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3.3. Rationality and functional equation of the zeta function

3.3.1. Preliminary results. — Let us first prove two more lemmas about divisors on curves.

Lemma 3.17. — Let D 2 Div(C) be a divisor, then

# {E 2 Div(C) : E � 0 and [E] = [D] in Pic(C)} =
q`(D) � 1

q � 1
.

In words: the class [D] 2 Pic(C) of D contains (q`(D) � 1)/(q � 1) effective divisors.

Proof. — For a divisor G 2 Div(C) in the class [D] of D, there is a function g 2 Fq(C)⇥ such
that G = D + div(f). Then G is effective if and only if f 2 L(D)r {0} (see above).

There are exactly q`(D) � 1 nonzero functions in L(D) (because L(D) ' (Fq)
`(D) as Fq-vector

spaces), and two of them give rise to the same divisor if and only if they differ by a (multiplicative)
constant c 2 F⇥

q . Hence the result.

Given our curve C, the image of the degree map deg : Div(C) ! Z is a subgroup of Z: by the
structure theorem of such subgroups, there exists an integer �C � 1 such that

deg(Div(C)) = Z · �C .
For any integer n � 0, let

An(C) := {D 2 Div(C) : D � 0 and degD = n} .
Recall that the zeta function of C/Fq can be written under the form

Z(C/Fq, T ) =
X

D�0

T degD =

1
X

n=0

An(C) · Tn = 1 +

1
X

n=1

An(C) · Tn.

Thus, it will be of interest to be able to “compute” An(C) for many values of n. We now give a
formula for this number An(C) of effective divisors on C of a given degree n 2 Z>0

, at least for
some n:

Lemma 3.18. — Let C be a smooth projective curve over Fq of genus g. For all integers n � 1
such that �C | n and n � max{0, 2g � 1}, one has

An(C) =
h(C)

q � 1
· �qn+g�1 � 1

�

,

where h(C) = #Pic0(C) is the class-number of C.

Proof. — Let h = h(C), and fix representatives D
1

, . . . , Dh in Div(C) of all divisor classes of
degree n (remember that there is a bijection between the finite set Pic0(C) and the set of all
divisors classes of degree n on C). Then, by the previous Lemma, we obtain:

# {D � 0 : degD = n} =
h
X

i=1

{D � 0 : [D] = [Di] 2 Pic(C)} =
h
X

i=1

q`(Di) � 1

q � 1
.

Now by the weak Riemann-Roch theorem, for n � max{0, 2g � 1}, we have `(Di) = degDi +
1� g = n+ 1� g (for all i 2 [1, h]). This leads to the result:

An(C) =

h
X

i=1

q`(Di) � 1

q � 1
=

h
X

i=1

qn+2�g � 1

q � 1
=

h

q � 1
· (qn+1�g � 1).

The use of the hypothesis that �C divides n is implicit, where have we made use of it?
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3.3.2. Rationality of ⇣. — Let C/Fq be a smooth projective curve over a finite field Fq. For
any integer n � 0, let An(C) be the number of effective divisors on C of degree n (we have seen
earlier that this number is finite). Recall that

Z(C/Fq, T ) =
X

D2Div(C)

D�0

=
X

n�0

An(C)Tn 2 Z[[T ]].

To know more about the zeta function, we “compute” as many coefficients An(C) as possible.
We start by proving the following result.

Theorem 3.19. — The exists a divisor of degree 1 on C. In other words, �C = 1.

Proof. — We make use of the last Lemma in the previous lecture: denoting by h(C) = #Pic0(C)
the class-number of C, we have proved that, for all n � 1 such that �C | n and n � max{0, 2g�1},

An(C) =
h(C)

q � 1
· �qn+1�g � 1

�

.

Note that An(C) = 0 for all n � 1 that are not divisible by �C (by construction of �C , which
generates the image of the degree map). This shows that

Z(C/Fq, T ) =
1
X

n=0

An(C) · Tn =

1
X

k=0

Ak�C (C) · T k�C

=
X

k�C<2g�1

Ak�C (C)T k�C +
X

k�C�2g�1

Ak�C (C)T k�C

= F
1

(T �C ) +
h(C)

q � 1
·

X

k�C�2g�1

(qk�C+1�g � 1) · T k�C ,

where F
1

is a polynomial with integral coeffcicients. Computing the last sum (which is the sum
of two geometric series), we obtain that

(3) (q � 1) · Z(C/Fq, T ) = F
2

(T �C ) +
h(C) · q1�g

1� q�CT �C
� h(C)

1� T �C
,

where F
2

is a polynomial with integral coefficients. This already shows that Z(C/Fq, T ) is a
rational function of T , and moreover that Z(C/Fq, T ) has a simple pole at T = 1 (because
1� T � = (1� T ) · (T ��1 + · · ·+ 1) vanishes at order 1 at T = 1).

Let us now consider the “base changed” situation: C being defined over Fq, it makes sense
to consider it as a curve over Fq0 where q0 = q�C . Doing the same computation as above with
C/Fq0 instead of C/Fq, we would get that Z(C/Fq0 , T ) has a simple pole at T = 1 (even if the
“�” of C/Fq0 is different from that of C/Fq). Thus, the rational function Z(C/Fq0 , T �C ) also has
a simple pole at T = 1. Now recall from the last lecture the “base change relation” for zeta
functions:

Z(C/Fq0 , T
�C ) =

Y

⇣�C=1

Z(C/Fq, ⇣ · T ),

where the product is over the complex �C-th roots of unity. For each such ⇣, since Z(C/Fq, T ) is
actually a rational function in T �C (see (3)), we have Z(C/Fq, ⇣ ·T ) = Z(C/Fq, T ). In particular,

Z(C/Fq0 , T
�C ) =

Y

⇣�C=1

Z(C/Fq, T ) = Z(C/Fq, T )
�C .

Both Z(C/Fq0 , T �C ) and Z(C/Fq, T ) have a simple pole at T = q�1, so that this last relation
implies that �C = 1.
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Remark 3.20. — Note that the existence of a divisor of degree 1 on a curve C does not imply
the existence of a rational point.

For example, consider the curve C/F
3

defined by

C : y2 = �(x3 � x)2 � 1.

The curve C has genus 2, and one checks that C has no F
3

-rational points (sample check: if
x = 0, then �(x3 � x)2 � 1 = �1 = 2 is not a square in F

3

, ...). Denote by ↵
1

, ↵
2

the roots
of z2 = �1 in F

3

: ↵
1

and ↵
2

are conjugate under the Galois group Gal(F
3

/F
3

) (actually, under
Gal(F

9

/F
3

) ' Z/2Z) and the two points (0,↵
1

), (0,↵
2

) on C are also conjugate. In particular,
they define the same F

3

-place v
2

of degree 2 on C. Similarly, denote by �
1

,�
2

,�
3

the roots of
z3 � z = �1 in F

3

: the �i’s are of degree 3 over F
3

and they are Galois conjugates, so that the
three points (�

1

, 1), (�
2

, 1) and (�
3

, 1) on C generate the same F
3

-place v
3

of degree 3 on C. Let
D = 1 · v

3

� 1 · v
2

2 Div(C): the divisor D on C has degree 3� 2 = 1.

The theorem above allows us to prove an important rationality result on Z(C/Fq, T ): the
following is based on Lemma 3.18, which is a consequence of the “weak Riemann-Roch” theorem.
Later on, we make use of the “strong Riemman-Roch” theorem to give a more precise version.

Theorem 3.21 (Rationality I). — Let C/Fq ba a smooth projective curve of genus g over a
finite field Fq. The zeta function Z(C/Fq, T ) is a rational function of T . Moreover, it is of the
form

(4) Z(C/Fq, T ) =
L(C/Fq, T )

(1� T )(1� qT )
,

where L(C/Fq, T ) 2 Z[T ] is a polynomial with integral coefficients, of degree  2g and which
satisfies L(C/Fq, 0) = 1 and L(C/Fq, 1) = h(C).

Proof. — If the genus of C is g = 0, there is nothing to prove. So we now assume that g � 1.
In this situation, Lemma 3.18 and Theorem 3.19 imply that

8n � 2g � 1, An(C) =
h(C)

q � 1
· �qn+1�g � 1

�

.

Thus, by a similar computation to that we did in the proof of 3.19, we have

Z(C/Fq, T ) =
X

n<2g�1

An(C) · Tn +
X

n�2g�1

An(C) · Tn

= F
1

(T ) +
h(C)

q � 1
·
X

n�2g�1

�

qn+1�g � 1
� · Tn

= F
2

(T ) +
h(C)

q � 1
·
X

n�0

�

qn+1�g � 1
� · Tn

= F
2

(T ) +
h(C) · q1�g

q � 1
· 1

1� qT
� h(C)

q � 1
· 1

1� T
,

where F
1

and F
2

are certain polynomials with integral coefficients, of degree  2g � 2. Thus

(5) (q � 1) · Z(C/Fq, T ) = F
3

(T ) +
h(C) · q1�g

1� qT
� h(C)

1� T
,

where F
3

is a polynomial with integral coefficients (all divisible by q � 1), of degree  2g � 2.
Summing the three contributions and simplifying the denominators, we obtain the first assertion
of the Theorem. The fact that the degree of L(C/Fq, T ) is  2g follows from the fact that
degF

3

 2g � 2. Finally, we compute the values of L(C/Fq, T ) at T = 0 and T = 1 as follows.
First, by definition of Z(C/Fq, T ), we have Z(C/Fq, 0) = A

0

(C) · T 0 +0 = 1; on the other hand,
(4) gives Z(C/Fq, 0) = L(C/Fq, 0). To evaluate L(C/Fq, T ) at T = 1, first multiply (4) by 1�T
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and then put T = 1: we get L(C/Fq, 1)/(1� q) = ((1� T ) · Z(C/Fq, T )) (T = 1). On the other
hand, multiplying (5) by 1� T and evaluating at T = 1 gives the desired value.

The numerator L(C/Fq, T ) of Z(C/Fq, T ) is called the L-polynomial or the L-function of
C/Fq. We see from (4) that L(C/Fq, T ) is the “interesting part” of the zeta function, since the
denominator does not really depend on C/Fq. This L-function has several important properties,
among which is the following.

3.3.3. Functional equation. — Let us now make use of the strong Riemann-Roch theorem
and prove the theorem below, which is a very nice complement to Theorem 3.21:

Theorem 3.22 (Functional Equation). — Let C/Fq be a smooth projective curve of genus g
over a finite field Fq. The zeta function Z(C/Fq, T ) satisfies the functional equation:

(6) Z(C/Fq, T ) = qg�1T 2g�2 · Z
✓

C/Fq,
1

qT

◆

.

As an exercise, translate this relation (given in terms of the variable T ) into a relation in
terms of the “s-variable” (with T = q�s). You should obtain a relation between ⇣(C/Fq, s)
and ⇣(C/Fq, 1 � s), that you should compare to the functional equation satisfied by the usual
Riemann zeta function (which explains why (6) is called a “functional equation”).

Proof. — Again, in the case where g = 0, there is nothing to prove: we already know that
L(C/Fq, T ) is a polynomial with degree  0 whose value at T = 0 is 1, so that L(C/Fq, T ) = 1
and a direct substitution T $ 1/qT in Z(C/Fq, T ) = (1 � T )�1(1 � qT )�1 gives (6). We now
assume that g � 1.

To prove (6), it suffices to prove that the rational function

X : T 7! T 1�g · Z(C/Fq, T )

is invariant under the transformation T 7! 1/qT . Lemmas 3.17 above implies that, for all n � 0,

An(C) =
X

[D]2Pic(C)

deg[D]=n

q`(D) � 1

q � 1
,

the sum ranging over all divisor classes of degree n in Pic(C) (note that `(D) depends only on
the class of D in Pic(C)). Since there are exactly h(C) divisor classes of degree n in Pic(C)
(recall the bijection between Pic0(C) and that set), we obtain that

(q � 1) ·X(T ) = (q � 1) · T 1�g · Z(C/Fq, T ) = T 1�g ·
1
X

n=0

0

B

B

@

X

[D]2Pic(C)

deg[D]=n

q`(D) � 1

1

C

C

A

· Tn.

Denote by D the set of divisor classes [D] 2 Pic(C) with 0  deg[D]  2g�2. Separating terms
with 0  n  2g � 2 from those with n � 2g � 1 in the last displayed equation, we get:

(q � 1) ·X(T ) =
X

[D]2D

⇣

q`(D) � 1
⌘

T 1�g+degD +
X

n�2g�1

0

B

B

@

X

[D]2Pic(C)

deg[D]=n

q`(D) � 1

1

C

C

A

· Tn

=
X

[D]2D

q`(D)T 1�g+degD �
X

[D]2D

T 1�g+degD +
X

n�2g�1

0

B

B

@

X

[D]2Pic(C)

deg[D]=n

q`(D) � 1

1

C

C

A

· Tn.
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The middle sum is easy to compute:
X

[D]2D

T 1�g+degD =

2g�2

X

n=0

h(C) · T 1�g+n = h(C) · T 1�g · T
2g�1 � 1

T � 1
= h(C) · T

g � T 1�g

T � 1
.

The last sum has (essentially) already been computed in the proof of the rationality of the zeta
function (based on the fact that `(D) = degD + 1� g when degD � 2g � 1):

X

n�2g�1

0

B

B

@

X

[D]2Pic(C)

deg[D]=n

q`(D) � 1

1

C

C

A

· Tn = h(C) ·
✓

(qT )1�g

1� qT
� T 1�g

1� T

◆

.

So we have proved that

(q � 1) ·X(T ) =
X

[D]2D

q`(D)T 1�g+degD

| {z }

:=X1(T )

+ h(C) ·
✓

qgT g

1� qT
� T 1�g

1� T

◆

| {z }

:=X2(T )

.

The fact that the second part X
2

(T ) is invariant under the substitution T 7! 1/qT can be checked
by a direct computation. It remains to see why X

1

(T ) = X
1

(1/qT ) and we will be done.
We have

X
1

(1/qT ) =
X

[D]2D

q`(D) · (qT )� degD�1+g =
X

[D]2D

q`(D)�degD�1+g · T� degD�1+g.

Now, choose a divisor KC in the canonical class [KC ] 2 Pic(C) (whose existence is asserted by
the Riemann-Roch theorem). Recall that degKC = 2g�2. Further, the map D 7! D0 = KC�D
is a permutation of D. Now, by the Riemann-Roch theorem, we have

`(D)� degD � 1 + g = `(KC �D),

and thus
X(1/qT ) =

X

[D]2D

q`(KC�D) · T deg(KC�D)+1�g =
X

[D0
]2D

q`(D
0
) · T degD0

+1�g = X
1

(T ).

Finally, we have X(1/qT ) = X(T ) because both X
1

and X
2

satisfy such a relation. Which proves
the functional equation (6) for the zeta function!

From (6), one deduces immediately the following result.

Corollary 3.23 (Rationality II). — Let L(C/Fq, T ) be the numerator of the zeta function of
C/Fq. The L-polynomial L(C/Fq, T ) 2 Z[T ] has degree 2g and satisfies

(7) L(C/Fq, T ) = qgT 2g · L
✓

C/Fq,
1

qT

◆

.
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3.3.4. Consequences of the functional equation. — Last time, we proved the functional
equation for the zeta function of a curve. Let us review what we know so far about the numerator
L.

Let C/Fq be a smooth projective curve of genus g over a finite field Fq. Write its zeta function
as

Z(C/Fq, T ) =
L(C/Fq, T )

(1� T )(1� qT )
.

The denominator of Z(C/Fq, T ) does not really depend on C, but only on the base field Fq. So,
to compute Z(C/Fq, T ) for a given curve C, we need only compute the numerator L(C/Fq, T ).

We already know that L(C/Fq, T ) has integral coefficients and degree 2g, and that L(C/Fq, 0) =
1. Moreover this polynomial satisfies a functional equation

L(C/Fq, T ) = (qT 2)g · L
✓

C/Fq,
1

qT

◆

.

As a consequence, one deduces:

Proposition 3.24. — Write L(C/Fq, T ) =
P

2g
i=0

aiT i, with ai 2 Z. Then

8i 2 {0, . . . , g}, a
2g�i = qg�i · ai.

In particular, since a
0

= 1, we have a
2g = qg.

Proof. — The relation follows from the functional equation (7):

(qT 2)g · L(C/Fq, (qT )
�1) =

2g
X

i=0

qgT 2g · ai · q�iT�i =

2g
X

i=0

qg�iai · T 2g�i

=

2g
X

j=0

qj�ga
2g�j · T j =

2g
X

i=0

ai · T i = L(C/Fq, T ).

It remains to identify coefficients of T .

Since we know that a
0

= 1, that a
2g = qg and that we can deduce ag+1

, . . . , a
2g�1

from
a
1

, . . . , ag, it remains to find a way to compute these g coefficients. These can be computed
recursively if we know #C(Fn

q ) for sufficiently many small values of n (n = 1, . . . , g will do).
More precisely, factor L(C/Fq, T ) as a product

L(C/Fq, T ) =
2g
Y

j=1

(1� ↵j · T ),

for some complex numbers ↵j 2 C⇤ (this factorization certainly exists because L(C/Fq, 0) = 1,
the ↵j are then the inverses of the roots of L in C). With this notation:

Proposition 3.25. — For all integers n � 1,

(8) #C(Fqn) = qn + 1�
2g
X

j=1

↵n
j .

The set {↵j}j=1,...,2g is stable under the map ↵ 7! q/↵.

Proof. — We start with the relation:

(1� T )(1� qT ) · Z(C/Fq, T ) =
2g
Y

j=1

(1� ↵j · T ).
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We take a (formal) logarithm of this expression and expand the resulting power series, using that
� log(1� z · T ) =Pn�1

(zT )

n

n , we obtain that:

X

n�1

(1 + qn +#C(Fqn))
Tn

n
=
X

n�1

0

@

2g
X

j=1

↵n
j

1

A · T
n

n
.

Which leads to the desired relation, by identification of coefficients of T . The second statement
follows from the functional equation because

(qT 2)g · L(C/Fq, (qT )
�1) =

2g
Y

j=1

✓

1� q

↵i
· T
◆

=

2g
Y

j=1

(1� ↵j · T ) = L(C/Fq, T ).

Note also that
Q

2g
j=1

↵j = qg because the leading coefficient a
2g of L is qg.

Now, for all n � 1, put

�n(C) = #C(Fqn)� qn � 1 = �
2g
X

j=1

↵n
j .

It is clear that �n(C) can be expressed in terms of the symmetric polynomials in the ↵j (by
the so-called Newton’s formulae). Moreover, by the relations between the coefficients and the
roots of a polynomial, there is a link between the ai and the inverse roots ↵j . The detailed
computation (left as an exercise) leads to the recursive relation:

8i = 1, . . . , g, i · ai =
i�1

X

j=0

�i�j(C) · aj .

It is now clear that the computation of the zeta function of C/Fq requires only the knowledge of
#C(Fqn) for n = 1, · · · , g.

Again, computing Z(C/Fq, T ) (a power series defined in terms of #C(Fqn) for all n) is
equivalent to knowing only #C(Fqn) for a very small number of small n! This is more or
less standard nowadays, but it is still surprising.

3.3.5. Examples. — Before moving on to the next chapter, let us give a few examples of how
to actually compute zeta functions.

Example 3.26. — Let k = F
3

and consider the curve C
0

defined over F
3

with affine equation

C
0

⇢ A2 : y2 = x3 � x.

We denote by C ⇢ P2 the projective closure of C
0

(i.e. the curve in P2 defined by homogenizing
the equation for C

0

). It is readily checked that C is indeed a curve, and that it is smooth. Since
C is a smooth plane curve defined by a cubic equation (that is, by homogeneous polynomial of
degree 3), it has genus g = 1.

By the above, to compute the zeta function of C/F
3

, we need only compute #C(F
3

). The
affine curve C

0

has 3 points over F
3

: (0, 0), (1, 0) and (2, 0) (as can be seen by a direct check),
and C has only one point at infinity, with projective coordinates [0 : 1 : 0] 2 C. Since this last
point is clearly F

3

-rational, we have #C(F
3

) = 4.
After a quick computation using facts in the previous subsection, we find that

Z(C/F
3

, T ) =
3T 2 + 1

(1� T )(1� 3T )
=

(1 + i
p
3 · T )(1� i

p
3 · T )

(1� T )(1� 3T )
.

Example 3.27. — Now set k = F
2

and consider the two curves

C
1

/F
2

: y2 + xy = x3 + x, C
2

/F
2

: y2 + y = x3.
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As in the previous example, we only give their affine equations, but we are really dealing with
the underlying projective curves. Both C

1

and C
2

are smooth projective curves over F
2

, and
they both have genus 1, and one point at infinity 1 = [0 : 1 : 0] which is F

2

-rational (i.e. when
counting rational points, we count the affine points, which are basically solutions to the affine
equations above, and we add 1 to the result). Again, computing only #C

1

(F
2

) and #C
2

(F
2

) will
yield their zeta functions. And again, by a direct case-by-case computation, we find that

C
1

(F
2

) = {(0, 0), (1, 0), (1, 1),1}, and C
2

(F
2

) = {(0, 0), (0, 1),1}.
The arguments above lead to expressions for the zeta functions:

Z(C
1

/F
2

, T ) =
2T 2 + T + 1

(1� T )(1� 2T )
, and Z(C

2

/F
2

, T ) =
2T 2 + 1

(1� T )(1� 2T )
.

Note that the numerator of the first zeta function can be factored as

2T 2 + T + 1 =

 

1� �1 + i
p
7

2
· T
! 

1� �1� i
p
7

2
· T
!

,

where �1±i
p
7

2

has magnitude
p
2.

Example 3.28. — Let p be a prime number such that p ⌘ 2 mod 3, and consider the projective
curve C/Fp defined by the homogeneous equation

C ⇢ P2 : X3 + Y 3 + Z3 = 0.

One checks that this curve is irreducible and smooth (remember that p has to be 6= 3), and that
it has genus 1.

Since p ⌘ 2 mod 3, the map x 7! x3 is a bijection Fp ! Fp (this map always sends 0 to 0,
and its restriction to F⇥

p ! F⇥
p is a group isomorphism because 3 is coprime to the order of F⇥

p ).
In particular, we deduce that there is a bijection between C(Fp) ⇢ P2(Fp) and H(Fp) ⇢ P2(Fp),
where H ⇢ P2 is the line H : x + y + z = 0. Thus, #C(Fp) is the same as the number of
Fp-rational points on a projective line, that is to say #C(Fp) = #P1(Fp) = p+ 1.

From this, one easily deduces that

Z(C/Fp, T ) =
pT 2 + 1

(1� T )(1� pT )
.

Note that, if p ⌘ 1 mod 3, the curve C/Fp still makes sense, and is still smooth of genus 1. But
we can not use the simple argument above to compute #C(Fp). Nonetheless, we know that the
zeta function of C/Fp has the form

Z(C/Fp, T ) =
pT 2 + a · T + 1

(1� T )(1� pT )
,

for some integer a. A more intricate computation of #C(Fp) involving character sums gives a
closed formula for a in terms of p.

Example 3.29. — As a final example for this type of computation, let us consider the smooth
projective curve M/F

3

defined as the projective closure of the curve given by the affine equation
M/F

3

: y3 + y = x4.

One checks that M is irreducible and smooth. It has genus g = 3. To compute its zeta function,
we need only find #M(F

3

), #M(F
9

) and #M(F
27

). Either by a direct case by case computation,
or with a more clever point count (see Homework #1), one finds:

Z(M/F
3

, T ) =
27T 6 + 27T 4 + 9T 2 + 1

(1� T )(1� 3T )
.


