essentially two qualities that a code should have: it should be able to detect and
correct many errors, and it should be very efficient (i.e. we shouldn’t need add much redundancy
to the actual message that we want to send). We won’t go into the computational details here,
but it should be noted that one usually also wish to work with codes for which coding/decoding
is easy and fast.

We thus associate to a code C, two ratios to measure how good C is: first, define the correcting
ratio:

�(C) :=
1

#C

�

d(C)� 1

2

⌫

2 [0, 1],

which measures the proportion of errors in a word that C can correct. Secondly, define the
information ratio of C:

⌧(C) :=
log#C

log(#An)
=

log#C

n · log#A
,

which measures the proportion of symbols in a codeword that are actually carrying information.
Finding a good code means finding a code C with ⌧(C) and �(C) as close to 1 as possible.

6.1.2. Examples. — Let us first give a few basic examples of classical codes:

Example 6.2 (Repetition code). — The idea behind this code is pretty simple: instead of
sending a bit of data once, send it many times (say, 5 times). For simplicity, assume that
A = {0, 1} (i.e. we send binary words), and that we wish to encode words of length 4. The code
here is

C :=
�

w = (✏1, . . . , ✏20) 2 {0, 1}20 : ✏1=✏5=···=✏17, ✏2=✏6=···=✏18,
✏3=✏7=···=✏19, ✏4=✏8=···=✏20

 ⇢ A4⇥5 = A20.

If the message is m = (✏1, ✏2, ✏3, ✏4), we send the codeword w = (m,m,m,m,m) 2 C. Now
assume that the receiver gets a word w0 = (xi) 2 {0, 1}20, then decoding works as follows: for
each i 2 {1, . . . , 4}, form a set Ei = {xi, xi+4, xi+8, xi+12, xi+16}. If Ei has more 0’s than 1’s,
then we decide that a 0 was meant in place i, and we set ei = 0 (and vice versa). The decoded
message is then (e1, . . . , e4). If a majority of bits were correct, the decoded message is the original
one. The receiver can thus correct errors of at most 2 bits in a 5-uple Ei. The price to pay is
that we need to 5 times as many bits as actually required (i.e. we add a lot of redundancy).

It is easy to see that d(C) = 5 = 2 ⇥ 2 + 1, so that t(C) = 2 and C is 2-correcting. Since
#C = 24 = 16, we get �(C) = 1/8 = 12, 5% and ⌧(C) = 1/5 = 20%.

Example 6.3 (Parity-check bit). — Again, we use the alphabet A = {0, 1}. We wish to
transmit 4-bit words. Encode a message (✏1, . . . , ✏4) by adding an extra bit ✏5 at the end (called
the parity-check bit) such that the sum

P5
i=1 ✏i is ⌘ 0 mod 2. We transmit this 5-bit word. The

receiver checks whether the received message (✏01, . . . , ✏
0
5) satisfies

P5
i=1 ✏

0
i ⌘ 0 mod 2. If not,

then he knows that an error occured during transmission.
This code can detect a 1-bit error in a word, but he can not correct it (since the receiver has

no way of knowing where the error is).

Example 6.4 (Matrix parity-check code). — Let us build on the previous example. Again,
we want to send a binary word m = (✏1, . . . , ✏4) of length 4. We add some redundancy as follows:
form a 3⇥ 3 matrix

2

4

✏1 ✏2 ⇤
✏3 ✏4 ⇤
⇤ ⇤ ⇤

3

5 =

2

4

x1 x2 x3
x4 x5 x6
x7 x8 x9

3

5 ,

6.1. GENERALITIES ON CODES 77

where the values of x3, x6, x7, x8 and x9 are determined by the condition that all rows and all
colums of the matrix contain an even number of 1’s. Given m, we send the word w = (x1, . . . , x9).
The receiver can then form a 3 ⇥ 3 matrix and check whether the rows and columns add up to
0 modulo 2. If at most one error occured, the receiver can detect it, and even correct it! As an
example, assume that one receives

2

4

1 0 0
1 0 1
0 1 1

3

5 .

Then only the second column and the first row do not sum up to zero (modulo 2), so we know
that an error was made at their intersection, and we change the bit there. The original message
in this case was (1, 1, 1, 0).

As an exercise, you can check that this code has length 9, that #C = 16 and that d(C) = 4.
Thus:

t(C) = 1, �(c) = 1/9 ⇡ 11, 1%, ⌧(C) = 4/9 ⇡ 44, 4%.

The correction rate is slightly worse than for the repetition code, but the information rate is
much better. As a further exercise, explain how to generalize this construction to send longer
messages of length `2 (for ` � 2) and compare the parameters of the resulting code.

Example 6.5 (ISBN code). — The ISBN code is used to identify books. It consists in a 9-
digit number together with an extra symbol which is either a digit or an X (for a total length
of 10). Examples are 0� 412� 29690�X, 0� 387� 95432� 5, 0� 387� 97825� 3, ... (Note
that the placements of the “–” need not always be the same). The last symbol is a sort of “parity
check with weights” and is computed from the 9 first digits as follows. Assume that the first 9
digits are a1, a2, . . . , a9, compute

x :=
9
X

i=1

i · ai = a1 + 2a2 + 3a3 + · · ·+ 9a9 mod 11,

and put a10 = x if x 2 {0, . . . , 9} and a10 = X if x = 10. Note that 10a1+9a2+8a3+· · ·+2a9+x ⌘
0 mod 11.

The two most common errors when copying such a code are: either altering one digit, or
transposing two adjacents digits. And the ISBN code is designed precisely to detect if one of
these errors occured. Using that the length of a valid ISBN code is less that 11, and that 11 is
prime, you can show:

– All possible valid ISBN codes have at least two digits different from each other. That is,
the distance of the ISBN code is � 2.

– There are no pairs of valid ISBN codes which have 8 digits in common and two transposed
digits.

So the check-digit at the end ensures that it is always possible to detect the two most common
mistakes (if either occurs, the result is never a valid ISBN code). The ISBN code can not correct
any errors. Note that it is not always possible to detect the alteration of 2 or more digits, or to
detect the transposition of 3 or more digits (you can build examples).

Example 6.6 (BSN number). — The BSN number for residents of the Netherlands is a 9
digit number, formed by adding to an 8-digit number a control digit at the end. This is very
much like the preceding example: if a1, . . . , a8 are the first 8 digits, then define a9 2 {0, . . . , 9}
so that

a9 ⌘ 9a1 + 8a2 + · · ·+ 3a7 + 2a8 mod 11.

If the sum on the right is ⌘ 10 mod 11, the word a1, . . . , a8 does not give rise to a BSN number,
and is to be discarded.

78 CHAPTER 6. ERROR-CORRECTING CODES

Example 6.7 (INSEE number). — The French Institue for Statistic and Economic Studies
issues the social security numbers for the French citizens. These codes are also used for surveys
of the French population. They are 15-digit codes, constructed as follows:

s yy mm llooo kkk cc,

where s encodes the sex (most common: 1 male, 2 female, ...); yy is the year of birth, mm is
the month of birth, llooo is a 5-digit administrative code encoding the town of origin (usually,
ll 2 {01, . . . , 95} is the region of birth and ooo is the code of the city inside the region; for people
born abroad ll = 98 or 99, etc...), kkk reflects the position of the person among the list of all
people born in the same month and the same year in the same town (this number is found on
the birth certificate). The interesting bit (for us) is the last 2-digit cc, the control key. It is
computed by

cc = 97� (syymmlloookkk mod 97).

That is, take the remainder R modulo 97 of the number N formed by the first 13 digits and put
cc = 97�R 2 {01, . . . , 97}. Example: 2 69 05 49 588 157 80.

Since 97 is prime, the same remarks as the ISBN code are valid. Given a 15-digit code as
above, by checking whether N � cc is divisible by 97 or not, you can detect if a digit has been
altered, or if two digits were transposed. Again, this codes only detects at most two errors, and
can not correct them.

6.2. Linear codes

From now, on we only concentrate on the so-called linear codes. The alphabet will always be
A = Fq a finite field (or in bijection with Fq)

Definition 6.8. — A linear code of length n is a Fq-sub vector space of (Fq)
n. We denote by

k(C) the dimension of C (as a Fq-vector space).

Let us briefly recap the various invariants associated to such a code C ⇢ (Fq)
n. The length

of the words in C is n(C) = n, the dimension of the ambiant vector space. The dimension
k(C) of C encodes the “useful part” of codewords. In this case, the information ratio of C is
⌧(C) = k(C)/n(C). In the linear case, the Hamming distance becomes much nicer and the
distance d(C) (the minimal Hamming distance between two distinct elements of C) can be
written as

d(C) = min {d(x, 0), x 2 C r {0}} .
In other words, the distance of C is the minimal number of nonzero coordinates of a vector
x 2 C r {0}. A linear code C (over Fq) with length n, dimension k and distance d will be called
a [n, k, d]-code.

Note that the triple [n, k, d] contains all the information we need about a code C. We remark
that n(C) and k(C) are usually easy to compute, while d(C) can be harder to determine (in
practice though, lower bounds on d(C) are sufficient).

Most of the previous examples are linear codes. Note that the ISBN code can be seen as a
linear code: indeed, the alphabet is in bijection with F11, and the relation between the digits is a
F11-linear one, but the first 9 digits of a ISBN code are chosen in {0, . . . , 9} and cannot be “X”.
The ISBN code is thus a F11-linear code, all of whose codewords are not used.

6.2.1. Hamming code. — Let us give a worked out example of a classical linear code, the
Hamming code. We work over F2. The Hamming code is the subvector space of (F2)

7 generated

6.2. LINEAR CODES 79

by

E0 :=

2

6

6

6

6

6

6

6

6

4

1
1
0
1
0
0
0

3

7

7

7

7

7

7

7

7

5

, E1 :=

2

6

6

6

6

6

6

6

6

4

0
1
1
0
1
0
0

3

7

7

7

7

7

7

7

7

5

, E2 :=

2

6

6

6

6

6

6

6

6

4

0
0
1
1
0
1
0

3

7

7

7

7

7

7

7

7

5

, E3 :=

2

6

6

6

6

6

6

6

6

4

0
0
0
1
1
0
1

3

7

7

7

7

7

7

7

7

5

.

It is easily seen that these vectors are independent, and thus C has dimension 4. One can list
all 16 = 24 codewords:

Note that the first four coordinates run though the set of all integers {0, . . . , 15}, written in
binary. And one sees that the minimal number of nonzero coordinates of a nonzero vector in C
is 3. So C is a [7, 4, 3]-code over F2.

One nice feature of the Hamming code is that encoding a message and decoding it is very
explicit.

Assume that we want to send a binary message m = (m0,m1,m2,m3) 2 (F2)
4. We transmit

the codeword x = m0E0 +m1E1 +m2E2 +m3E3 2 C, written in coordinates x = (x1, . . . , x7)
in the canonical basis of (F2)

7. To decode the receive message, it is necessary to find explicit
equations for C. Using the basis of C, it can be seen that C is given by three equations:

C :

8

>

<

>

:

x1 + x4 + x6 + x7 = 0,

x2 + x4 + x5 + x7 = 0,

x3 + x5 + x6 + x7 = 0.

In other words, C is the kernel of the linear map L : (F2)
7 ! (F2)

3 given by the matrix:

L(x1, . . . , x7) =

2

4

1 0 0 1 0 1 1
0 1 0 1 1 0 1
0 0 1 0 1 1 1

3

5 ·

2

6

6

6

4

x1
x2
...
x7

3

7

7

7

5

.

Now assume that the receiver receives a word y = (y1, . . . , y7) 2 (F2)
7 and that at most one error

occured during the transmission (i.e. d(x, y) 1). We will see how to reconstruct x from y (i.e.
how to correct the error). Let e = y � x 2 (F2)

7 be the “error vector”: by assumption e has at
most 1 nonzero coordinate. Notice that L(e) = L(y � x) = L(y)� L(x) = L(y). The procedure
for correction goes as follows: upon receiving y, compute L(y) 2 (F2)

3,
– if L(y) = (0, 0, 0), then y 2 C and no error has been made, so y = x,
– if L(y) = (1, 0, 0), then an error has been made in the first coordinate: change y1 into

z1 = y1 + 1,
– if L(y) = (0, 1, 0), then an error has been made in the second coordinate: change y2 into

z2 = y2 + 1,

80 CHAPTER 6. ERROR-CORRECTING CODES

– more generally, if L(y) = (✏1, ✏2, ✏3), let i 2 {0, . . . , 7} be the integer i = ✏1 + 2✏2 + 4✏3.
Then an error has been made in the i-th coordinate: change yi into yi + 1.

After this step, we have a vector z = (z1, . . . , z7) 2 (F2)
7, identical to y except maybe where

we “corrected a bit”. You can check that this procedure indeed returns a vector z 2 C which is
closest to y (in terms of Hamming distance). Finally put m0 = (z1, z1 + z2, z6, z7). If at most
one error was made during transmission, one has m = m0.

Remark 6.9. — A funny illustration of the Hamming code. The hamming code above suggests
that it is possible to reconstruct an element of (F2)

4 (say, an integer between 0 and 15 in binary
notation) from an element of (F2)

7 (say, seven “YES/NO” informations) if at most one error was
made (say, if at most one information is wrong).

In other words, the Hamming code gives the following “magic trick”. A person A chooses
a secret integer N 2 {0, . . . , 15}; then, person B asks 7 YES/NO questions to A about N ; A
answers to the questions but A is allowed to lie once; B can then guess N .

Using the procedure above, you can come up with a list of 7 questions that make this trick
work. Here is a version: A chooses N 2 {0, . . . , 15}, then B asks the seven questions:
(7) is N � 8?
(7) is N 2 {4, 5, 6, 7, 12, 13, 14, 15}?
(7) is N 2 {2, 3, 6, 7, 10, 11, 14, 15}?
(7) is N odd?
(7) is N 2 {1, 2, 4, 7, , 10, 12, 15}?
(7) is N 2 {1, 2, 5, 6, 8, 11, 12, 15}?
(7) is N 2 {1, 3, 4, 6, 8, 10, 13, 15}?
Let (A1, . . . , A7) 2 (F2)

7 be the list of answers B get (Ai = 1 if the answer to question i is YES,
and vice versa). Compute

x1 = A4 +A5 +A6 +A7, x2 = A2 +A3 +A6 +A7, x3 = A1 +A3 +A5 +A7.

If x1 = x2 = x3 = 0, then A has not lied. Otherwise, put L = 4x1 + 2x2 + x3 2 {0, . . . , 7}, and
change the L-th answer (A has lied about question L). Let T = (T1, . . . , T7) be the list of “true”
answers, and N 0 = T4 + 2T3 + 4T2 + 8T1. Then N 0 = N .

6.3. Hadamard codes

We work over F2 again. Fix a parameter r � 1. Write vertically every integer N 2
{0, 1, . . . , 2r � 1} in binary expansion, and denote by Mr matrix obtained by juxtaposing these
columns. MR has entries in F2, it has r rows and 2r columns (one of which is 0). Let n = 2r,
and Hr ⇢ (F2)

n be the subspace generated by the rows of Mr.
Then the dimension of Hr is the rank of Mr: this is easily seen to be exactly r. The distance

of Hr is 2r�1, because the first row of Mr is (0, . . . , 0, 1, . . . , 1). In other words, the code Hr is a
[2r, r, 2r�1]-code over F2.

Note that Hr can correct many errors (exercise: the correcting ratio tends to 25% as r ! 1)...
but, Hr is not very efficient (exercise: the information ratio tends to 0 when r ! 1).

6.3.1. Bounds. — Before giving further examples and constructions, we prove two bounds
which give a rough idea of how good linear codes can be.

Proposition 6.10 (Singleton bound). — Let C be a [n, k, d]-code over Fq. Then

k + d n+ 1.

A code C such that there is equality in this bound is called a Maximal Distance Separable code
(MDS code, for short).

6.3. HADAMARD CODES 81

Proof. — Let ` = n + 1 � k, and D ⇢ (Fq)
n be the vector space consisting of all vectors

x = (x1, . . . , xn) with x`+1 = x`+2 = · · · = xn = 0. Then D has dimension ` and

dimC + dimD = `+ k = n+ 1� k + k = n+ 1 > n.

It follows that C \ D can not be reduced to {0}. So there exists a nonzero vector x 2 C \ D.
Since x 2 D, x has at most ` nonzero coordinates: d(x, 0) `. Since x 2 C r {0}, we have

d = d(C) d(x, 0) ` = n+ 1� k.

This completes the proof.

Proposition 6.11. — Let C be a [n, k, d]-code, and let t = b(d� 1)/2c. Then
t
X

i=0

✓

n

i

◆

(q � 1)i qn�k.

Proof. — For all x 2 (Fq)
n, and ✏ 2 {0, . . . , n}, let

B(x, ✏) := {y 2 (Fq)
n : d(x, y) ✏} ,

be the Hamming ball with center x and radius ✏. By construction of the distance, one has

#B(x, ✏) =
✏
X

i=0

✓

n

i

◆

(q � 1)i.

If C is t-correcting (as we assumed), the balls B(x, t) with centers x 2 C have to be disjoint
(otherwise, ...). Consequently,

#

[

x2C
B(x, t)

!

=
X

x2C
#B(x, t) = #C ·#B(0, t).

On the other hand, the union
S

x2C B(x, t) is a subset of Fn
q , so that

#C ·#B(0, t) = #

[

x2C
B(x, t)

!

 #Fn
q = qn.

It remains to write that #C = qk, to use the expression for #B(0, t), and to reorder terms to
get to the promised upper bound.

6.3.2. Constructions. — One nice feature of linear codes is that we can build up new ones
from known codes, using linear algebra. Here is a sample of examples of classical constructions
of linear codes:

Constructions from linear algebra : Given two codes with suitable invariants, one can
consider their direct sum, their intersection, their tensor product, ... The resulting object
is again a linear code, whose invariants can be computed in terms of the invariants of the
codes we started with.

Shortened code : Let C be a [n, k, d]-code over Fq. For a parameter m 2 {d, d+ 1, . . . , n},
consider

C(m) := {(x1, . . . , xm) 2 (Fq)
m : (x1, . . . , xm, 0, . . . , 0) 2 C} .

Then C(m) is a linear code too: its length is clearly m, and one can show (exercise) that
d(C(m)) � d.

Extended code : Let C be a [n, k, d]-code over Fq. One can add to each codeword a
“generalized parity-check bit” as follows. Let

C :=

(

(x1, . . . , xn+1) 2 (Fq)
n+1 : (x1, . . . , xn) 2 C and

n+1
X

i=1

xi = 0

)

.

82 CHAPTER 6. ERROR-CORRECTING CODES

This new code has length n+1, dimension k, and its distance d(C) satisfies d(C) d(C)
d(C) + 1.

Dual code : Let C be a [n, k, d]-code over Fq. There is a canonical scalar product on (Fq)
n

given by

8x = (xi) 2 (Fq)
n, y = (yi) 2 (Fq)

n, hx, y, i :=
n
X

i=1

xi · yi.

Now define the dual of C to be

C⇤ := {(y1, . . . , yn) 2 (Fq)
n : 8x 2 C, hx, yi = 0} .

Then C⇤ is a linear subspace of (Fq)
n. The length of C⇤ is n, and its dimension is n � k.

As an exercise, you can check that the two codes

P := {x = (xi) 2 (Fq)
n : x1 + x2 + · · ·+ xn = 0} (“parity-check code”),

and

R := {x = (xi) 2 (Fq)
n : x1 = x2 = · · · = xn} (“repetition code”)

are dual to each other.

6.3.3. Cyclic codes. — Let us describe one way to actually construct linear codes.

Definition 6.12. — A cyclic code is an ideal I in the quotient ring R := Fq[X]/(Xn � 1).

Note that, as a Fq-vector space, R has dimension n: indeed, a Fq-basis for R is 1, X,X2, . . . , Xn.
In other words, one can identify R and (Fq)

n via the map

(Fq)
n ! R, (a0, . . . , an�1) 7! a0 + a1X + · · ·+ an�1X

n�1.

This map is an isomorphism of Fq-vector spaces (but makes no use of the rign structure on R).
Under this isomorphism, an ideal I is R corresponds to a linear subspace of (Fq)

n. In particular,
cyclic codes are linear codes.

These codes are called cyclic for the following reason: if f(X) 2 I is a codeword, then
X · f(X) is also a codeword (since I is an ideal). On the “(Fq)

n-side”, this means that, whenever
(a0, a1, . . . , an�1) is a codeword, then the cyclic shift (an�1, a0, a1, . . . , an�1) is also a codeword.
The codes one obtains with this construction are thus stable under cyclic shifts of the coordinates.

Example 6.13. — One recovers the parity-check code as a cyclic code as follows. Let I ⇢ R
be the ideal generated by X � 1 2 Fq[X]. A polynomial f(X) =

P

aiXi 2 R is in I if and only
if it vanishes at X = 1, which in turn translates as the condition “

Pn
i=1 ai = 0”.

The repetition code can also be seen as a cyclic code. This time, consider the ideal J ⇢ R
generated by (Xn � 1)/(X � 1) = Xn�1 + · · ·+X +1. The ideal J consists exactly of the scalar
multiples of Xn�1 + · · ·+X +1, and it can be seen that the isomorphism above transports J to
the repetition code.

Example 6.14. — Now for a less trivial example, consider the following situation. Let f � 1
be a parameter, and fix ↵ 2 F⇤

2f a generator of the cyclic group F⇤
2f . As an element of F2f , ↵

has a minimal polynomial �(X) 2 F2[X] over F2. The degree of �(X) is < 2f , so let us put
n = 2f � 1 and consider the ideal I↵ generated by �(X) in R = Fq[X]/(X2f�1 � 1).

The resulting linear code is called a (generalized) binary Hamming code H (with parameter
f). It has length n = 2f � 1 (clear) and dimension k = 2f � 1 � f (exercise). Moreover, since
↵ has order 2f � 1 in F⇤

2f , there are no nonzero codewords with 2 or less nonzero coordinates.
That is, this code has distance d � 3. A straightforward computation implies that the balls (for
the Hamming distance) with radius 1 centered at h 2 H are disjoint, that each of them contains
2f vectors, and that there are 22

f�f of them. By a further counting argument, one can see that
these balls actually cover the whole of R. Thus the distance of H is exactly 3.

6.4. CODES COMING FROM ALGEBRAIC GEOMETRY 83

In conclusion, the Hamming code is a [2f � 1, 2f � f � 1, 3]-code over F2. You can check that
the code in section 6.2.1 corresponds to the choice f = 3.

6.4. Codes coming from algebraic geometry

6.4.1. Reed-Solomon codes. — Fix a finite field Fq (the alphabet). Let ↵1, . . . ,↵q�1 be an
enumeration of the elements of F⇤

q . Choose a parameter r 2 {1, . . . , q� 1}, and let Pr be the set
of polynomials f 2 Fq[x] with deg f r � 1. Then Pr is a Fq-vector space of dimension r.

Define an “evaluation map” ⇥ : Pr ! (Fq)
q�1 by

f 7! ⇥(f) := (f(↵1), f(↵2), . . . , f(↵q�1)).

The map ⇥ is Fq-linear and, since r q � 1, it is injective. We denote by RSr ⇢ (Fq)
q�1 be the

image of ⇥. The linear code RSr is called a Reed-Solomon code. Let us evaluate its parameters.
Clearly RSr has length n = q � 1 and dimension k = dimRSr = dimPr = r. Also, the

distance d of RSr is n � k + 1 = q � r (left as an exercise, you may use that a polynomial of
degree r � 1 has at most r � 1 zeroes). In conclusion, RSr is a [q � 1, r, q � r]-code over Fq.
Notice that RSr is a MDS code.

This construction provides good codes, but is lacks flexibility. Indeed, once the alphabet is
fixed, one can only choose the parameter r and, even then, the length of the words n = q � 1 is
“small” compared to the size of the alphabet Fq. In practice, one would like to work with codes
which are long with respect to the alphabet size.

6.4.2. Goppa construction. — The class of Goppa codes was invented some 20 years after
the Reed-Solomon codes, and they provide much more flexibilty in the choice of parameters.

Let Fq be a finite field, and X be a smooth projective curve over Fq. Let D 2 Div(X) be
a divisor on X (i.e. D is a finite Z-linear combination of Fq-places on X), and let P1, . . . , Pn

be Fq-rational points on X. We assume that “the Pi’s do not appear in D”, that is to say,
Supp(D) \ {P1, . . . , Pn} = ? (where Supp(D) ⇢ X(Fq) is the union of the finitely many points
in the finitely many places that have a non zero coefficient in D).

Under this assumption, any rational function f 2 L(D) is regular at Pi, for i = 1, . . . , n
(otherwise, f would have a pole at some Pi, which would be accounted for in div(f), and we
wouldn’t have div(f) � �D). Consequently, we can define a map ⇥ : L(D) ! (Fq)

n by

f 2 L(D) 7! ⇥(f) := (f(P1), . . . , f(Pn)) 2 (Fq)
n.

This map is well-defined and clearly Fq-linear. Let � := �(D;P1, . . . , Pn) ⇢ (Fq)
n be the image

of ⇥: it is a linear code, called the Goppa code associated to X,D, {P1, . . . , Pn}.
Clearly, the above construction offers more flexibility than that of the Reed-Solomon codes.

6.4.3. Parameters. — Let us now evaluate the parameters of a Goppa code �, as above. In
what follows, we will always assume that degD < n.

Let D 2 Div(X) and {P1, . . . ,Pn} ⇢ X(Fq) be as above, with degD < n (and“the Pi’s don’t
appear in D”). We write �, for short, to denote the corresponding code.

The length of � is clearly n. Now let f 2 L(D) such that ⇥(f) has n � d zero coordinates
(i.e. d nonzero coordinates). This means that f has at least n� d zeros among the Pi’s: up to
renumbering them, we can assume that f vanishes at P1, . . . , Pn�d. Another way of encoding
this is to write that div(f) � P1 + · · · + Pn�d. Since we already know that div(f) � �D, and
since the “� relation” on divisors is compatible with addition, we deduce that

div(f) � P1 + · · ·+ Pn�d �D.

(Recall that we usually identify Fq-rational points on X and the associated Fq-places of X of
degree 1). Taking degrees, we have

0 = deg div(f) � deg(P1 + · · ·+ Pn�d)� degD = (n� d)� degD.

84 CHAPTER 6. ERROR-CORRECTING CODES

Hence d � n� degD > 0 for any codeword ⇥(f) 2 � with d nonzero coordinates. In conclusion,
the distance d(�) of � satisfies d(�) � n� degD > 0.

It remains to estimate the dimension of �. Let us first prove that assuming n < degD implies
that ⇥ is injective. In general, the kernel of ⇥ is formed by rational functions f 2 L(D) such
that f(P1) = f(P2) = · · · = f(Pn) = 0, which means (using an argument very similar to that
used in the previous paragraph),

ker⇥ = L

D �
n
X

i=1

Pi

!

.

Let D0 = D �Pi Pi 2 Div(X): we have degD0 = degD � n. As we have seen in the chapter
about the Riemann-Roch theorem, if D0 has negative degree, L(D0) = {0}. So, indeed, our
assumption that degD < n is enough to ensure that ⇥ is injective. Now, since ⇥ has no kernel,
the dimension of � is the same as that of L(D). Denoting by g the genus of X, he Riemann-Roch
theorem yields that

dim� = dimL(D) � degD + 1� g,

with equality if degD � 2g � 1. Summing up the previous discussion, we arrive at

Proposition 6.15. — Let X be a smooth projective curve over Fq of genus g. Let n � 1 be
an integer, D 2 Div(X) with degD < n and P1, . . . , Pn 2 X(Fq). We assume that Supp(D) \
{P1, . . . , Pn} = ?. Denote by � the corresponding Goppa code.

Then � is a [n, k, d] code over Fq, with
k � degD + 1� g (with equality if degD � 2g � 1), d � n� degD.

6.4.4. Finding good codes. — Combining the Singleton bound (k + d n + 1), with the
lower bounds above, we arrive at

1� 1

n
+

g

n
 k

n
+

d

n
 1 +

1

n
.

To get a good code out of the Goppa construction, we would like to have k/n and/or d/n as big
as possible. Since n #X(Fq), we need to find curves X/Fq which have many rational points
for a given genus g. The Goppa codes were invented around 1981, and they motivated the search
for better bounds on the number of rational points on curves (in terms of their genus). Until the
1980’s, little effort had been made to see whether Weil’s bound was close to optimality.

6.5. Examples

