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3.3. Rationality and functional equation of the zeta function
3.3.1. Preliminary results. — Let us first prove two more lemmas about divisors on curves.

Lemma 3.17 — Let D € Div(C) be a divisor, then

|
qg—1

In words: the class [D] € Pic(C) of D contains (¢"P) —1)/(q — 1) effective divisors.

Proof. — For a divisor G € Div(C) in the class [D] of D, there is a function g € F,(C)* such
that G = D + div(f). Then G is effective if and only if f € £(D) ~ {0} (see above).

There are exactly ¢“(”) — 1 nonzero functions in £(D) (because L£(D) =~ (F,)“P) as F,-vector
spaces), and two of them give rise to the same divisor if and only if they differ by a (multiplicative)
constant ¢ € F. Hence the result. O

#{FE €Div(C) : E >0 and [E] = [D] in Pic(C)} =

Given our curve C, the image of the degree map deg : Div(C) — Z is a subgroup of Z: by the
structure theorem of such subgroups, there exists an integer ¢ > 1 such that
deg(Div(C)) =Z - éc.
For any integer n > 0, let
Ap(C):={D eDiv(C) : D>0and degD =n}.
Recall that the zeta function of C'/F, can be written under the form

Z(C[Fy,T) = TP = ZA :1+i,4n(c
n=1

D>0

Thus, it will be of interest to be able to “compute” A, (C) for many values of n. We now give a
formula for this number A, (C) of effective divisors on C of a given degree n € Z~, at least for
some n:

Lemma 3.18. — Let C be a smooth projective curve over Fy of genus g. For all integers n > 1
such that ¢ | n and n > max{0,2g — 1}, one has

_ M n+g—1
where h(C) = #Pic®(O) is the class-number of C.

Proof. — Let h = h(C), and fix representatives D1, ..., Dy in Div(C) of all divisor classes of
degree n (remember that there is a bijection between the finite set Pic’(C) and the set of all
divisors classes of degree n on C'). Then, by the previous Lemma, we obtain:

h qﬁ(D)_l
#{D>0:degD =n} =Y {D>0: [D]=[D;] € Pic(C)} = Z

i=1
Now by the weak Riemann-Roch theorem, for n > max{0,2g — 1}, we have E( i) = deg D; +
l—g=n+1—g (foralliell, h]) This leads to the result:

nt+2-g _ 1 h

h
q _ q _ n+l—g
= = -(q —1).
Z qg—1 ; qg—1 q—1 ( )

The use of the hypothesis that ¢ divides n is implicit, where have we made use of it? OJ
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3.3.2. Rationality of (. — Let C//F; be a smooth projective curve over a finite field F,. For
any integer n > 0, let A, (C) be the number of effective divisors on C' of degree n (we have seen
earlier that this number is finite). Recall that

Z(C[F, T) = > ZA O)T™ € Z[[T)).
PR

To know more about the zeta function, we “compute” as many coefficients A,,(C) as possible.
We start by proving the following result.

Theorem 3.19. — The exists a divisor of degree 1 on C. In other words, dc = 1.

Proof. — We make use of the last Lemma in the previous lecture: denoting by h(C) = # Pic’(C)
the class-number of C', we have proved that, for all n > 1 such that d¢ | n and n > max{0,2g—1},

h(C) _
An(C) = ==L ("9 —1).
(@) I (g )
Note that A,(C) = 0 for all n > 1 that are not divisible by d¢ (by construction of d¢, which
generates the image of the degree map). This shows that

Z(C/F,,T) = ZA@ =) Auso(€) - TR
k=0
= Z Apse (C)THe + Z Apse (C)THOC
kéc<2g—1 kéc>2g—1
= Fy(T%) + Lci . Z (¢Fe+1i=9 —1).Tkc,
=% so>29-1

where F} is a polynomial with integral coeffcicients. Computing the last sum (which is the sum
of two geometric series), we obtain that
hMC)-¢'9  h(O)

3) (4=1) 2(C/Fe,T) = FoT°) + 1= s~ T e

where F; is a polynomial with integral coefficients. This already shows that Z(C/F,,T) is a
rational function of 7', and moreover that Z(C/F,,T) has a simple pole at T = 1 (because
1-T°=(1—T)-(T°"' 4 --- +1) vanishes at order 1 at T = 1).

Let us now consider the “base changed” situation: C' being defined over F,, it makes sense
to consider it as a curve over Fy where ¢ = ¢°c. Doing the same computation as above with
C/Fq instead of C/F,, we would get that Z(C/F,,T) has a simple pole at T" = 1 (even if the
“§” of C/F, is different from that of C'/F;). Thus, the rational function Z(C/F,,T°¢) also has
a simple pole at T' = 1. Now recall from the last lecture the “base change relation” for zeta
functions:

Z(C/Fq/7T6C) = H Z(C/]FIDC : T)7
¢o=1
where the product is over the complex dc-th roots of unity. For each such ¢, since Z(C/F,,T) is
actually a rational function in 7°¢ (see (3)), we have Z(C/F,,(-T) = Z(C/F,, T). In particular,
Z<C/Fq'a T5C) = H Z(C/Fq» T) = Z(C/F% T)(SC
¢fe=1

Both Z(C/F,,T°) and Z(C/F,,T) have a simple pole at T = ¢!, so that this last relation
implies that ¢ = 1. O
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Remark 3.20. — Note that the existence of a divisor of degree 1 on a curve C' does not imply
the existence of a rational point.
For example, consider the curve C/Fg defined by

C: y? = —(2® —x)* - 1.

The curve C' has genus 2, and one checks that C' has no Fs-rational points (sample check: if
x =0, then —(2® — x)2 — 1 = —1 = 2 is not a square in F3, ...). Denote by a;, as the roots
of 22 = —1 in F3: a1 and ay are conjugate under the Galois group Gal(F3/F3) (actually, under
Gal(Fy/F3) ~ Z/27Z) and the two points (0, 1), (0,a2) on C are also conjugate. In particular,
they define the same F3-place vo of degree 2 on C'. Similarly, denote by (1, B2, 83 the roots of
23 — 2z = —1in F3: the §;’s are of degree 3 over F3 and they are Galois conjugates, so that the
three points (f1,1), (82,1) and (B3,1) on C generate the same Fs-place vs of degree 3 on C. Let
D=1 v3—1-vg € Div(C): the divisor D on C has degree 3 — 2 = 1.

The theorem above allows us to prove an important rationality result on Z(C/Fq,T): the
following is based on Lemma 3.18, which is a consequence of the “weak Riemann-Roch” theorem.
Later on, we make use of the “strong Riemman-Roch” theorem to give a more precise version.

Theorem 3.21 (Rationality I). — Let C/F, ba a smooth projective curve of genus g over a
finite field Fy. The zeta function Z(C/F,,T) is a rational function of T'. Moreover, it is of the
form

L(C/]Flb T)
(—T)(1—qT)
where L(C/Fy,T) € Z[T) is a polynomial with integral coefficients, of degree < 2g and which
satisfies L(C'/Fy,0) =1 and L(C/Fy,1) = h(C).

(4) Z(C/Fq,T) =

Proof. — If the genus of C' is g = 0, there is nothing to prove. So we now assume that g > 1.
In this situation, Lemma 3.18 and Theorem 3.19 imply that

h(C) Tb+1fg _ 1

- (a )

q—1
Thus, by a similar computation to that we did in the proof of 3.19, we have

Z(C[F, T) = Y An(C)-T"+ > A,(C)-T"

Vn > 2g —1, An(C) =

n<2g—1 n>2g—1

h(C

:Fl(T)+(7:i. Z (qn+17971) .Tm
9=+ 2051
h(C

:FQ(T)+ ( ) .Z(qn%*l*g_l).Tn
q—1 n>0
h(C) - ¢ 9 1 h(C 1

qg—1 1—-qT q-1 1-T’
where F; and Fj are certain polynomials with integral coefficients, of degree < 2g — 2. Thus
hC)-¢'  h(C)

1—¢qr 1-T
where F3 is a polynomial with integral coefficients (all divisible by ¢ — 1), of degree < 2g — 2.
Summing the three contributions and simplifying the denominators, we obtain the first assertion
of the Theorem. The fact that the degree of L(C/F,,T) is < 2g follows from the fact that
deg F5 < 2g — 2. Finally, we compute the values of L(C/F,,T) at T =0 and T = 1 as follows.
First, by definition of Z(C/F,,T), we have Z(C/F,,0) = Ao(C)-T°+0 = 1; on the other hand,
(4) gives Z(C/F,,0) = L(C/F,,0). To evaluate L(C/F,, T) at T' = 1, first multiply (4) by 1 —T

(5) (¢=1)-Z(C/Fy,T) = F3(T) +
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and then put 7' = 1: we get L(C/F4,1)/(1—q) = ((1-T) - Z(C/F,,T)) (T = 1). On the other
hand, multiplying (5) by 1 — T and evaluating at T'= 1 gives the desired value. O

The numerator L(C/F,,T) of Z(C/F,,T) is called the L-polynomial or the L-function of
C/F,. We see from (4) that L(C/F,,T) is the “interesting part” of the zeta function, since the
denominator does not really depend on C//F,. This L-function has several important properties,
among which is the following.

3.3.3. Functional equation. — Let us now make use of the strong Riemann-Roch theorem
and prove the theorem below, which is a very nice complement to Theorem 3.21:

Theorem 3.22 (Functional Equation). — Let C/F, be a smooth projective curve of genus g
over a finite field Fy. The zeta function Z(C/Fq,T) satisfies the functional equation:
—1q2g—2 1
(6) 2(C/5, 1) = T2 2 (CfFy ).
q
As an exercise, translate this relation (given in terms of the variable T') into a relation in
terms of the “s-variable” (with T" = ¢~*). You should obtain a relation between ((C/Fy, s)
and ((C/F4,1 — s), that you should compare to the functional equation satisfied by the usual
Riemann zeta function (which explains why (6) is called a “functional equation”).

Proof. — Again, in the case where g = 0, there is nothing to prove: we already know that
L(C/Fg4,T) is a polynomial with degree < 0 whose value at 7= 0 is 1, so that L(C/F,,T) =1
and a direct substitution T <+ 1/¢T in Z(C/F,,T) = (1 —T)"}(1 — ¢T)~! gives (6). We now
assume that g > 1.

To prove (6), it suffices to prove that the rational function

X:Tw—T"9.-Z(C/F,,T)

is invariant under the transformation 7' — 1/¢T. Lemmas 3.17 above implies that, for all n > 0,

{D) _q

q

@)= >
mjepiec) ¢
deg[D]=n

the sum ranging over all divisor classes of degree n in Pic(C') (note that £(D) depends only on
the class of D in Pic(C)). Since there are exactly h(C) divisor classes of degree n in Pic(C)
(recall the bijection between Pic’(C') and that set), we obtain that

(4-1) X(T) = (g 1) T4 2(C/R,T) =T -3 | 3 @ 1.1
n=0 | [D]ePic(C)
deg[D]=n

Denote by D the set of divisor classes [D] € Pic(C) with 0 < deg[D] < 2g —2. Separating terms
with 0 <n < 2¢g — 2 from those with n > 2g — 1 in the last displayed equation, we get:

(¢—1) X(T) = Z (qE(D) _ 1) Tl-g+degD | Z Z 4O 1| .

[D]eD n>2g—1 | [D]€Pic(C)
deg[D]=n
— Z qZ(D)Tl—g-i-degD _ Z Tl—g+degD + Z Z qZ(D) 1.7
[D]eD [D]eD n>2g—1 \ [D]ePic(C)

deg[D]=n
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The middle sum is easy to compute:
29—2

T?9-1 1 T9 —T'=9
D rtretdesD = N p(C) TV = B(C) T P
[D]eD n=0

71 MO

The last sum has (essentially) already been computed in the proof of the rationality of the zeta
function (based on the fact that ¢(D) = deg D + 1 — g when deg D > 2g — 1):

1—g Tl—g
oDy _ 1| g _ (D)
S| Y d@eaer h(C)(l_qT ).
n>2g—1 \ [D]€Pic(C)
deg[D]=n

So we have proved that

B q9T9 T1-9
¢—1)-X(T)= Y ¢ g+degD+hC.( - .
( ) (T) B (©) 1—q¢qI' 1-T

=X (T) =X2(T)

The fact that the second part X»(7") is invariant under the substitution 7' — 1/¢T can be checked
by a direct computation. It remains to see why X;(7) = X;1(1/¢T) and we will be done.
We have

Xl(l/qT) _ Z qZ(D) . (qT)—degD—l-i-g — Z qZ(D)—degD—l-I—g . T—degD—H—g.
[DleD [DleD
Now, choose a divisor K¢ in the canonical class [K¢] € Pic(C) (whose existence is asserted by

the Riemann-Roch theorem). Recall that deg K¢ = 2g—2. Further, the map D — D' = Ko —D
is a permutation of D. Now, by the Riemann-Roch theorem, we have

D) —degD —1+4g=¥¢Kc— D),

and thus
X(1/qT) = Z g/(Ke=D)  pdes(Ko—D)+1—g _ Z g!(P) . Tdes D'H1=g _ X\ (T").
[DleD [D']eD
Finally, we have X (1/¢T) = X (T') because both X; and X3 satisfy such a relation. Which proves
the functional equation (6) for the zeta function! O

From (6), one deduces immediately the following result.
Corollary 3.23 (Rationality II). — Let L(C/F,,T) be the numerator of the zeta function of
C/Fq. The L-polynomial L(C/Fq,T) € Z[T| has degree 2g and satisfies

(7) L(C/F,,T) = ¢T% - L <C/]Fq, q1T> :
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3.3.4. Consequences of the functional equation. — Last time, we proved the functional
equation for the zeta function of a curve. Let us review what we know so far about the numerator
L.
Let C/F, be a smooth projective curve of genus g over a finite field F,. Write its zeta function
as
L(C/Fy,T)
(1=T)(1—qT)
The denominator of Z(C/F,4,T') does not really depend on C', but only on the base field F,. So,
to compute Z(C/F,,T') for a given curve C, we need only compute the numerator L(C/Fy, T).
We already know that L(C/F,, T') has integral coefficients and degree 2g, and that L(C'/F,,0) =
1. Moreover this polynomial satisfies a functional equation

L(C/F,,T) = (¢T?)¢ - L <C/Fq, qlT> .

As a consequence, one deduces:

Z(C[Fy,T) =

Proposition 3.24. — Write L(C/F,,T) = Zz oI, with a; € Z. Then
Vie{0,...,9}, agg—i= ¢ a.

In particular, since ag = 1, we have azg = ¢7.

Proof. — The relation follows from the functional equation (7):

(qTQ) (C/Fm qT Z qu g. - Qi q i -t — Z qgfiai . T29*i

fzq] 9a2 LTI _Zal Tl L(C/quT)

It remains to identify coefficients of 7' OJ
Since we know that ag = 1, that asy = ¢9 and that we can deduce agy1,...,a2y—1 from
ai,...,aq, it remains to find a way to compute these g coefficients. These can be computed
recursively if we know #C(Fy) for sufficiently many small values of n (n = 1,...,g will do).
More precisely, factor L(C/F,,T) as a product
29
L(C/Fy, T) = [[(1 = a;-T),
=1

for some complex numbers «; € C* (this factorization certainly exists because L(C/Fy,0) =1,
the a; are then the inverses of the roots of L in C). With this notation:

Proposition 3.25. — For all integers n > 1,
29
(8) #CO(Fgn) = q" +1— Z al.

The set {a;}j=1,. 24 is stable under the map o — q/cv.

Proof. — We start with the relation:

(1=T)(1—qT)- Z(C/Fe, T) = [[(1 — o - 7).
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We take a (formal) logarithm of this expression and expand the resulting power series, using that
—log(l—2-T)=>,+ (1)" " we obtain that:

n

29 n
an | L2
y .
1

S (gt #CE) = Y

- n
n>1 n>1 \ j=

Which leads to the desired relation, by identification of coefficients of T. The second statement
follows from the functional equation because

29 29
(T2 - L(C/Fy (7)) =[] (1 e T) “ [ - ;- T) = L(C/F,.T).

Jj=1 Jj=1

Note also that H?g: 1 @; = ¢ because the leading coefficient agy of L is ¢9. O

Now, for all n > 1, put
29
on(C) = #COFp) =" —1= -3 ar.
j=1

It is clear that ¢, (C) can be expressed in terms of the symmetric polynomials in the «; (by
the so-called Newton’s formulae). Moreover, by the relations between the coefficients and the
roots of a polynomial, there is a link between the a; and the inverse roots «;. The detailed
computation (left as an exercise) leads to the recursive relation:

i—1
Vizl,...,g, i-ai=ZJi_j(C)-aj.
j=0

It is now clear that the computation of the zeta function of C'/F, requires only the knowledge of
#C(Fgn) forn=1,---,g.

Again, computing Z(C/F,,T) (a power series defined in terms of #C(Fgn) for all n) is
equivalent to knowing only #C(Fg») for a very small number of small n! This is more or
less standard nowadays, but it is still surprising.

3.3.5. Examples. — Before moving on to the next chapter, let us give a few examples of how
to actually compute zeta functions.

Example 3.26. — Let k = F3 and consider the curve Cy defined over Fg with affine equation
CoC A?: o2 =232

We denote by C' C IP? the projective closure of Cy (i.e. the curve in P? defined by homogenizing

the equation for Cj). It is readily checked that C' is indeed a curve, and that it is smooth. Since

C' is a smooth plane curve defined by a cubic equation (that is, by homogeneous polynomial of

degree 3), it has genus g = 1.

By the above, to compute the zeta function of C/Fs, we need only compute #C(F3). The
affine curve Cy has 3 points over Fs: (0,0), (1,0) and (2,0) (as can be seen by a direct check),
and C' has only one point at infinity, with projective coordinates [0 : 1 : 0] € C. Since this last
point is clearly Fs-rational, we have #C(F3) = 4.

After a quick computation using facts in the previous subsection, we find that

T2 +1 14+iV3-T)(1—iV3-T
2(C/Es 1) = S L QS DUV T)
(1-T)1-3T) (1-T)(1-3T)
Ezxample 3.27. — Now set k = Fy and consider the two curves

C1/Fy: y? +axy=a3+uz, Co/Fy: y? +y =21
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As in the previous example, we only give their affine equations, but we are really dealing with
the underlying projective curves. Both C7 and Cy are smooth projective curves over Fo, and
they both have genus 1, and one point at infinity co = [0 : 1 : 0] which is Fa-rational (i.e. when
counting rational points, we count the affine points, which are basically solutions to the affine
equations above, and we add 1 to the result). Again, computing only #C(F3) and #C5(Fq) will
yield their zeta functions. And again, by a direct case-by-case computation, we find that

C1(Fy) = {(0,0),(1,0),(1,1),00}, and Cy(F2) = {(0,0),(0,1), 00}.
The arguments above lead to expressions for the zeta functions:

2T2 + T +1 272 + 1
a-ma o) W ZACET) = e oy

Note that the numerator of the first zeta function can be factored as

M2 4+ T41= (1_W.T> <1_W.T>,

Z(C1/F3,T) =

2 2

where %ﬁ has magnitude /2.

Example 3.28. — Let p be a prime number such that p = 2 mod 3, and consider the projective
curve C'/F,, defined by the homogeneous equation

CcP’: X’+Y3+2Z°=0.
One checks that this curve is irreducible and smooth (remember that p has to be # 3), and that
it has genus 1.

Since p = 2 mod 3, the map = — ° is a bijection F, — F, (this map always sends 0 to 0,
and its restriction to F} — IF ¥ is a group isomorphism because 3 is coprime to the order of F;).
In particular, we deduce that there is a bijection between C(F,) C P?(F,) and H(F,) C P*(F,),
where H C P? is the line H : 2 +y + z = 0. Thus, #C(Fp) is the same as the number of
[F,-rational points on a projective line, that is to say #C(F,) = #P1(F,) =p+ 1.

From this, one easily deduces that

pT? +1
2O T = oy =y
Note that, if p = 1 mod 3, the curve C/F), still makes sense, and is still smooth of genus 1. But

we can not use the simple argument above to compute #C(F,). Nonetheless, we know that the
zeta function of C'//IF, has the form

T +a-TH+1
Z(C/Fp,T) = (1-7)(1-pT)’

for some integer a. A more intricate computation of #C(IF,) involving character sums gives a
closed formula for a in terms of p.

Example 3.29. — As a final example for this type of computation, let us consider the smooth
projective curve M /F3 defined as the projective closure of the curve given by the affine equation
M/Fs: 33 +y =2z
One checks that M is irreducible and smooth. It has genus g = 3. To compute its zeta function,

we need only find #M (F3), #M (Fy) and #M (Fa7). Either by a direct case by case computation,
or with a more clever point count (see Homework #1), one finds:

27T0 + 27T* + 972 + 1
Z(M/F3,T) =




