
CHAPTER 2

ALGEBRAIC CURVES

2.1. Smoothness of curves

2.1.1. Reminder and setup. — Throughout the chapter, k is a perfect field (think of k = F
q

).
Let C be an affine variety of dimension 1 in An defined over k, with corresponding prime ideals
I ⇢ k[x

1

, . . . , x
n

] and I(C/k) ⇢ k[x
1

, . . . , x
n

]. Recall that the coordinate ring of C is the quotient
k[C] := k[x

1

, . . . , x
n

]/I(C/k) (an integral domain). Hilbert’s Nullstellensatz says that there is a
one-to-one correspondence between maximal ideals in k[C] and points on C: to a point P 2 C,
this correspondence associates the ideal M

P

:=
�

f 2 k[C] : f(P ) = 0
 

.
The function field of C is then the quotient field of k(C). Elements of k(C) are called rational

functions on C. By assumption on the dimension of C, the extension k(C)/k has transcendence
degree 1.

Now, if C is a projective curve ⇢ Pn, and if C 0 is a nonempty affine part of C (i.e. C 0 = C\An

as in the previous chapter), then the function field of C is defined to be k(C 0). One can check
that this definition is independent of the affine part C 0 (though k[C 0] does). The elements in k(C)
can be represented as fractions of polynomials g/h where g, h 2 k[x

1

, . . . , x
n

], OR as fractions
of homogeneous polynomials of the same degree G/H with G,H 2 k[x

0

, . . . , x
n

]. The functions
g
1

/h
1

and g
2

/h
2

are equal if g
1

h
2

� g
2

h
1

is in I.

Example 2.1. — One has k[A1] = k[x] and k(A1) = k(x), the field of rational functions with
coefficients in k. This implies that k[P1] = k[x] and k(P1) = k(x).

Let P be a point on an affine curve C, the set of rational functions on C that are regular at
P (or defined at P ) is a subring of k(C), called the local ring of C at P , and denoted by O

P

: it
is the localization at M

P

of k[C] or, more explicitely,

O
P

=
n

f 2 k(C) : f =
g

h
with g, h 2 k[C] and h(P ) 6= 0

o

.

The ring O
P

is indeed a local ring: its unique maximal ideal is M
P

.
If C is a projective curve and P 2 C is a point, one defines the local ring of C at P to be the

local ring of an affine part C 0 of C containing P .

2.1.2. Smoothness. — We now formalize the notion of smoothness of a curve. We start by
defining this in terms of the Jacobian criterion for the existence of a tangent plane:

Definition 2.2. — Let C ⇢ An be an affine curve and f
1

, . . . , f
m

2 k[x
1

, . . . , x
n

] be a set of
generators for I(C). For a point P 2 C, we say that C is smooth (or nonsingular) at P if the
m⇥ n matrix (the Jacobian matrix)



@f
i

@x
j

(P )

�

1im

1jn

has rank n�1. If C is nonsingular at every point, then we say that C is nonsingular (or smooth).
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Note that the rank of the matrix above is independent of the choice of generators f
1

, . . . , f
m

for I(C) (but the matrix itself does depend on that choice). See below.

Example 2.3 (Plane curves). — Let C ⇢ A2 be given by a single nonconstant polynomial
f 2 k[x, y]:

C : f(x, y) = 0.

By definition, a point P 2 C is smooth if and only if
✓

@f

@x
(P ),

@f

@y
(P )

◆

6= (0, 0).

In other words, C is smooth at P if the tangent vector does not vanish. If P = (x, y) is smooth,
the line given by the equation (in the (X,Y )-plane A2):

T
P

C :
@f

@x
(P ) · (X � x) +

@f

@y
(P ) · (Y � y) = 0

is then called the tangent line of C at P . (If P was singular, this linear subspace T
P

C is actually
the whole of A2). On the other hand, the singular points Q = (x, y) of C are solutions of the
system of equations:

8

>

<

>

:

f(Q) = 0
@f

@x

(Q) = 0
@f

@y

(Q) = 0.

This system gives 3 polynomial relations between the 2 coordinates of Q. Thus, it doesn’t seem
absurd that there are not many singular points on a plane curve (see a Proposition later on).

Example 2.4. — Consider the two curves

V
1

: y2 = x3 + x V
2

: y2 = x3 + x2.

Using the previous example, we see that any singular point on V
1

(resp. V
2

) satisfies

V sing

1

: 2y = 0 = 3x2 + 1 V sing

2

: 2y = 0 = 3x2 + 2x.

Thus V
1

is nonsingular, while V
2

has one singular point (namely (0, 0)). Draw a picture of V
1

(R),
V
2

(R) to see the difference.

There is another characterization of smoothness, in terms of rational functions on the curve
C. More precisely, given an affine curve C ⇢ An and a point P = (a

1

, . . . , a
n

) 2 C, we define
the following map:

f 2 k[x
1

, . . . , x
n

] 7! f
(1)

P

:=
n

X

i=1

@f

@x
i

(P ) · (x
i

� a
i

) 2 k[x
1

, . . . , x
n

],

which to a polynomial f associates the “first order part of f at P ” (in the Taylor expansion of f
at P ). Now define the tangent space of C at P as:

T
P

C :=
\

f2I(C)

Z(f
(1)

P

) ⇢ An.

Note that, if I(C) is generated by f
1

, . . . , f
m

, then, for any g 2 I(C), the linear part g(1)
P

is a linear
combination of f (1)

1,P

, . . . , f
(1)

m,P

. In particular, T
P

C =
T

m

i=1

Z(f
(1)

i,P

). Since f
(1)

P

is a polynomial
of degree 1 for all f 2 I(C), the intersection T

P

C is actually an affine subspace of An, and
P 2 T

P

C (make a picture). Note that the derivatives involved in the definition of T
P

C are
formal derivatives of polynomials (@/@X

i

: Xn

i

7! nXn�1

i

and X
j

7! 0 for all j 6= i), and that no
calculus is used.
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Exercise 9. — Consider the function d : C ! N, defined by P 7! dim
k

T
P

C. For each r 2 N,
let S(r) := {P 2 C : d(P ) = r}. Show that S(r) is an affine algebraic subset of C ⇢ An.

Hint: use minors to express the fact that the Jacobian matrix
h

@fi
@xj

(P )
i

has rank  n� r.
Show that d(P ) = 1 for “almost all points P ”.

We now give an alternative description of T
P

C, which is more intrisic to C and can be used to
defined the tangent space a point on a projective curve. For each point P 2 C, recall that M

P

is a
maximal ideal, and that there is an isomorphism k[C]/M

P

! k (given by f mod M
P

7! f(P )).
The quotient M

P

/M2

P

then aquires the structure of a k-vector space (sometimes called the
cotangent space of C at P ).

Proposition 2.5. — Let C be a variety and P 2 C. The point P is nonsingular if and only if
dim

k

�

M
P

/M2

P

�

= 1.

Proof. — Let us set up more notations. Suppose P = (a
1

, . . . , a
n

) 2 C ⇢ An: by using a linear
coordinate change x0

i

= x
i

� a
i

, we can assume that P is the origin (0, , . . . , 0). In particular,
T
P

C ⇢ An is a sub vector space of kn (and not only an affine subspace). We write M
P

(resp. M
P

)
for the maximal ideal of P in k[C] (resp. in k[x

1

, . . . , x
n

]. Indeed, recall that the Nullstellensatz
gives a bijection between maximal ideals of k[C] (resp. k[x

1

, . . . , x
n

]) and points on C (resp. on
An). By our assumption that P = (0, . . . , . . . ), we have M

P

= hx
1

, . . . , x
n

i. By writing down
the definitions, one can check that M

P

' M
P

/I(C) ⇢ k[C] = k[x
1

, . . . , x
n

]/I(C).
We write (k

n

)⇤ for the dual of k
n (as a k-vector space): it has basis x

1

, . . . , x
n

. Since
P = (0, 0, . . . , 0), the linear part f

(1)

P

at P of any polynomial f 2 k[x
1

, . . . , x
n

] is an element of
(k

n

)⇤: we can define the map

d : M
P

! (k
n

)⇤, f 7! f
(1)

P

.

Now, d is surjective because f = x
i

is sent to x
i

(the natural basis of (k
n

)⇤). Moreover,
ker d = M2

P

(because f
(1)

P

= 0 if and only if f starts with quadratic terms in x
1

, . . . , x
n

, which
is equivalent to f 2 M2

P

). The linear map d thus provides an isomorphism of k-vector spaces
M

P

/M2

P

' (k
n

)⇤.
Since T

P

C is a subvector space of kn, there is a restriction map (k
n

)⇤ ! (T
P

C)⇤ (� 7! � |
TPC

).
Composing this restriction with the isomorphism induced by d, we get a linear map

D : M
P

! (k
n

)⇤ ! (T
P

C)⇤, f 7! f
(1)

P

.

As a composition of two surjective maps, D is itself surjective. I claim that kerD = I(C)+M2

P

,
so that M

P

/M2

P

' M
P

/(M2

P

+ I(C)) ' (T
P

C)⇤. Assuming the claim for the moment, and
noticing that dim(T

P

C)⇤ = dimT
P

C = n� rankJ
P

(where J
P

denotes the jacobian matrix of C
at P ), we obtain that

dimM
P

/M2

P

+ rankJ
P

= dimAn = n,

which implies the desired equivalence.
We now prove the claim. Let f 2 M

P

, then f 2 kerD if and only if f (1)

P

|
TPC

= 0, if and only
if f (1)

P

is of the form f
(1)

P

=
P

a
i

g
(1)

i,P

for some g
i

2 I(C) (because T
P

C ⇢ k
n is the vector space

defined by g
(1)

P

= 0 for all g 2 I(C)). But f is of this form if and only if f �P

a
i

g
i

is in the
kernel of d, i.e. if and only if f �P

a
i

g
i

is in M2

P

. Which concludes the proof of our claim that
kerD = I(C) +M2

P

.

We have actually proved above that tangent space of C at P is isomorphic to the dual of the
cotangent space T

P

C ' Hom
k�vs

(M
P

/M2

P

, k). A curve C is smooth at P if and only if the
tangent space T

P

C has the right dimension (i.e. 1), which is equivalent to the Jacobian matrix
having maximal rank (i.e. n� 1). Note that dimT

C

V is always � 1 for all P 2 C (and there is
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a nonempty open subset U ⇢ C such that equality holds for all P 2 U – see exercise above or
[Har77, I.5, Prop. 2A]).

The proposition above gives us an intrinsic criterion of smoothness: it only depends on the
local ring of C at P (up to isomorphism). This allows us to give a definition of smoothness for
projective curves.

Definition 2.6. — Let C be a projective curve, and P 2 C be a point. Given an affine part C 0

of C containing P (in more details: assume that C ⇢ Pn and that P 2 C \ U
i

for some i, then
C 0 = ��1

i

(C \U
i

) ⇢ An), one says that C is smooth at P if and only if C 0 is smooth at P . Since
the definition only depends on the local ring O

P

of C at P (which is, by definition, that of C 0

at P ), this notion makes sense.

Example 2.7. — Consider the point P = (0, 0) on the varieties V
1

and V
2

of the example above.
In both cases, the ideal M

P

is generated by X and Y , and M2

P

is thus generated by X2, XY
and Y 2. For V

1

we have X ⌘ Y 2 �X3 ⌘ 0 mod M2

P

so M
P

/M2

P

is generated by Y alone. For
V
2

though, there no nontrivial relation between X and Y modulo M2

P

so M
P

/M2

P

requires X
and Y as generators (i.e. dimension 2). This proves again that V

1

is nonsingular at (0, 0), but
V
2

is singular.

Example 2.8. — It is sometimes easier to rely on explicit (affine or projective) equations.
Assume here that C ⇢ P2 is given by a unique homogeneous equation F 2 k[x

0

, x
1

, x
2

] of
degree d, and that P = [a

0

: a
1

: a
2

] 2 C.
Then

P

@F

@xi
(P )x

i

= 0 is the equation of a hyperplane in P2 (i.e. a projective algebraic set
defined by a linear homogeneous equation). This hyperplane plays the role of the tangent space
of C at P : if P 2 C \ U

i

(some U
i

' An), then this hyperplane is the projective closure of the
affine tangent space to C \ U

i

at P . This last claim can be checked using Euler’s formular for
homogeneous polynomials of degree d:

X

x
i

@F

@x
i

= d · F.

We leave the proof of the following proposition as an exercise (you may want to restrict to the
case where C is an affine curve defined by the vanishing of a single polynomial)

Proposition 2.9. — A curve C has only finitely many singular points.

See [NX09, Thm. 3.1.7], or [Rei88, ]

2.1.3. Interlude: definition of discrete valuations. — We add 1 to the field of real
numbers R to form the set R [ {1}, and we put 1 +1 = 1 + c = c +1 = 1 for all c 2 R
and we agree that c < 1.

Definition 2.10. — A discrete (normalized) valuation on a field K is a map v : K ! Z[ {1}
such that:

(i) v(z) = 1 if and only if z = 0,
(ii) v(yz) = v(y) + v(z) for all y, z 2 K,
(iii) v(y + z) � min{v(y), v(z)} (ultrametric triangle inequality),
(iv) v(K⇤) = Z.

Conditions (ii) and (iv) are equivalent to requiring that v : K⇤ ! Z be a surjective group
homomorphism. Given a discrete valuation v on a field K, the set consisting of 0 and all x 2 K⇤

such that v(x) � 0 is a ring, called the valuation ring of v.
An integral domain R is called a dicrete valuation ring if there is a discrete valuation v on its

field of fractions K such that R is the valuation ring of v. One can check that such a ring is local
(i.e. it has a unique maximal ideal) with maximal ideal

{0} [ {x 2 K⇤ : v(x) > 0} = {x 2 K⇤ : v(x) > 0}.



2.1. SMOOTHNESS OF CURVES 31

2.1.4. Consequences of smoothness. — There is a more algebraic interpretation of the last
characterization of smoothness:

Proposition 2.11. — Let C be a curve and P 2 C be a point at which C is smooth. Then O
P

is a discrete valuation ring.

Proof. — By definition of smoothness, the vector space M
P

/M2

P

is a one-dimensional vector
space over k = O

P

/M
P

. Then use [AM69, Prop. 9.2]:

Lemma 2.12. — Let R be a Noetherian local domain that is not a field, let M be its maximal
ideal, and  = R/M be its residue field. The following statement are equivalent:

(i) R is a discrete valuation ring,
(ii) M is principal,
(iii) dim



M/M2 = 1.

Here O
P

is local (its only maximal ideal is M
P

) and noetherian (because the localization of
the quotient of a polynomial ring is), so the proposition follows.

In the setting of the previous proposition, one can actually give an explicit description of the
discrete valuation in question:

Definition 2.13. — Let C be a curve and P 2 C be a smooth point. The normalized discrete
valuation on O

P

is the map ord
P

: O
P

! N [ {1} given by:

8f 2 O
P

, ord
P

(f) = sup
n

d 2 N : f 2 Md

P

o

.

One can extend ord
P

to the whole of k(C) by putting ord
P

(f/g) = ord
P

(f) � ord
P

(g) (since
k(C) is the fraction field of O

P

). We denote this extension by the same letter.
A uniformizer for C at P is any function ⇡ 2 k(C) with ord

P

(⇡) = 1 (exercise: check that ⇡
generates M

P

).

Given a valuation ord
P

on k(C) as above, one can recover O
P

and M
P

:

O
P

=
�

f 2 k(C) : ord
P

(f) � 0
 

and M
P

=
�

f 2 k(C) : ord
P

(f) > 0
 

.

Notice that the nonzero elements of k ⇢ k(C) have valuation 0. If P and Q are distinct
nonsingular points on a projective curve C, then the corresponding valuations ord

P

and ord
Q

are not the same (i.e. they have distinct valuation rings). Indeed, if C ⇢ Pn, we can assume that
P = [a

0

: a
1

: . . . : a
n�1

: 1] and Q = [b
0

: b
1

: . . . : b
n�1

: 1] with a
0

6= b
0

. Consider the function
f := (x

0

/x
n

� a
0

)�1 mod I(C): f /2 O
P

since ord
P

f = �1, but f 2 O
Q

since ord
Q

f = 0. Later
on, we will see that it is possible to (almost) reconstruct a point P 2 C if we are given a discrete
valuation on k(C).

Remark 2.14. — Let C be a curve defined over k. If P is a k-rational point on C, then it is
not hard to show that k(C) contains uniformizers for P . See [Sil09, Exercise II.16], or a Lemma
below.

Definition 2.15. — Let C be a curve and P 2 C be a smooth point, and let f 2 k(C). The
order of f at P is ord

P

(f). If ord
P

(f) > 0, one says that f has a zero at P (or that P is a zero
of f) and if ord

P

(f) < 0, one says that f has a pole at P (or that P is a pole of f).
If ord

P

(f) � 0, then f is regular (or defined) at P and one can evaluate f at P : writing f(P )
makes sense. Otherwise, f has a pole at P and we write f(P ) = 1.

Example 2.16. — Let C = P1 and choose P = (a) 2 A1 ⇢ P1. Let f 2 k(C) = k(x). The
valuation of f at P is the multiplicity of a as a root or pole of f . If a is a pole of f , the mutliplicity
of a as a pole is taken with a minus sign. If P = 1 2 P1rA1, then the valuation of f at P = 1
is � deg f , where deg means degree as a polynomial in x.
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Proposition 2.17. — Let C be a smooth curve and f 2 k(C) with f 6= 0. Then there are only
finitely many points of C at which f has a pole or a zero. Furthermore, if f has no poles (or no
zeros), then f 2 k.

Proof. — Assume we have proved that f has finitely many poles, then using the result with 1/f
will show that f has only finitely many zeros. So we need only prove the finiteness of poles of f .
The proof of this can be found, for example, in [Har77]: see I.6.5, II.6.1 and I.3.4(a) there.

Example 2.18. — Consider the two curves

C
1

: Y 2 = X3 +X C
2

: Y 2 = X3 +X2.

Remember our earlier convention concerning affine equations for projective varieties: each of C
1

,
C
2

has a unique point at infinity. Let P = (0, 0). Then C
1

is smooth at P , but C
2

is not. The
maximal ideal M

P

of k[C
1

]
P

has the property that M
P

/M2

P

is generated by Y (see an example
above), so for example

ord
P

(Y ) = 1, ord
P

(X) = 2, ord
P

(2Y 2 �X) = 2, ...

(for the last, note that 2Y 2 �X = 2X3 +X = X(2X2 + 1)). On the other hand, O
P

is not a
discrete valuation ring.

2.1.5. A lemma in Galois cohomology. —

Lemma 2.19. — Let V be a k-vector space, and assume that G
k

acts continuously on V in a
manner that is compatible with its action on k. Let

V
k

:= V Gk = {v 2 V : �(v) = v 8� 2 G
k

} .
Then, V ' k⌦

k

V
k

. In words, the vector space V has a basis consisting of G
k

-invariants vectors.

The hypothesis of “continuity” means that, for all v 2 V , the subgroup

H
v

:=
�

� 2 Gal(k/k) : �(v) = v
 ⇢ G

k

of elements fixing v has finite index in G
k

. In particular, this implies that, for all v 2 V , there is
a finite Galois extension L/k such that ⌧(v) = v for all ⌧ 2 Gal(k/L) (namely, take L to be the
Galois closure of the fixed field of H

v

).

Proof. — It is not hard to check that V
k

is a vector space over k. We need to show that any
v 2 V is a k-linear combination of elements of V

k

(the converse inclusion being obvious). Let
v 2 V and choose a finite Galois extension L/k (inside k) such that ⌧(v) = v for all ⌧ 2 Gal(k/L)
(i.e. “v is defined over L”). Now let ↵

1

, . . . ,↵
n

be a k-basis of L (seen as a vector space over k),
and let �

1

, . . . ,�
n

denote the elements of Gal(L/k). For all i = 1, . . . , n, consider

w
i

:=

n

X

j=1

�
j

(↵
i

· v) =
X

�2Gal(L/k)

�(↵
i

· v) = Trace
L/k

(↵
i

· v).

The, by construction, �(w
i

) = w
i

for all � 2 Gal(k/k), which means that w
i

2 V
k

. By a classical
lemma (sometimes called Dedekind’s lemma, or Artin’s Lemma), the matrix [�

j

(↵
i

)]
1i,jn

is
nonsingular, and thus invertible. This fact is often proved in a course about Galois theory (see
the lecture notes for Algebra 3, Lemma 23.15). We then deduce that each of the �

j

(v) can be
written as a L-linear combination of w

1

, . . . , w
n

. Which concludes the proof.
As a remark, note that a fancy way of stating this Lemma is: H1

�

Gal(k/k),GL
n

(k)
�

= 0. If
you know a bit of Galois cohomology, you can reprove the Lemma as a consequence of Hilbert’s
theorem 90.



2.1. SMOOTHNESS OF CURVES 33

2.1.6. Smoothness and extensions of function fields. — The next proposition is useful
when one deals with curves over finite fields (of positive characteristic):

Proposition 2.20. — Let C be a curve defined over k and let ⇡ 2 k(C) be a uniformizer of C
at a smooth point P 2 C(k). Then k(C) is a finite separable extension of k(⇡).

Proof. — The field k(C) is clearly a finite algebraic extension of k(⇡), since it is finitely generated
over k, has transcendence degree one over k (since C is a curve), and ⇡ /2 k. Now let f 2 k(C),
the claim is that f is separable over k(⇡).

In any case, f is algebraic over k(⇡), so it satisfies a polynomial relation

�(⇡, f) = 0, with �(⇧, X) =
X

a
i,j

⇧iXj 2 k[⇧, X].

We may further assume that � is chosen so as to have minimal degree in X (i.e. �(⇡, X) is a
minimal polynomial for f over k(⇡)). We denote by p > 0 the characteristic of k.

If �(⇧, X) contains a nonzero term a
i,j

⇧iXj where p does not divide j, then @�(⇡, X)/@X
is not identically zero, so f is separable over k(⇡).

We now need to show that this actually holds. Suppose instead that �(⇧, X) has the form
 (⇧, Xp) and let us find a contradiction. The main point is that, for all F (⇧, X) 2 k[⇧, X],
F (⇧p, Xp) is a p-th power (this is true because we have assumed that the base-field k is perfect
of characteristic p, which implies that every element of k is a p-th power, thus if F =

P

a
i,j

⇧iXj

and if bp
i,j

= a
i,j

, then F (⇧p, Xp) =
�

P

b
i,j

⇧iXj

�

p). Back to �(⇧, X) =  (⇧, Xp), we regroup
the terms according to powers of X modulo p:

�(⇧, X) =  (⇧, Xp) =

p�1

X

k=0

0

@

X

i,j

b
i,j,k

⇧ipXjp

1

AXk =

p�1

X

k=0

�
k

(⇧p, Xp) ·Xk =

p�1

X

k=0

�
k

(⇧, X)p ·Xk.

By assumption, we have �(⇡, f) = 0 and, since ⇡ is a uniformizer for C at P , we also have

ord
P

(�
k

(⇡, f)pfk) = p · ord
P

(�
k

(⇡, f)) + k · ord
P

⇡ ⌘ k mod p.

In particular, each of the terms in
P

�
k

(⇡, f) · fk has a distinct order at P , so every term must
vanish (because the sum does). But at least one of the �

k

(⇧, X) must involve X and for that k,
the relation �

k

(⇡, f) = 0 contradicts our choice of �(⇧, X) as a minimal polynomial for f over
k(⇡) (note that deg

⇧

�
k

(⇧, X)  1

p

deg
⇧

�(⇧, X). The contradiction completes the proof.
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2.2. Exercises

Exercise 10. — Let J = (xy, yz, yz) in k[x, y, z]. Find V = Z(J) in A3. Is it a variety? Is it
true that J = I(Z(J))? Prove that J cannot be generated by 2 elements.

Let J 0 = (xy, (x� y)z) ⇢ k[x, y, z]. Find Z(J 0) and compute the radical rad(J 0).

Exercise 11. — Let J = (x2 + y2 � 1, y � 1) ⇢ k[x, y]. Find an element f 2 I(Z(J))r J .

Exercise 12. — Let J = (x2 + y2 + z2, xy + xz + yz) ⇢ k[x, y, z]. Identify Z(J) and compute
I(V (J)).

Exercise 13. — Let f = x2 � y2 and g = x3 + xy2 � y3 � x2y � x+ y in k[x, y] (assume that
the characteristic of k is 6= 2, 3). Let W = Z(f, g) ⇢ A2. Is W an algebraic variety? If not, give
a list of affine algebraic varieties V such that V ⇢ W . (i.e. give a list of factors of the ideal
(f, g)).

Exercise 14. — For any field k, prove that an algebraic set in A1 is either finite or the whole
of A1. Identify the algebraic varieties among the algebraic sets.

Exercise 15. — Let k be a field.
(a) Let f, g 2 k[x, y] be irreducible polynomials, not multiples of one another. Prove that

Z(f, g) ⇢ A2 is finite.
Hint: write K = k(x), prove first that f, g have no common factor in the PID K[y].

Deduce that there exist p, q 2 K[y] such that pf + qg = 1. By clearing denominators in p, q,
show that there exist h 2 k[x] and a, b 2 k[x, y] such that h = af + bg. Conclude that there
are only finitely many possible values of the x-coordinate of points in Z(f, g).

(b) Prove that an algebraic set V ⇢ A2 is a finite union of points and curves. Identify the
algebraic varieties among those.

Exercise 16. — In this exercise let K = k be the algebraic closure of any field.
(a) Let f 2 K[x

1

, . . . , x
n

] be a nonconstant polynomial (that is k /2 K). Prove that Z(f) is a
stric subset of An.

Hint: suppose that f involves x
n

and write f =
P

i

f
i

xi
n

where f
i

2 K[x
1

, . . . , x
n�1

], use
induction on n to conclude.

(b) Let f be as above, suppose that f has degree m in x
n

and let f
m

(x
1

, . . . , x
n�1

) · xm
n

be its
leading term (in x

n

). Show that, wherever f
m

doesn’t vanish, there is a finite nonempty
set of points of Z(f) ⇢ An corresponding to every value of (x

1

, . . . , x
n�1

). Deduce that, in
particular, Z(f) is infinite for n � 2.

(c) Putting together the results of the last question and of the previous exercise, show that
distinct irreducible polynomials f, g 2 K[x, y] define distinct algebraic sets Z(f), Z(g) in A2.

(d) Can you generalize the results of the last question to An?

Exercise 17. — Determine the singular points on the following curves in A2:

(a) y2 = x3 � x,
(b) y2 = x3 � 6x2 + 9x,
(c) x2y2 + x2 + y2 + 2xy(x+ y + 1) = 0,
(d) x2 = x4 + y4,

(e) xy = x6 + y6,
(f) x3 = y2 + x4 + y4,
(g) x2y + xy2 = x4 + y4.

Exercise 18. — Show that the hypersurface X
d

⇢ Pn defined by xd
0

+· · ·+xd
n

= 0 is nonsingular
if the characteristic of k does not divide d 2 Z�1

.

Exercise 19. — Prove that the intersection of a hypersurface V ⇢ An (that is not a hyperplane)
with the tangent hyperplane T

P

V to V at P 2 V is singular at P .


