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Introduction

Let Fq be a finite field of characteristic p ≥ 5 and set K = Fq(t). Let E
be a nonisotrivial elliptic curve over K and let X denote its Tate-Shafarevich
group. It is conjectured that X is a finite group. In general, this conjecture
is still widely open. However, under the assumption that |X| is finite, Gold-
feld and Szpiro were able to prove an upper bound on the order of X, in the
case of function fields. Let N := qdegN (E) and H := q(1/12) deg ∆min(E), where
N (E),∆min(E) ∈ Div(P1) are respectively the conductor and the minimal dis-
criminant of E. The bound found by Goldfeld and Szpiro is the following (see
[GS95]):

Theorem (Goldfeld-Szpiro). In the above setting, assume that X is finite
and that j(E) is not a p-th power. For all ε > 0, there exist constants c, c′ > 0,
depending only on ε and q, such that:

|X| ≤ c ·N1/2+ε, (1)

and
|X| ≤ c′ ·H1+ε. (2)

By the Szpiro inequality, we have H ≤ N1/2, so (1) follows from (2). The
question now arises whether these bounds are optimal for finite X. We will
prove that this is the case for (2), by examining a certain family of nonisotrivial
elliptic curves. We also get an improved optimal version of (1) for this specific
family.

For any integer a ≥ 1, let ℘a(t) = tq
a − t and we define the elliptic curve Ea

over K by the following Weierstrass model:

Ea : y2 = x3 + ℘a(t)x2 − x. (3)

We denote the Tate-Shafarevich group of Ea by X(Ea) and we will show that for
all a ≥ 1, X(Ea) is a finite group (see Corollary 4.6), hence we have an infinite
family of elliptic curves over K for which |X| < ∞ holds. We now also know
that the Goldfeld-Szpiro bound holds. The main result will be to improve this
upper bound for Ea, and to show that the improved bound is almost optimal
by proving the corresponding lower bound. This can be summarised in the
following theorem:

Theorem A. Let K = Fq(t) be of characteristic at least 5, and for any integer
a ≥ 1, let Ea/K be the elliptic curve defined by (3) and set Na := qdegNa ,
where Na is the conductor of Ea. For all ε > 0, there exist constants c1, c2 > 0,
depending only on ε and q, such that for all a ≥ 1, we have:

c1 ·N1/4−ε
a ≤

∣∣X(Ea)
∣∣ ≤ c2 ·N1/4+ε

a .

As a corollary, we will also get the following bounds of |X(Ea)| in terms
of H(Ea):

Theorem B. In the setting of Theorem A, set H(Ea) := q(1/12) deg ∆min(Ea),
where ∆min(Ea) is the minimal discriminant of Ea. For all ε > 0, there exist
constants c′1, c

′
2 > 0 depending only on ε and q, such that for all a ≥ 1, we have:
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c′1 ·H(Ea)1−ε ≤
∣∣X(Ea)

∣∣ ≤ c′2 ·H(Ea)1+ε.

It follows from Theorem B that the Goldfeld-Szpiro bound is essentially optimal,
in the sense that the exponent 1 in (2) is the best possible (it cannot be replaced
by a smaller number).

We will now give an outline of the proof of Theorem A. We first focus on finding
an explicit expression for the L-function L(Ea, T ) of Ea. The main tool in
finding the expression will be a certain relation between character sums. Define
Pq(a) to be the set of nonzero, finite places v of K with degree dv dividing a.
We will find for all v ∈ Pq(a) certain algebraic integers g(v), α(v) and α′(v) (see
Definitions 1.21 and 1.26 for more details), such that the L-function of Ea is
given by:

L(Ea, T ) =
∏

v∈Pq(a)

(1− α(v)g(v)T dv )(1− α′(v)g(v)T dv ) ∈ Z[T ]. (4)

Defining the special value L∗(Ea) := L(Ea, q
−1), we will deduce from this ex-

pression that L∗(Ea) 6= 0, or in other words ordT=q−1L(Ea, T ) = 0. It is
a result of Tate that for the rank of the Mordell-Weil group of Ea, we have
0 ≤ rankEa(K) ≤ ordT=q−1L(Ea, T ), so in particular rankEa(K) = 0 as well.
From this, we deduce that the full BSD conjecture holds for the curves Ea and
hence that the Tate-Shafarevich group X(Ea) is finite (see section 4 for more
details).

To find bounds on the order of X(Ea), we first deduce from the BSD conjecture
and a computation of the torsion and Tamagawa number of Ea, the following
relation:

logL∗(Ea)

logNa
=

log |X(Ea)|
logNa

− 1

4
+ o(1), as a→∞ (5)

and then continue by finding upper and lower bounds for logL∗(Ea)
logNa

. By proving

a bound for the size of Pq(a), we find that there exists a constant C2 > 0, such
that for all a ≥ 1:

logL∗(Ea)

logNa
≤ C2

a
. (6)

Finding a lower bound requires more work. For every place v ∈ Pq(a), we will
prove the existence of an angle θv ∈ (0, π) \ {π/2} from the computation of the
L-function, such that we have the following bound for all a ≥ 1:

− logL∗(Ea)

logNa
≤ |Pq(a)|

logNa
·

 1

|Pq(a)|
∑

v∈Pq(a)

− log(sin2 θv cos2 θv)

 . (7)

The first factor of the right hand side of this inequality can easily be seen to be
|Pq(a)|
logNa

= O(1/a), as a→∞. The remainder of the proof is focused on proving
that the second factor has a limit as a → ∞. Hence there exists a constant
C1 > 0, such that for all a ≥ 1, we have:
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− C1

a
≤ logL∗(Ea)

logNa
. (8)

Combining equation (5) with the bounds found in (6) and (8) will then conclude
the proof of Theorem A.

We also give a short outline of this thesis: In section 1 we recall the relevant
definitions and results on elliptic curves and characters, as well as introducing
quadratic Gauss sums and Kloosterman sums with some classical results. In
section 2 we will compute some invariants of the family Ea, including the j-
invariant, the conductor and the minimal discriminant. We also compute the
Tamagawa number of Ea and the torsion subgroup of E(K). Section 3 will be
completely dedicated to computing the L-function, and in section 4 we deduce
several corollaries from the explicit expression, including the finiteness of X(Ea)
and the fact that the full BSD conjecture holds. In section 5 we will prove the

desired bounds on logL∗(Ea)
logNa

, from which we will deduce proofs for Theorems A
and B in section 6.
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1 Background

We let Fq be a finite field of characteristic p ≥ 5 with q elements and write
K = Fq(t). Throughout, we fix an algebraic closure Fq/Fq and for any n ≥ 1
let Fqn be the unique subfield of Fq with qn elements. We also fix a primitive
p-th root of unity ζp and embeddings Q(ζp) ↪→ Q and Q ↪→ C. When algebraic
integers are considered as complex numbers, it is always implicitly under these
embeddings.

The next two sections are inspired by Ulmer’s Park City lecture notes ([Ulm11]).
The reader can confer these notes or [Sil09] for more details.

1.1 Places of K

Consider the projective line P1 over Fq, and note that K = Fq(t) = Fq(P1). We
let a place v of K be an orbit of the Galois action of Gal(Fq/Fq) on P1(Fq). Since
Gal(Fq/Fq) is topologically generated by the Frobenius morphism Frq : x 7→ xq,
a place v of K is given by v = {Frjq(P ) : j ≥ 1}, for some point P ∈ P1(Fq).
Note that P1 has exactly one point at infinity, which is Fq-rational, and we will
denote the place to which this point belongs with ∞. All the other places v of
K are called finite places of K, and it is a classical fact that there is a bijection
between the finite places of K, and the set {B ∈ Fq[t] : B monic, irreducible},
and we denote with Bv ∈ Fq[t] the monic irreducible polynomial corresponding
to a place v of K (see for example [Ulm11, Lect. 1.2]). We set dv to be the
degree of a place v of K. In particular, we have dv = degBv.

We associate the residue field F(v) := Fq[t]/(Bv) to a finite place v of K of
degree dv. Note that F(v)/Fq is a field extension of degree dv. Similarly, for the
place ∞ of K, we set F(∞) = Fq (as ∞ is a place of degree 1). For any place v
of K, we set Kv to be the completion of K at v.

1.2 Elliptic curves over K

We use mostly the definitions as in [Ulm11, Lect. 1]. An elliptic curve over K
is a smooth cubic plane curve, given by a Weierstrass model of the form:

Y 2Z + a1XY Z + a3Y Z
2 = X3 + a2X

2Z + a4XZ
2 + a6Z

3, (1.1)

with a1, ..., a6 ∈ K. Let O be the K-rational point (0 : 1 : 0). Setting x = X/Z
and y = Y/Z, we can also give the Weierstrass model in affine form:

y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6. (1.2)

Note that O is the only point of E at infinity, in the plane “Z = 0”. The
quantities b2, ..., b8, c4, c6,∆ and j are defined as in [Sil09, III.1]. All Weierstrass
models that can be obtained from a given model by a change of variables of the
form:

x = u2x′ + r, y = u3y′ + u2sx′ + t,

with u, r, s, t ∈ K, u 6= 0, are said to define the same elliptic curve over K. We
now define the following:
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1 Background

Definition 1.1. Let E be an elliptic curve over K.

(1) We say that E is constant if E can be defined by a Weierstrass model (1.1),
with ai ∈ Fq for all i.

(2) We say that E is isotrivial if there exists a finite extension K ′ of K, such
that E becomes constant over K ′.

(3) We say that E is nonisotrivial if it is not isotrivial.

Note that [Ulm11, Rem. 1.1.5] states that E is isotrivial, if and only if j(E) ∈ Fq.
We let E(K) be the set of K-rational points of E. It is a classical fact that E(K)
becomes a group under the “chord and tangent” addition (see for example [Sil09,
Ch. III.2, Prop.2.2.(f)]. Lang and Néron both proved the following analogue of
the classical Mordell-Weil theorem ([Ulm11, Lect. 1, Th. 5.1]):

Theorem 1.2. Let K = Fq(t) and E an elliptic curve over K. Then E(K) is
a finitely generated abelian group.

In particular, the torsion subgroup E(K)tors ⊆ E(K) is finite.

Definition 1.3. For a finite place v of K of degree dv, let Bv ∈ Fq[t] be
the corresponding monic irreducible polynomial of degree dv. We then define
ordv : K∗ → Z, by ordv(f) := ordBv (f), for all f ∈ K, where ordBv denotes the
multiplicity of Bv in f . For v = ∞, we define ord∞ : K∗ → Z by ord∞(f) :=
−deg f , for all f ∈ K. Furthermore, for any place v of K, we set ordv(0) =∞.

Definition 1.4. Let v be a place of K and E an elliptic curve over K, given by a
Weierstrass model (1.1). We say that the model is integral at v, if ordv(ai) ≥ 0,
for all i.

Note that from an elliptic curve E over K given Weierstrass model, and any
place v of K, we can always we can always find a model for E that is integral at
v, by applying a change of variables as in [Sil09, Ch. III.1], with the formulas
from [Sil09, Ch. III.1, Table 3.1]. Note that ordv∆ ≥ 0 for an integral model at
v, so there are models where this valuation is minimal.

Definition 1.5. Let E be an elliptic curve over K and v any place of K. A
minimal integral model of E at v is an integral model of E at v, such that ordv∆
is minimal among all integral models of E. We set ∆v(E) to be the discriminant
of a minimal integral model at v.

Definition 1.6. Let E be an elliptic curve over K. We define the minimal
discriminant ∆min(E) of E to be:

∆min(E) :=
∑
v

ordv∆v(E) · (v) ∈ Div(P1),

where the sum runs over all the places v of K. This is indeed a divisor, as
there are only finitely many places with ordv∆v(E) > 0. We set H(E) :=
q(1/12) deg ∆min(E).
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1.2 Elliptic curves over K

Let v be any place of K, and choose a minimal integral model model of E at v:

y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6.

Let τ ∈ v, and ai ∈ F(v) be the reduction modulo v, obtained by substituting t

with τ and let (Ẽ)τ be the cubic plane curve defined by:

y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6. (1.3)

We call (Ẽ)τ the reduction of E at v. If ordv(∆v(E)) = 0, (1.3) describes an

elliptic curve over F(v). However, if ordv(∆v(E)) ≥ 1, then (Ẽ)τ is singular.
We use this to define the following:

Definition 1.7. Let E be an elliptic curve over K, and v be any place of K.
Then:

(1) If (Ẽ)τ is a smooth cubic, i.e. an elliptic curve, we say that E has good
reduction at v.

(2) If (Ẽ)τ is a nodal cubic, we say that E has multiplicative reduction at v. If
the tangent lines at the node are rational over F(v) we say that the reduction
is split multiplicative, otherwise we say the reduction is non-split multiplica-
tive.

(3) If (Ẽ)τ is a cuspidal cubic, we say that E has additive reduction.

If E has either multiplicative or additive reduction at v, we say that E has bad
reduction at v. In the case of bad reduction at v, write Ẽns(F(v)) for the set of

non-singular F(v)-rational points of (Ẽ)τ . Then, we define:

E0(Kv) := {P ∈ E(Kv) : P̃ ∈ Ẽns(F(v))} (1.4)

Definition 1.8. Let E be an elliptic curve over K. For a place v of K, we set:

nv(E) :=

 0, if E has good reduction at v
1, if E has multiplicative reduction at v
2, if E has additive reduction at v

.

Furthermore, we define the conductor of E to be:

N (E) :=
∑
v

nv(E) · (v) ∈ Div(P1),

where the sum runs over all the places v of K. N (E) is indeed a divisor, as
there are only finitely many places of bad reduction. We set N(E) := qdegN (E)

We also define the Tamagawa number of an elliptic curve E:

Definition 1.9. Let E be an elliptic curve over K, and v any place of K and
let Kv be the completion of K at v. We define:

cv(E) := #(E(Kv)/E0(Kv)),

11



1 Background

and the Tamagawa number τ(E) of E as the following product over all places
v of E:

τ(E) :=
∏
v

cv(E).

This is well-defined, as cv(E) = 1 for all places of good reduction and there are
only finitely many places of bad reduction.

The next object we want to introduce is the L-function of E. For any place v
of K, define:

av(E) := qdv + 1−#(Ẽ)τ (F(v)). (1.5)

In the case of bad reduction, the number of points of (Ẽa)τ (F(v)) is known
exactly, hence we get:

av(E) =


qdeg v + 1−#(Ẽ)τ (F(v)) , if E has good reduction at v

1 , if E has split multiplicative reduction at v
−1 , if E has non-split multiplicative reduction at v
0 , if E has additive reduction at v

(1.6)

Then we define the L-function L(E, T ) of E as the following Euler product:

L(E, T ) =
∏

good v

(1− av(E)T dv + qdvT 2dv )−1 ·
∏

bad v

(1− av(E)T dv )−1. (1.7)

In [Ulm11, Lect. 1.9], the classical Hasse-Weil bound is stated: for all places v
of K, we have

|av(E)| ≤ 2
√
q
dv .

This bound implies that the Euler product in (4.3) converges for all T with
|T | < q−3/2. Furthermore, [Ulm11, Lect 1, Th. 9.3] states that for nonisotrivial
elliptic curves, L(E, T ) is actually a polynomial in Z[T ].

Finally, we give a definition of the Tate-Shafarevich group. Fix a separable
closure Ksep of K, and for any place v of K, fix a separable closure Ksep

v of Kv.
Set GK := Gal(Ksep/K), and for any place v, set GKv := Gal(Ksep

v /Kv). Then
we define the Tate-Shafarevich group of E over K, to be:

X(E) := ker

(
H1(GK , E(Ksep))→

∏
v

H1(GKv , E(Ksep
v ))

)
, (1.8)

where the H1 are the Galois cohomology groups. We only study the order of
the Tate-Shafarevich group, hence no introduction into Galois cohomology is
given. For more details on this topic, the reader may refer to [Ser97]. Note that
X(E) is conjectured to be finite, but this is not known in general.
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1.3 Characters

1.3 Characters

This section follows topics on characters as discussed in [LN97, Ch. 5]. Some
slight changes in the definitions and notations were made, mostly for notational
convenience and we only use the specific characters we are interested in. The
results of [LN97] remain true

When we consider a finite field F of characteristic p, we actually have two
interesting abelian groups: the additive group F and the multiplicative group F∗.
For both of these, we define characters we are interested in.

Definition 1.10. Let F be a finite field of characteristic p. We define an
additive character of F to be a group homomorphism ψ : F → Q(ζp)

∗. We call
the character ψ : F → Q(ζp)

∗ with ψ(x) = 1 for all x ∈ F the trivial additive
character of F. All other additive characters are called nontrivial.

Remark 1.11. For the finite field Fq, note that the following map is a nontrivial
additive character:

ψq : Fq → Q(ζp)
∗, x 7→ ζ

TrFq/Fp (x)
p , (1.9)

which can be seen by noting that TrFq/Fp : Fq → Fp is additive and surjective.
We call ψq the standard additive character of Fq. For any finite extension
Fqn/Fq, we write

ψqn := ψq ◦ TrFqn/Fq : Fqn → Q(ζp)
∗,

which is a nontrivial character of Fqn (see [LN97, (5.7)]). We call ψqn the
standard additive character of Fqn .

Remark 1.12. Let n ≥ 1 and β ∈ Fqn . Define the map ψβ : Fqn → Q(ζp)
∗ by

ψβ(x) = ψqn(βx) for all x ∈ Fqn . Then it can be easily seen that ψβ is also an
additive character on Fqn , which is trival if and only if β = 0.

Definition 1.13. For any finite field F of characteristic p, we define the quadratic
character λ : F∗ → {±1} by

λ(x) =

{
1, if x is a square in F
−1, otherwise

.

Remark 1.14. The quadratic character is an example of a multiplicative char-
acter of F: it is the unique nontrivial homomorphism χ : F∗ → {±1} for which
χ2(x) = 1 holds for all x ∈ F∗ (see [LN97, Ex. 5.10]). For any winite extension
Fqn/Fq, we will write λqn and λq for the quadratic characters of Fqn and Fq re-
spectively. Note that λq ◦NFqn/Fq : F∗qn → {±1} is also a group homomorphism
of order exactly 2 (as NFqn/Fq is multiplicative and surjective), but since λqn is
the unique map with this property, we actually have λqn = λq ◦NFqn/Fq .

Remark 1.15. For any finite field F of characteristic p, we extend the quadratic
character λ : F∗ → {±1} to all of F, by setting λ(0) = 0.

1.3.1 Gauss sums

Definition 1.16. Let F be a finite field of characteristic p, ψ an additive char-
acter and λ the quadratic character of F. We define the quadratic Gauss sum
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GF(λ, ψ) as

GF(λ, ψ) := −
∑
x∈F∗

λ(x)ψ(x) ∈ Q(ζp).

Remark 1.17. We can actually let this sum run over all of F, if λ is extended
as in Remark 1.15. Also, note that we normalize our Gauss sums with a minus
sign, contrary to the classical definition in [LN97, Ch. 5.2].

Lemma 1.18. Let F be a finite field of characteristic p, λ the quadratic char-
acter and ψ the trivial character on F. Then:

GF(λ, ψ) = 0.

Proof. Note that the Gauss sum now reduces to:

GF(λ, ψ) = −
∑
x∈F∗

λ(x)

and this sum vanishes, which is a classical fact that holds for all nontrivial
characters (see [LN97, Thm. 5.4]).

Lemma 1.19. Let n ≥ 1 and let β ∈ F∗qn . Define ψβ as in Remark 1.12. Let
λqn be the quadratic character on Fqn . Then we have:

GFqn (λqn , ψβ) = λqn(β) ·GFqn (λqn , ψqn)

Proof. By writing out the Gauss sum, we find:

GFqn (λqn , ψβ) = −
∑
x∈F∗

qn

λqn(x)ψβ(x)

= −
∑
x∈F∗

qn

λqn(β2)λqn(x)ψqn(βx)

= −λqn(β)
∑
x∈F∗

qn

λqn(βx)ψqn(βx)

= λqn(β) ·GFqn (λqn , ψqn),

where the last line follows from the fact that βx attains all values of F∗qn as x
runs through F∗qn , because β 6= 0.

We also have the Hasse-Davenport relation:

Theorem 1.20 (Hasse-Davenport). Let m ≥ 1, let ψ be an additive char-
acter and λqm be the quadratic character of Fqm . Then for all finite extensions
Fqn/Fqm , we have:

GFqn (λqm ◦NFqn/Fqm , ψ ◦ TrFqn/Fqm ) = GFqm (λqm , ψ)n/m.

For a proof of this theorem, see [LN97, Th. 5.14]. Using this, we actually get a
relation which will be useful in the computation of the L-function in section 3.
For that, we consider the following value:

14



1.3 Characters

Definition 1.21. Let n ≥ 1 and let β ∈ F∗qn . We write dβ for the degree of β
over Fq, and λ

qdβ
for the quadratic character on F

qdβ
. Then we define:

g(β) := λ
qdβ

(β)GF
q
dβ

(λ
qdβ

, ψ
qdβ

)

The importance of this definition will become clear later, but for now we prove
some facts about it.

Proposition 1.22. Let n ≥ 1 and β ∈ F∗qn .

(i) We have λqn(β) ·GFqn (λqn , ψqn) = g(β)n/dβ .

(ii) For all α ∈ {β, βq, ..., βq
dβ−1

} we have g(α) = g(β). In other words, the
value of g(β) is constant along the Galois orbit of β.

(iii) Seeing g(β) as a complex number in the complex embedding, we have
g(β) = qdβ/2eiθβ for some θβ ∈ {kπ2 : k ∈ Z}

Proof. We prove the parts separately:

(i) Since β ∈ Fqn , we have dβ |n. Note that we have ψqn = ψ
qdβ
◦ TrFqn/F

q
dβ

and λqn = λ
qdβ
◦NFqn/F

q
dβ

by definition. In particular, we have:

NFqn/F
q
dβ

(β) = βq
dβ
βq

2dβ · · · βq
(n/dβ)dβ

= βn/dβ ,

as βq
dβ

= β. Combining this with the result of Theorem 1.20, we find:

λqn(β) ·GFqn (λqn , ψqn) =λ
qdβ
◦NFqn/F

q
dβ

(β) ·

GFqn (λ
qdβ
◦NFqn/F

q
dβ
, ψ

qdβ
◦ TrFqn/F

q
dβ

)

=λ
qdβ

(
βn/dβ

)
GF

q
dβ

(λ
qdβ

, ψ
qdβ

)n/dβ

=g(β)n/dβ ,

where on the last line we used the fact that λ
qdβ

is multiplicative.

(ii) Note that since q is odd, we have λ
qdβ

(xq) = (λ
qdβ

(x))q = λ
qdβ

(x) for

all x ∈ F∗
qdβ

, so in particular we have λ
qdβ

(βq) = λ
qdβ

(β). Also note that

dβ = dβq , hence we now easily find g(βq) = g(β). Applying this repeatedly,

we get g(β) = g(βq) = · · · g(βq
dβ−1

).

(iii) There exist an explicit formula for the value of a quadratic Gauss sum. A
proof of this classical fact can be found in [LN97, Th. 5.15]. Our statement
is a direct consequence of this formula.
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1 Background

1.3.2 Kloosterman sums

Definition 1.23. Let F be a finite field, α ∈ F∗ and ψ a nontrivial additive
character of F. We define the Kloosterman sum KlF(ψ;α) as:

KlF(ψ;α) := −
∑
x∈F∗

ψ

(
x+

α

x

)
.

We first prove two elementary properties about Kloosterman sums in specific
cases of F and ψ.

Lemma 1.24. Let n ≥ 1 and let α ∈ F∗qn . Then:

(i) Let β ∈ F∗qn and define the nontrivial additive character ψβ : Fqn → Q(ζp)
∗

by ψβ(x) = ψqn(βx) for all x ∈ Fqn , as in Remark 1.12. Then we have:

KlFqn (ψβ ;α) = KlFqn (ψqn ;αβ2).

(ii) For any j ≥ 1, we have:

KlFqn (ψqn ;α) = KlFqn (ψqn ;αq
j

).

Proof. We prove the two parts separately:

(i) For x ∈ F∗qn , write y := βx, and note that y takes all values of F∗qn , as x
runs over F∗qn , because β 6= 0. Using this, we get:

KlFqn (ψβ ;α) = −
∑
x∈F∗

qn

ψβ

(
x+

α

x

)
= −

∑
x∈F∗

qn

ψqn

(
βx+

αβ

x

)

= −
∑
x∈F∗

qn

ψqn

(
βx+

αβ2

βx

)
= −

∑
y∈F∗

qn

ψqn

(
y +

αβ2

y

)
= KlFqn (ψqn ;αβ2)

(ii) Note that ψqn = ψq◦TrFqn/Fq and that for any x ∈ F∗qn , we have TrFqn/Fq (x) =
TrFqn/Fq (x

q). Using this, we find:

KlFqn (ψqn ;α) = −
∑
x∈F∗

qn

ψq ◦ TrFqn/Fq

(
x+

α

x

)

= −
∑
x∈F∗

qn

ψq ◦ TrFqn/Fq

((
x+

α

x

)q)

= −
∑
x∈F∗

qn

ψqn

(
xq +

αq

xq

)
= KlFqn (ψqn ;αq),

where the last equality follows as xq attains all values of F∗qn , as x runs
through F∗qn .
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1.3 Characters

Similar to the Hasse-Davenport theorem in the case of Gauss sums, there is a
relation on Kloosterman sums which we will use to define certain values.

Theorem 1.25. Let m ≥ 1, α ∈ F∗qm and ψ : Fqm → Q(ζp)
∗ be any nontrivial

additive character of Fqm . Then there exist two algebraic integers klFqm (ψ;α)

and kl′Fqm (ψ;α), which are uniquely determined by Fqm , ψ and α up to permu-

tation, such that for all finite extensions Fqn/Fqm , we have:

KlFqn (ψ ◦ TrFqn/Fqm ;α) = klFqm (ψ;α)n/m + kl′Fqm (ψ;α)n/m.

A proof of this theorem can be found in [LN97, Th. 5.43]. We will use it for
the following definition:

Definition 1.26. Let n ≥ 1 and let β ∈ F∗qn of degree dβ . Then we define

{α(β), α′(β)} := {klF
q
dβ

(ψ
qdβ

;−β2), kl′F
q
dβ

(ψ
qdβ

;−β2)},

for the pair klF
q
dβ

(ψ
qdβ

;−β2) and kl′F
q
dβ

(ψ
qdβ

;−β2) as in Theorem 1.25.

Proposition 1.27. Let n ≥ 1 and β ∈ F∗qn . Then:

(i) We have KlFqn (ψqn ;−β2) = α(β)n/dβ + α′(β)n/dβ .

(ii) For all γ ∈ {β, βq, ..., βq
dβ−1}, we have {α(γ), α′(γ)} = {α(β), α′(β)}, so

the values of α(β) and α′(β) are constant along the Galois orbit of β, up
to permuting with each other.

(iii) We have |α(β)| = |α′(β)| = qdβ/2 and α(β) and α′(β) are complex conju-
gates, when seen as complex numbers in the embedding into C.

Proof. For (i), note that ψqn = ψ
qdβ
◦ TrFqn/F

q
dβ

and the result then follows

immediately from Theorem 1.25. For part (ii), note that for any j and β′ = βq
j

,
we have dβ′ = dβ and using Lemma 1.24.(ii), we find

KlF
q
d
β′

(ψ
q
d
β′ ;−(β′)2) = KlF

q
dβ

(ψ
qdβ

;−β2),

and hence {α(γ), α′(γ)} = {α(β), α′(β)}. The first statement of part (iii) is
[LN97, Th. 5.44], and the second statement is actually part of [LN97, Th.5.43]

We also need a result on bounds of the absolute value of Kloosterman sums.

Proposition 1.28. For any n ≥ 1 and β ∈ F∗qn , we have:

0 < |KlFqn (ψqn ;−β2)| < 2qn/2.

Proof. Note that the second inequality is exactly [vdGvdV91, Cor. (3.2)], and
for the first inequality, we use a similar argument. Let (ζp − 1) be the unique
prime ideal of Q(ζp) lying over p, and note that (p) = (ζp− 1)p−1 (this is a well
known fact about the decomposition of p in Q(ζp). For a proof of this fact, see
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1 Background

for example [IR90, Prop. 13.2.7]). Since ψqn takes values in {ζjp : j = 0, ..., p−1},
we have for all x ∈ F∗qn that ψqn(x− β2/x) ≡ 1 mod (ζp − 1). Hence:

KlFqn (ψqn ;−β2) = −
∑
x∈F∗

qn

ψqn

(
x− β2

x

)
≡ −(qn − 1) ≡ 1 mod (ζp − 1).

In particular, we cannot have KlFqn (ψqn ;−β2) = 0.

18



2 The family Ea

For an integer a ≥ 1, we consider the following elliptic curve over K = Fq(t):

Ea : y2 = x3 + ℘a(t)x2 − x, (2.1)

where ℘a(t) = tq
a − t. From this Weierstrass model and straightforward com-

putations, we deduce the following table of quantities for Ea, as found in [Sil09,
III.1].

quantity value quantity value
b2 4℘a(t) c4 16(℘a(t)2 + 3)
b4 −2 c6 −32(2℘a(t)3 + 9℘a(t))
b6 0 ∆ 16(℘a(t)2 + 4)

b8 −1 j 256(℘a(t)2+3)3

℘a(t)2+4

(2.2)

Note that j does not depend on the model of Ea, and since j /∈ Fq, we see that
Ea is nonisotrivial.

2.1 Reductions

For the computation of the L-function, we need to reduce Ea modulo the places
of K and determine minimal integral models at those places.

First we consider the finite places of K, so let v be a place of K with v 6=∞ of
degree dv. We can identify v with a monic irreducible polynomial Bv in Fq[t]
of degree dv. For a point τ ∈ v (i.e. a root τ ∈ Fq of Bv), we consider the

reduction (Ẽa)τ , of (a minimal model at v of) Ea modulo v, by substituting
t with τ . To v, we associate the residue field F(v) := Fq[t]/(Bv), which is an
extension of Fq of degree dv. For a general (not necessarily finite) place v of K,
we consider ∆v(Ea), which is the discriminant of a minimal integral model of
Ea at v. These definitions can also be found in section 1.

It is clear that (Ẽa)τ is an elliptic curve if ordv
(
∆v(Ea)

)
= 0, as we then have

∆v(Ea) 6≡ 0 mod v. So, in that case Ea has good reduction at v. In the
other case, when ordv(∆v(Ea)) > 0, Ea has bad reduction at v. We compute
the places of bad reductions and the reduction types explicitly, in the following
proposition:

Proposition 2.1. The following two statements hold:

(i) We have the following reductions of Ea modulo the places v of K. Note
that for a finite place v 6= ∞, we denote by Bv ∈ Fq[t] the corresponding
monic irreducible polynomial.

place v Kodaira symbol reduction
Bv - ℘a(t)2 + 4 I0 good
Bv | ℘a(t)2 + 4 I1 multiplicative

∞ I∗4qa additive

(2.3)

(ii) For a finite place v of K such that Bv | ℘a(t)2 + 4, a minimimal integral
model of Ea at v is given by (2.1).
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2 The family Ea

In order to prove Proposition 2.1, we first need the following lemma.

Lemma 2.2. The polynomial ℘a(t)2 + 4 ∈ Fq[t] is square-free.

Proof. Write f(t) = ℘a(t)2 + 4 = t2q
a − 2tq

a+1 + t2 + 4. Its derivative is
f ′(t) = 2qat2q

a−1 − 2(qa + 1)tq
a

+ 2t = −2tq
a

+ 2t. Then a direct computation
yields that:

1

4
f(t) +

1

8
℘a(t)f ′(t) = 1,

(note that we used that q is not a power of 2), hence f(t) and f ′(t) are coprime
in Fq[t], which implies that f(t) is square-free.

Now we have the tools we need to prove Proposition 2.1.

Proof of Proposition 2.1. We prove the two parts at the same time, where (ii)
will follow from our computation of Kodaira symbol at the finite places of bad
reduction. We separate the three cases:

• Let v be a finite place of K, and suppose that Bv - ℘a(t)2 + 4. Then
Bv - ∆ and thus ordv∆ = 0. As we saw before, we have good reduction
in this case, hence Kodaira symbol I0.

• Now suppose that Bv | ℘a(t)2 + 4. Note that (2.1) is an integral model of
Ea at v. By Lemma 2.2 we know that ℘a(t)2 + 4 is square-free, hence Bv
only occurs once as an irreducible factor of ℘a(t)2 +4, from which it is also
clear that ordv(∆) = 1, where ∆ is the discriminant of model (2.2) of Ea.
Since a change of variables could only change ordv(∆) by a multiple of 12,
we know that (2.1) actually is a minimal integral model. Furthermore, if
we rewrite the j-invariant to be:

j =
163(℘a(t)2 + 3)3

16(℘a(t)2 + 4)
=

(∆− 16)3

∆
,

we see that the numerator does not vanish modulo v, and hence j has a
simple pole at v. Now referencing table 4.1 in [Sil94, IV.9], we see that this
specific behavior of the orders of ∆ and j at v only happens for reduction
type I1.

• Finally we consider the case v =∞. This place corresponds to the element
u := 1/t ∈ K, so we first have to make an integral model at v. Note that
we can rewrite (2.1) to:

y2 = x3 + (1/uq
a

− 1/u)x2 − x.

Multiplying both sides by u6qa+6 and making the substitutions x′ =

uq
a+1x and y′ = u

3qa+3
2 gives us the following integral model of Ea at

v:

y′2 = x′3 + (1/uq
a

− 1/u)uq
a+1x′2 − u2qa+2x′

= x′3 − ℘a(u)x′2 − u2qa+2x′.
(2.4)
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2.2 Conductor and minimal discriminant of Ea

The corresponding quantities defined in [Sil09, III.1] for this model be-
come:

quantity value
b′2 −4℘a(u)
b′4 −2u2qa+2

b′6 0
b′8 −u4qa+4

∆′ 16
(
℘a(u)2 + 4u2qa+2

)
u4qa+4

(2.5)

Now we follow Tate’s algorithm as described in [Sil94, IV.9] with π = u, to
determine the reduction type. Note that our model is such that u | ∆′ and

that the singular point of the reduction Ẽa at∞ is at (0, 0). Furthermore,
we note (in this order) that u|b2, u2|a6, u3|b8 and u3|b6. That leaves us in
step 6 of the algorithm, for which we note that we already have u|a1, a2,
u2|a3, a4 and u3|a6. Hence, we are left to study the factorisation of

P (T ) := T 3 + (1− uq
a−1)T 2 − u2qaT

in the residue field of ∞, i.e Fq (∞ is a place of degree 1). Note that we
have:

P (T ) ≡ T 3 + T 2 ≡ T 2(T + 1),

so P (T ) has one double root, and one single root in the residue field. This
means that the algorithm stops at step 7, and that we have reduction type
I∗n, with

n = ord∞(∆′)− 6 = (4qa + 6)− 6 = 4qa

and model (2.4) is minimal integral at ∞.

2.2 Conductor and minimal discriminant of Ea

It is convenient to introduce the following notation:

Notation 2.3. As we explained in section 1, we can identify a finite place v
of K with a monic irreducible polynomial Bv ∈ Fq[t], and for any polynomial
P ∈ Fq[t], we write v|P if Bv|P , or in other words ordv(P ) > 0. Note that we
only define v|P for v 6=∞.

By our computation of the reductions of Ea at the different places and the
definition of the conductor Na ∈ Div(P1) of Ea, we find:

Na = 2 · (∞) +
∑
v|∆

1 · (v). (2.6)

To compute the degree of Na, we use the following lemma:

Lemma 2.4. We have: ∑
v|∆

deg v = 2qa.
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2 The family Ea

Proof. By combining the explicit expression for ∆ from (2.2) and Lemma 2.2,
we see that we can write:

∆ = 16
∏
v|∆

Bv.

Now note that for all places in the product we have deg v = degBv, and by
comparing with deg ∆ = 2qa, we find the desired result.

Now for the degree of the conductor of Ea, we get the following:

Proposition 2.5. We have degNa = 2(qa + 1).

Proof. This follows directly by taking the degree of (2.6), which is Z-linear,
using Lemma 2.4 and by noting that deg(∞) = 1.

In the same way we find an expression for ∆min(Ea) ∈ Div(P1). Using table 4.1
from [Sil94, IV.9], we find that for v 6= ∞ with v | ∆ that ordv(∆v(Ea)) = 1,
and for v =∞, we find ord∞(∆′) = 4qa+6, with ∆′ as in (2.5). Hence we have:

∆min(Ea) = (4qa + 6) · (∞) +
∑
v|∆

1 · (v), (2.7)

and in the same way as for the conductor, we find:

Proposition 2.6. We have deg ∆min(Ea) = 6(qa + 1).

Proof. This is completely analogous to the proof of Proposition 2.5.

Recall that we defined Na := qdegNa and H(Ea) := q(1/12) deg ∆min(Ea), so we
now get the following:

Corollary 2.7. We have Na = q2(qa+1) and H(Ea) = q(qa+1)/2. Note that the
exponents are both integers. Furthermore, we find:

logH(Ea)

logNa
=
qa + 1

2
log q · 1

2(qa + 1) log q
=

1

4

2.3 Tamagawa number and torsion of Ea

For a place v of K, we let Kv be the the completion of K at v, and we define
cv(Ea) := #(Ea(Kv)/(Ea)0(Kv)) and recall that we defined the Tamagawa
number of Ea over K to be the product of cv over all places of K:

τ(Ea) :=
∏
v

cv(Ea). (2.8)

We use this definition and the results on reductions from section 2.1 to compute
the Tamagawa number of Ea.

Proposition 2.8. The Tamagawa number of Ea is given by τ(Ea) = 4.
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2.3 Tamagawa number and torsion of Ea

Proof. Using the reduction types we found in (2.3), and looking at table 4.1 of
[Sil94, Ch. IV.9], we find the following values:

place v cv(Ea)
v - ℘a(t)2 + 4 1
v | ℘a(t)2 + 4 1

∞ 4

,

and combining this with (2.8), we easily see that τ(Ea) is equal to 4.

We know that the torsion subgroup of Ea(K) is finite, and we can actually
compute it explicitly

Proposition 2.9. The torsion subgroup Ea(K)tors ⊆ Ea(K) is isomorphic to
Z/2Z and it is generated by the point (0, 0).

Proof. For short-hand notation, we will write T := Ea(K)tors. Since Ea is given
by the short Weierstrass model (2.1), we know that a point (x, y) ∈ Ea(K) is
2-torsion, if and only if y = 0. Hence we are looking for solutions of the equation

x(x2 + ℘a(t)x− 1) = 0,

which are exactly given by the following: x0 = 0, x1 = (−℘a(t)+
√
℘a(t)2 + 4)/2

and x2 = (−℘a(t)−
√
℘a(t)2 + 4)/2. Hence the 2-torsion of Ea(K) is given by:

Ea(E)[2] = {O, (0, 0), (x1, 0), (x2, 0)},

and note that K(x1) = K(x2) = K(
√
℘a(t)2 + 4), which has degree 2 over K

because ℘a(t)2 + 4 is square-free (see Lemma 2.2), and hence (x1, 0) and (x2, 0)
are not K-rational, so:

T [2] = {O, (0, 0)} ∼= Z/2Z.

The next step is to examine T [p∞]. If we have a nontrivial element x ∈ T [pk]
for some k, then [pk−1]x ∈ T [p] is also nontrivial, hence if T [p∞] 6= 0, then also
T [p] 6= 0. From [Ulm11, Lect. 1, Prop. 7.3] we then know that j(Ea) ∈ Kp.
However, from (2.2) we see that

j(Ea) =
256(℘a(t)2 + 3)3

℘a(t)2 + 4
,

and we easily see that the numerator is not a p-th power. Hence in fact
we have T [p∞] = 0. Let T ′ := {P ∈ Ea(K)tors : ord(P ) coprime with p}.
We now know that T ′ = T . Note that Ea has reduction type I∗4qa , and let
G(I∗4qa) be as in [SS10, Par. 7.2], and from [SS10, Lem. 7.3] we know that
G(I∗4qa) ∼= (Z/2Z)2. Furthermore, from [SS10, Lem. 7.8], we have an injec-
tion T ′ ↪→ G(I∗4qa) ∼= (Z/2Z)2. Since T ′ = T and T [2] ∼= Z/2Z, we must have
T ∼= Z/2Z, which concludes our proof.
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3 The L-function

In this section we will compute the L-function of Ea over K. We start with
setting up some notation and definitions.

Definition 3.1. Define

Pq(a) := {B ∈ Fq[t] : B monic, irreducible and deg(B)|a} \ {t},

where we also identify the elements of Pq(a) with finite places v 6= 0 of K with
degree dividing a. Recall that for v ∈ Pq(a), we have that g(β) and {α(β), α′(β)}
are the same for any β ∈ v, by Propositions 1.22.(ii) and 1.27.(ii). Hence we
can set g(v) := g(β) and {α(v), α′(v)} := {α(β), α′(β)} for any β ∈ v.

The main result of this section is:

Theorem 3.2. The L-function L(Ea, T ) is given by:

L(Ea, T ) =
∏

v∈Pq(a)

(1− α(v)g(v)T dv )(1− α′(v)g(v)T dv ) ∈ Z[T ]

3.1 Preliminary lemmas

We first state two lemmas that we will use in the computation of the L-function.
For any n ≥ 1 and τ ∈ Fqn ∪ {∞}, define

Aa(τ, qn) := qn + 1−
∣∣∣(Ẽa)τ (Fqn)

∣∣∣ , (3.1)

where (Ẽa)τ denotes the reduction of (a minimal integral model at v) of Ea,
modulo the place v to which τ belongs.

Lemma 3.3. For the L-function of Ea, we have the following:

log(L(Ea, T )) =

∞∑
n=1

 ∑
τ∈Fqn∪{∞}

Aa(τ, qn)

 Tn

n
. (3.2)

Lemma 3.4. Let n ≥ 1 and z ∈ Fqn . Then we have:

|{τ ∈ Fqn : ℘a(τ) = z}| =
∑

β∈Fqa∩Fqn
ψqn(βz)

Proofs of these lemmas can be found in [Gri18, Lem. 3.5] and [Gri18, Lem. 2.4]
respectively.

3.2 Proof of Theorem 3.2

Note that (Ẽa)τ is a cubic plane curve over the residue field F(v) of K at v,
which is not necessarily smooth. To compute the values of Aa, we use the
following lemma:
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3 The L-function

Lemma 3.5. Let n ≥ 1. We distinguish between two cases:

(i) Let τ ∈ Fqn and let v be the finite place of K to which τ belongs. Then

we have an affine model (Ẽa)τ : y2 = fτ (x), with fτ (x) := x3 +℘a(τ)x2 −
x. Let λqn : F∗qn → C∗ be the quadratic multiplicative character of Fqn ,
extended with λ(0) := 0. Then we have:

Aa(τ, qn) = −
∑
x∈Fqn

λ(fτ (x)).

(ii) We have Aa(∞, qn) = 0.

Proof. Note that for (i), we saw in Lemma 2.1, y2 = x3+℘a(t)x2−x is a minimal
integral model at all finite places v, hence we can pick fτ (x) = x3 +℘a(τ)x2−x.

Then we use the following counting argument for the number of points on (Ẽa)τ :∣∣∣(Ẽa)τ (Fqn)
∣∣∣ = 1 +

∑
x∈Fqn

|{y ∈ Fqn : y2 = fτ (x)}|

= 1 +
∑
x∈Fqn

(1 + λqn(fτ (x)))

= 1 + qn +
∑
x∈Fqn

λqn(fτ (x)),

where we also counted the point at infinity on (Ẽa)τ , which is F(v)-rational,
and hence also Fqn -rational. The second equality follows from the fact that
λqn(α) = 1 if α ∈ F∗qn is a square, giving two solutions, λqn(α) = −1 if α ∈ F∗qn
is not a square, so no solutions, and λqn(0) = 0, giving 1 solution. Using the
definition of Aa(τ, qn), we then find:

Aa(τ, qn) = qn + 1−
∣∣∣(Ẽa)τ (Fqn)

∣∣∣ = −
∑
x∈Fqn

λqn(fτ (x)).

Now for (ii), note that Ea has additive reduction at τ =∞, hence E′ := (Ẽa)τ
has a cusp over the residue field F(v), so exactly one singular point P , which
is F(v)-rational, hence also Fqn -rational. The set of non-singular Fqn -rational
points E′(Fqn)ns of E′ forms a group, for which it is known that E′(Fqn)ns

∼= F+
qn

(for a proof, see [Sil09, Prop. III.2.5] ). Note that E′(Fqn) = E′(Fqn)ns t {P},
and hence |E′(Fqn)| = |Fqn |+1 = qn+1, from which we get Aa(∞, qn) = 0.

Since Aa(∞, qn) = 0, we ignore the term with τ = ∞. Using the result from
Lemma 3.5.(i), we find the following for the coefficients of the series in (3.2):

−
∑
τ∈Fqn

Aa(τ, qn) =
∑
x∈Fqn

∑
τ∈Fqn

λqn(x3 + ℘a(τ)x2 − x)

=
∑
x∈Fqn

∑
z∈Fqn

λqn(x3 + zx2 − x) · |{τ ∈ Fqn : ℘a(τ) = z}| = (∗).
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3.2 Proof of Theorem 3.2

PuttingMFqn (β) :=
∑
x∈Fqn

∑
z∈Fqn λqn(x3+zx2−x)ψqn(βz) and using Lemma 3.4,

we find:

(∗) =
∑

β∈Fqa∩Fqn

 ∑
x∈Fqn

∑
z∈Fqn

λqn(x3 + zx2 − x)ψqn(βz)

 =
∑

β∈Fqa∩Fqn
MFqn (β).

We can write MFqn (β) as the product of a Kloosterman sum and a Gauss sum,
for which we use the results from section 1.3.

Lemma 3.6. Let n ≥ 1 and β ∈ Fqn . Then we have:

MFqn (β) =

{
KlFqn (ψqn ;−β2) · λqn(β)GFqn (λqn , ψqn) , if β 6= 0

0 , if β = 0
.

Proof. Write ψβ : Fqn → C∗ for the additive character on Fqn , defined by
ψβ(z) = ψqn(βz) for all z ∈ F∗qn . We can rewrite the expression of MFqn (β) as
follows:

MFqn (β) =
∑
x∈Fqn

∑
z∈Fqn

λqn(x3 + zx2 − x)ψqn(βz)

=
∑
x∈F∗

qn

∑
z∈Fqn

λqn(x3 + zx2 − x)ψβ(z)

=
∑
x∈F∗

qn

λqn(x2)
∑
z∈Fqn

λqn(x+ z − x−1)ψβ(z)

=
∑
x∈F∗

qn

∑
y∈Fqn

λqn(y)ψ(y + x−1 − x)

=

( ∑
x∈F∗

qn

ψβ(x−1 − x)

)
·

( ∑
y∈Fqn

λqn(y)ψβ(y)

)

Now the case when β = 0 is clear, as then ψβ becomes the trivial additive
character of Fqn , hence the second factor vanishes (see Lemma 1.18). For β 6= 0,
the result now follows from the definitions of quadratic Gauss and Kloosterman
sums and applying Lemmas 1.19 and 1.24.(ii).

This is a very useful result, as we saw in section 1.3 how to write the factors
of MFqn (β) in terms of g(β), α(β) and α′(β). Note that MFqn (β)(0) = 0 for all
n ≥ 1, so removing this term and applying Propositions 1.22.(i) and 1.27.(i),
and further rewriting, we get:
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3 The L-function

− log(L(Ea, T )) =

∞∑
n=1

 ∑
β∈(Fqa∩Fqn )\{0}

MFqn (β)
Tn

n


=

∞∑
n=1

 ∑
β∈(Fqa∩Fqn )\{0}

[
KlFqn (ψqn ;−β2)

][
λqn(β)GFqn (λqn , ψqn)

]Tn
n


=

∞∑
n=1

 ∑
β∈(Fqa∩Fqn )\{0}

(
α(β)n/dβ + α′(β)n/db

)
g(β)n/dβ

Tn

n


=

∞∑
n=1

 ∑
β∈(Fqa∩Fqn )\{0}

[
(α(β)g(β))n/dβ + (α′(β)g(β))n/dβ

]Tn
n


=
∑
β∈F∗

qa

∑
m≥1

[
(α(β)g(β))m + (α′(β)g(β))m

]Tmdβ
mdβ


=
∑
β∈F∗

qa

1

dβ

∑
m≥1

(α(β)g(β)T dβ )m

m
+

(α′(β)g(β)T dβ )m

m


=
∑
β∈F∗

qa

−1

dβ
log
[
(1− α(β)g(β)T dβ )(1− α′(β)g(β)T dβ )

]

Note that by Propositions 1.22.(ii) and 1.27.(ii), α(β), α′(β) and g(β) are all

constant along the Galois orbit {β, βq, ..., βq
dβ−1

} of β ∈ F∗qa . The Galois orbit
of such β is exactly the place v of β in Fqa , which corresponds to a unique monic
polynomial Bv, with degree dβ which divides a. Hence grouping the dβ terms
in the above sum belonging to the same place as β, and writing α(v), α′(v) and
g(v) for their respective values of α(β), α′(β) and g(β), we find:

log(L(Ea, T )) =
∑

v∈Pq(a)

log
[
(1− α(v)g(v)T dv )(1− α′(v)g(v)T dv )

]
,

where Pq(a) := {B ∈ Fq[t] : B monic, irreducible and deg(B)|a} \ {t}. Finally,
exponentiating both sides, we find the expression of the L-function:

L(Ea, T ) =
∏

v∈Pq(a)

(1− α(v)g(v)T dv )(1− α′(v)g(v)T dv ) (3.3)
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4 Consequences of the L-function

4.1 The special value

Define the special value of Ea to be L∗(Ea) := L(Ea, q
−1). Now that we have

an explicit expression for the L-function, we get the following:

L∗(Ea) =
∏

v∈Pq(a)

(
1− α(v)g(v)

qdv

)(
1− α′(v)g(v)

qdv

)
∈ Q, (4.1)

where we use the fact that L(Ea, T ) is a polynomial over Z to see that L∗(Ea)
lies in Q. We are interested in whether L∗(Ea) is zero or not. We first introduce
the following notation.

Definition 4.1. Let v ∈ Pq(a). Recalling the results from Proposition 1.27, we
can choose α(v) to have non-negative imaginary part and α′(v) be its complex
conjugate. We can then define θv ∈ [0, π] to be such that α(v) = qdv/2eiθv and
α′(v) = qdv/2e−iθv .

Similarly, using Proposition 1.22.(iii) we define ψv ∈ {0, π/2, π, 3π/2} to be such
that g(v) = qdv/2eiψv .

Using this, we can rewrite (4.1) as

L∗(Ea) =
∏

v∈Pq(a)

(
1− ei(ψv+θv)

)(
1− ei(ψv−θv)

)
. (4.2)

The result about the order of vanishing of L(Ea, T ) at q−1 is stated in the
following Proposition:

Proposition 4.2. We have L∗(Ea) > 0, and hence ordT=q−1L(Ea, T ) = 0.

Proof. We will first prove that all the factors in (4.2) are nonzero, from which
we conclude that L∗(Ea) 6= 0. For this it suffices to prove that for any v, we
have ψv ± θv /∈ 2πZ. This is automatically satisfied if θv /∈ {0, π/2, π} for any
v ∈ Pq(a). Let β ∈ v be arbitrary and note that {α(β), α′(β)} = {α(v), α′(v)}.
If θv ∈ {0, π}, then Theorem 1.25 would imply that:

|KlF
q
dβ

(ψβ ;−β2)| = |α(β) + α′(β)| = 2qdβ/2,

and similarly if θv = π/2, we would get

|KlF
q
dβ

(ψβ ;−β2)| = |α(β) + α′(β)| = 0,

which are both in contradiction with Proposition 1.28 , and hence θv /∈ {0, π/2, π},
so indeed L∗(Ea) 6= 0.

Recall the definition of the L-function of Ea:

L(Ea, T ) =
∏

good v

(1−av(Ea)T dv + qdvT 2dv )−1 ·
∏

bad v

(1−av(Ea)T dv )−1. (4.3)

Recall that for all places v of K, we have the Hasse-Weil bound:

|av(Ea)| ≤ 2
√
q
dv . (4.4)

29



4 Consequences of the L-function

This bound implies that the Euler product in (4.3) converges for all T with
|T | < q−3/2. Furthermore, for all real T with |T | < q−3/2 and all places v of K
of good reduction, we have:

1−av(Ea)T dv +qdvT 2dv ≥ 1−(2qdv/2)·q−3dv/2+qdvq−3dv = 1−2q−dv +q−2dv

= (1− q−dv )2 > 0 (4.5)

and for all places v of K of bad reduction, we have
∣∣av(Ea)

∣∣ ≤ 1, and hence:

1− av(Ea)T dv ≥ 1− q−3dv/2 > 0. (4.6)

Now, for all T ∈ R with |T | < q−3/2 we know (4.3) converges, and it is a
product of positive factors, hence L(Ea, T ) > 0 for all T ∈ (−q−3/2, q−3/2).
Also, from [Ulm11, Lect 1. Thm. 9.3], we know that the zeros of L(Ea, T ) all
have absolute value q−1, hence there are no zeros of L(Ea, T ) on [q−3/2, q−1), so
L(Ea, T ) > 0 for all T ∈ (−q−3/2, q−1). Hence by continuity of T 7→ L(Ea, T ),
L∗(Ea) ≥ 0.

4.2 The BSD conjecture

In general, the BSD conjecture is still an open problem, but there are special
cases for which it has been proved. In particular, we will use the following
theorem:

Theorem 4.3 (rank 0 BSD). Let E/K be a nonisotrivial elliptic curve. As-
sume that L∗(E) 6= 0. Then:

(i) rankE(K) = 0.

(ii) X(E) is finite.

(iii) We have the following expression for the special value:

L∗(E) =
|X(E/K)|
H(E)

τ(E) · q
|E(K)tors|2

. (4.7)

Sketch of the proof. We only give a sketch of the proof. More details can be
found in [Ulm11, Lect. 1, Th. 12.1]. Tate proved the following:

0 ≤ rankE(K) ≤ ordT=q−1L(E, T ).

By the assumption L∗(E) 6= 0, we have ordT=q−1L(E, T ) = 0, hence also
rankE(K) = 0. Later, Kato and Trihan proved that equality between rankE(K)
and ordT=q−1L(E, T ) is equivalent to X(E) being finite and also that (4.7) holds
in that case.

Corollary 4.4. Let K = Fq(t) with char(K) ≥ 5. For any integer a ≥ 1, let
Ea/K be the elliptic curve as defined in (2.1). Then Theorem 4.3 holds for Ea.

Proof. As we saw in Proposition 4.2, we have L∗(Ea) 6= 0 and we proved in
section 2 that Ea is nonisotrivial. Hence the results of the theorem hold for
Ea.
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4.3 Relation between bounds on L∗(Ea) and |X(Ea)|

In particular, we get the following results:

Corollary 4.5. rankEa(K) = 0, and hence Ea(K) = Ea(K)tors
∼= Z/2Z.

Proof. This is a direct consequence of Corollary 4.4 and Proposition 2.9.

Corollary 4.6. The Tate-Shafarevich group X(Ea) of Ea/K is finite.

4.3 Relation between bounds on L∗(Ea) and |X(Ea)|

We can now use the expression from Theorem 4.3.(iii) to relate bounds on
L∗(Ea) with bounds on |X(Ea)|. For this, it is actually more useful to rewrite
(4.7) slightly. Recall that we defined Na = qdegNa . Then from (4.7), we get:

logL∗(Ea)

logNa
=

log |X(Ea)|
logNa

+
log(τ(Ea)q)

logNa
− logH(Ea)

logNa
− log |Ea(K)tors|2

logNa
, (4.8)

which we can make more explicit with the following proposition:

Proposition 4.7. We have:

logL∗(Ea)

logNa
=

log |X(Ea)|
logNa

− 1

4
+ o(1), as a→∞. (4.9)

Proof. As we saw in Corollary 2.7, we have:

logH(Ea)

logNa
=

1

4
.

Furthermore, since logNa = 2(qa + 1) log q and from Propositions 2.8 and 2.9
it follows that log(τ(Ea)q) ≤ log(4q) and log |Ea(K)tors|2 ≤ log 4 respectively,
both other terms are o(1) as a→∞.
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5 Bounds on the special value

In this section we will find upper and lower bounds on L∗(Ea), which we will
then be able to relate to bounds on |X(Ea)| using Proposition 4.7. First, we
will slightly rewrite (4.2). Let v ∈ Pq(a) with θv ∈ [0, π] as in Proposition
1.25.(iii), and ψv ∈ {0, π/2, π, 3π/2} as in Proposition 1.20.(iii). Consider the
occuring term of v in (4.2):

(1− eiψveiθv )(1− eiψve−iθv ) = 1− eiψv (2 cos θv) + e2iψv ,

and define Fv : [0, π]→ R by Fv(θ) := 1−eiψv (2 cos θ)+e2iψv . From Proposition
4.2, we know that L∗(Ea) > 0, so |L∗(Ea)| = L∗(Ea) and we can write:

L∗(Ea) =
∏

v∈Pq(a)

|Fv(θv)|. (5.1)

Since ψv can attain only 4 different values, we list the possible values of Fv(θ)
for all θ ∈ [0, π] explicitly:

ψv Fv(θ)
0 2− 2 cos θ
π
2 −2i cos θ
π 2 + 2 cos θ
3π
2 2i cos θ

(5.2)

5.1 Upper bound

The main result of this section is as follows:

Theorem 5.1. Let Na := qdegNa . There exists a constant cq > 0 depending
only on q, such that for all a ≥ 1:

logL∗(Ea)

logNa
≤ cq

a
.

We will get this upper bound by bounding each factor in (5.1) and the number
of factors. Note that from (5.2) we easily get |Fv(θv)| ≤ 4, independently of
the value of ψv. For the number of terms, we need to bound |Pq(a)| (recall
that Pq(a) = {B ∈ Fq[t] : B monic, irreducible, deg(B)|a} \ {t}). First, we
define πq(n) := #{B ∈ Fq[t] : B monic irreducible of degree n}, and we use the
following result:

Lemma 5.2. For all n ≥ 1, we have πq(n) = qn

n +O(qn/2), where the implicit
constant depends only on q, and can be chosen to be at most 2.

Proof. Note that the affine curve A1 has exactly qn Fqn -rational points. If we
group these by places, we get the following:

qn =
∑
d|n

d ·#{v finite place of K : deg v = d} =
∑
d|n

d · πq(d), (5.3)

where we used the correspondence between finite places of K of degree d and
monic irreducible polynomials of Fq[t] of degree d. Now let µ : N → N be the
Möbius function. By the Möbius inverion formula, we find from (5.3):
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5 Bounds on the special value

nπq(n) =
∑
d|n

µ(n/d)qd = qn +
∑
d|n
d<n

µ(n/d)qd,

and hence:∣∣∣∣πq(n)− qn

n

∣∣∣∣ ≤ 1

n

∑
d|n
d<n

qd ≤ 1

n

n/2∑
d=1

qd ≤ q

n
· q

n/2 − 1

q − 1
= O

(
qn/2

n

)
,

from which the desired result follows and it can be easily seen that the constant
can be chosen to be q/(q − 1).

A bound on |Pq(a)| is now easily deduced

Lemma 5.3. We have |Pq(a)| = qa

a + O(qa/2) as a → ∞, where the implicit
constant depends only on q.

Proof. Rewrite |Pq(a)| (for a ≥ 2) as follows:

|Pq(a)| =
∑
n|a
n≥2

πq(n) + (πq(1)− 1) =
∑
n|a
n≥2

(
qn

n
+O(qn/2)

)
+ (q − 1)

=
qa

a
+O(qa/2) +

∑
n|a

2≤n≤a/2

(
qn

n
+O(qn/2)

)
+O(1), as a→∞

(5.4)

and for the remaining sum term, we find:

∑
n|a

2≤n≤a/2

(
qn

n
+O(qn/2)

)
≤

a/2∑
n=1

(
qn

n
+O(qn/2)

)
≤ a ·

(
2qa

a
+O(qa/4)

)

= O(qa/2), as a→∞

and hence (5.4) actually reduces to:

|Pq(a)| = qa

a
+O(qa/2), as a→∞.

We now have enough tools to prove Theorem 5.1.

Proof of Theorem 5.1. Using (5.1) and the fact that |Fv(θv)| ≤ 4, we get:

logL∗(Ea)

logNa
=

1

logNa

∑
v∈Pq(a)

log |Fv(θv)| ≤
log 4

logNa
|Pq(a)|.
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5.2 Lower bound

Recall that degNa = 2(qa + 1), and hence logNa = 2(qa + 1) log q. Combining
this with Lemma 5.3, we get

logL∗(Ea)

logNa
≤ log 4

2(qa + 1) log q
·
(
qa

a
+O(qa/2

)
≤ log 4

a
+O(q−a/2)

≤ cq
a
,

for some cq > 0 depending only on q.

5.2 Lower bound

First we give a lower bound on the terms |Fv(θv)| appearing in (5.1).

Lemma 5.4. Let v ∈ Pq(a). Then for all θ ∈ [0, π], we have

|Fv(θ)| ≥ sin2 θ cos2 θ,

and sin2 θv cos2 θv > 0.

Proof. The second part follows from the fact that sin2 θv cos2 θv = 0, if and only
if θv ∈ {0, π/2, π}, but as we saw in the proof of Proposition 4.2, this is not
possible.

For the first part, note that |Fv(θ)| is either of the following options:

|Fv(θ)| =

 2(1− cos θ) , if ψv = 0
2|cos θ| , if ψv ∈ {π/2, 3π/2}

2(1 + cos θ) , if ψv = π
.

Define G : [0, π] → R by G(θ) := 2 min{1 − cos θ, | cos θ|, 1 + cos θ}, and note
that |Fv(θ)| ≥ G(θ) for all θ ∈ [0, π]. Note that:

G(θ) =

 2(1− cos θ) , if θ ∈ [0, π/3]
2|cos θ| , if θ ∈ [π/3, 2π/3]

2(1 + cos θ) , if θ ∈ [2π/3, π]
.

We will prove that G(θ) ≥ sin2 θ cos2 θ on all three of the intervals. Note that
for θ ∈ [π/3, 2π/3] we get:

cos2 θ sin2 θ ≤ cos2 θ ≤ | cos θ| ≤ 2| cos θ| = G(θ).

Note that the maps G and θ 7→ sin2 θ cos2 θ are both symmetric around θ = π/2,
so we prove the desired inequality on [0, π/3], from which the inequality on
[2π/3, π] will follow from symmetry. Note that G(0) = sin2 0 cos2 0 = 0, and
furthermore, we have:

d

dθ

[
2− 2 cos θ − sin2 θ cos2 θ

]
= 2 sin θ −

(
2 sin θ cos3 θ + 2 sin3 θ cos θ

)
= 2 sin θ − 2 sin θ cos θ

(
cos2 θ + sin2 θ

)
= 2 sin θ(1− cos θ),
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5 Bounds on the special value

and for all θ ∈ [0, π/3], we have 2 sin θ(1 − cos θ) ≥ 0, so indeed the inequality
G(θ) ≥ sin2 θ cos2 θ holds on [0, π/3], hence also on [2π/3, π] and hence on all of
[0, π].

Now we define the function w : [0, π]→ R by:

w(θ) :=

{
0 , if θ ∈ {0, π/2, π}

− log(sin2 θ cos2 θ) , otherwise
(5.5)

Let v ∈ Pq(a). Since |Fv(θv)| > 0, log |Fv(θv)| is well-defined and from Lemma
5.4 it follows that

− log(|Fv(θv)|) ≤ w(θv).

Using this and (5.1), we get the following:

− logL∗(Ea)

logNa
=

1

logNa

∑
v∈Pq(a)

− log |Fv(θv)| ≤
|Pq(a)|
logNa

·

 1

|Pq(a)|
∑

v∈Pq(a)

w(θv)


(5.6)

and finding a lower bound for logL∗(Ea)
logNa

is equivalent to finding an upper bound

for (5.6). As we saw in the proof of Theorem 5.1, we have:

|Pq(a)|
logNa

= O
(
1/a
)
, as a→∞, (5.7)

so it remains to examine the second factor of the right hand side of (5.6). We
introduce the following notation:

Definition 5.5. Let f : [0, π]→ R be a function. Then for any a ≥ 1, we define:

Avg(f, a) :=
1

|Pq(a)|
∑

v∈Pq(a)

f(θv).

The main result of the remainder of this section is the following:

Theorem 5.6. There exists a constant C ∈ R, such that:

Avg(w, a)
a→∞−→ C. (5.8)

This theorem will provide us with the desired lower bound:

Corollary 5.7. There exists a constant c′q > 0 depending only on q, such that
for all a ≥ 1 we have:

−
c′q
a
≤ logL∗(Ea)

logNa
. (5.9)

Proof. This follows directly by combining (5.6), (5.7) and (5.8).

To prove Theorem 5.6, we use the two theorems below. First we introduce
another new notation:
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5.2 Lower bound

Definition 5.8. Let g : [0, π]→ R be a function, and write∫
ST

g :=

∫ π

0

g(θ) · 2

π
sin2 θ dθ, (5.10)

whenever this integral is well-defined. In this integral, g is said to be integrated
with respect to the Sato-Tate measure.

Theorem 5.9 (Griffon). There exists a constant cq > 0, depending only on
q, such that for all continuously differentiable functions g : [0, π]→ R, we have:∣∣∣∣Avg(g, a)−

∫
ST

g

∣∣∣∣ ≤ cq · a1/2

qa/4
·
∫ π

0

|g′(t)|dt, as a→∞. (5.11)

Theorem 5.10 (Griffon). There exists a constant γp > 0 depending only on
p, such that for all a ≥ 1 and v ∈ Pq(a), we have:

(i) θv > (qa)−γp

(ii) π − θv > (qa)−γp

(iii) |π/2− θv| > (qa)−γp

Proofs of Theorems 5.9 and 5.10 can be found in [Gri18, Thm 5.6] and [Gri18,
Thm. 4.1] respectively.

5.2.1 Proof of Theorem 5.6

As in Theorem 5.9 we are going to compare Avg(w, a) to an integral, which will
give us the constant C ∈ R:

Lemma 5.11. Let w : [0, π] → R be as in (5.5). There exists a real number
C ∈ R, such that ∫

ST

w = C, (5.12)

in other words: the integral converges.

Proof. Define the function ϕ : [0, π]→ R by θ 7→ − log(sin2 θ cos2 θ) sin2 θ. Note
that ϕ is symmetric around π/2. Furthermore, ϕ is continuous on [0, π/2),
hence locally integrable on [0, π/2). Now, around π/2, the Taylor expansion of
ϕ is given by:

2 log(x− π/2) + (x− π/2)2(−2 log(x− π/2)− 4/3) +O
(

(x− π/2)4
)
,

which is locally integrable around π/2, hence ϕ is integrable on [0, π/2], and by
symmetry on all of [0, π]. Hence

∫
ST
w converges.

Remark 5.12. One can actually compute the integral in Lemma 5.11, to get
C = log 16.
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5 Bounds on the special value

However, we cannot apply Theorem 5.9 directly to w, as w is not continuous. To
fix this, we will multiply w with a smoothing function. Choose a non-decreasing
continuously differentiable function g0 : [0, 1]→ R, such that:

g0(x) =

{
0, if x ∈ [0, 1/3]
1, if x ∈ [2/3, 1]

(5.13)

and define the following smoothing functions:

Definition 5.13. Let ε ∈ (0, 1) and define the continuously differentiable func-
tion gε : [0, π/2]→ R by:

gε(x) :=

 g0(x/ε) , if x ∈ [0, ε]
1 , if x ∈ [ε, π/2− ε]

g0((π/2− x)/ε) , if x ∈ [π/2− ε, π/2]

and extend gε to a continuously differentiable function on [0, π], by setting
gε(x) := gε(x− π/2), for all x ∈ [π/2, π].

Using this, we define for any ε ∈ (0, π/4) the function wε : [0, π]→ R by

wε(θ) := w(θ)gε(θ), for all θ ∈ [0, π]. (5.14)

Note that wε is a continuously differentiable function, and we have wε(θ) = w(θ)
for all θ ∈ [ε, π/2−ε]∪[π/2+ε, π−ε]. Also, note that both w and gε are periodic
with period π/2, and on the interval [0, π/2], they are both symmetric around
π/4. Hence, wε is also periodic with period π/2, and symmetric around π/4.

We use the triangle inequality to get the following bound:

∣∣∣∣Avg(w, a)−
∫

ST

w

∣∣∣∣ ≤ ∣∣Avg(w, a)−Avg(wε, a)
∣∣+

∣∣∣∣Avg(wε, a)−
∫

ST

wε

∣∣∣∣
+

∣∣∣∣∫
ST

wε −
∫

ST

w

∣∣∣∣ , (5.15)

for which we will bound the 3 terms on the right hand side separately.

Proposition 5.14. Let γp be as in Theorem 5.10. Then we have for all
0 < ε < min{(qa)−γp , π/4}:∣∣Avg(w, a)−Avg(wε, a)

∣∣ = 0. (5.16)

Proof. Note that by the choice of ε, we have for all v ∈ Pq(a) that θv ∈ [ε, π/2−
ε] ∪ [π/2 + ε, π − ε]. Hence for all v, we have w(θv) = wε(θv), and hence:∣∣Avg(w, a)−Avg(wε, a)

∣∣ =
∣∣Avg(w − wε, a)

∣∣ = 0

We will need to bound sin and cos. Since these functions are both concave on
the interval [0, π/2], we get the following linear bounds for all θ ∈ [0, π/2]:

sin θ ≥ 2θ

π
,

cos θ ≥ 2(π/2− θ)
π

.

(5.17)

38



5.2 Lower bound

For the second and third term of (5.15), we will first prove the following lemma:

Lemma 5.15. For ε ∈ (0, π/4), we have:∫ π

0

∣∣w′ε(θ)∣∣dθ = O(|log ε|).

Proof. Note that since wε is symmetric around x = π/4, and periodic with
period π/2 the same is also true for |w′ε|. Using this, we can write:∫ π

0

∣∣w′ε(θ)∣∣dθ = 4

∫ π/4

0

∣∣w′ε(θ)∣∣dθ = 4

(∫ ε

0

∣∣w′ε(θ)∣∣ dθ +

∫ π/4

ε

∣∣w′ε(θ)∣∣ dθ
)
,

(5.18)
and we will bound both integrals on the right hand side separately. Note that
we have:

|w′ε(θ)| =
∣∣gε(θ)w′(θ) + w(θ)g′ε(θ)

∣∣ ≤ ∣∣w′(θ)∣∣+ w(θ)|g′ε(θ)| (5.19)

and we will find upper bounds for the different factors on the right hand side.
To bound |g′ε(θ)|, note that on the interval [0, π/4], we have by construction
of gε:

g′ε(θ) =

{
1
εg
′
0(θ/ε) , if θ ∈ [0, ε]
0 , if θ ∈ [ε, π/4]

.

Denote with ‖g′0‖∞ := maxx∈[0,1] |g′0(x)|. Then we get:

∣∣g′ε(θ)∣∣ ≤
{

1
ε‖g
′
0‖∞ , if θ ∈ [0, ε]
0 , if θ ∈ [ε, π/4]

. (5.20)

Now we find an upper bound for w(θ). Note that by (5.17), we have for all
θ ∈ (0, π/4]: (sin θ)−1 ≤ π

2θ and (cos θ)−1 ≤ π
2(π/2−θ) . Hence for all θ ∈ (0, π/4],

we have:

w(θ) = 2 log((sin θ cos θ)−1) ≤ 2 log

(
π2

4θ(π/2− θ)

)
≤ 2 log

(
π

θ

)
, (5.21)

where for the last inequality we used that π/2− θ ≥ π/4. Using this, we get:

∫ ε

0

w(θ) dθ ≤ −2

∫ ε

0

log

(
θ

π

)
dθ = −2

[
θ log

(
θ

π

)
− θ

]ε
0

= O(ε|log ε|).

(5.22)

For the final factor
∣∣w′(θ)∣∣, note that we have:

w′(θ) = 2

(
sin θ

cos θ
− cos θ

sin θ

)
= 2

(
sin2 θ − cos2 θ

sin θ cos θ

)
= −2

(
cos 2θ

sin θ cos θ

)
,

and combining this with (5.17), we find for θ ∈ (0, π/4]:∣∣w′(θ)∣∣ ≤ 2

sin θ cos θ
≤ 2

2θ
π ·

2(π/2−θ)
π

=
π2

2θ(π/2− θ)
≤ 2π

θ
, (5.23)
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5 Bounds on the special value

where we again used that π/2− θ ≥ π/4.

Now that we have bounds for all factors, we will find upper bounds for the
integrals in (5.18). For the first integral, note that wε(θ) = 0 for θ ∈ [0, ε/3],
hence w′ε(θ) = 0 for θ ∈ (0, ε/3), and we get using (5.19):

∫ ε

0

∣∣w′ε(θ)∣∣ dθ =

∫ ε

ε/3

∣∣w′ε(θ)∣∣ dθ ≤ ∫ ε

ε/3

∣∣w′(θ)∣∣ dθ +

∫ ε

ε/3

w(θ)
∣∣g′ε(θ)∣∣ dθ. (5.24)

From (5.23) we get for all θ ∈ [ε/3, ε] that
∣∣w′(θ)∣∣ ≤ 2π

(ε/3) = 6π
ε . Combined with

(5.20) and (5.22), we find for (5.24):∫ ε

0

∣∣w′ε(θ)∣∣dθ ≤ ∫ ε

0

6π

ε
dθ +

‖g′0‖∞
ε

∫ ε

0

w(θ) dθ = 6π +
‖g′0‖∞
ε
O(ε|log ε|)

= O(|log ε|). (5.25)

For the second integral of the right hand side of (5.18), note that |g′ε(θ)| = 0 for
all θ ∈ [ε, π/4]. Then from (5.19) and (5.23) it follows that:∫ π/4

ε

∣∣w′ε(θ)∣∣dθ ≤ ∫ π/4

ε

|w′(θ)|dθ ≤
∫ π/4

ε

2π

θ
dθ = 2π(log

π

4
− log ε)

= O(| log ε|). (5.26)

Now combining (5.18) with (5.25) and (5.26), concludes our proof.

Proposition 5.16. Let ε ∈ (0, π/4). Then we have the following bound:∣∣∣∣Avg(wε, a)−
∫

ST

wε

∣∣∣∣ = O

(
a1/2

qa/4
| log ε|

)
, as a→∞. (5.27)

Proof. Since wε : [0, π] → R is continuously differentiable, we can apply The-
orem 5.9. Combining this with the result of Lemma 5.15, we get the desired
bound.

Proposition 5.17. Let ε ∈ (0, ε). Then we have the following bound:∣∣∣∣∫
ST

w −
∫

ST

wε

∣∣∣∣ = O(ε|log ε|). (5.28)

Proof. We can bound the third term of (5.15) as follows:∣∣∣∣∫
ST

w −
∫

ST

wε

∣∣∣∣ =

∣∣∣∣∫
ST

w − wε
∣∣∣∣ ≤ 2

π

∫ π

0

∣∣w(θ)− wε(θ)
∣∣ sin2(θ) dθ

≤ 2

π

∫ π

0

(1− gε(θ))w(θ) dθ =
8

π

∫ π/4

0

(1− gε(θ))w(θ) dθ

=
8

π

∫ ε

0

w(θ) dθ,

where we used the fact that w − wε is symmetric around x = π/4 and periodic
with period π/2. We also used that gε(θ) = 1 for θ ∈ [ε, π/4]. Using (5.22) from
the proof of Lemma 5.15 now concludes our proof.
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5.2 Lower bound

Proof of Theorem 5.6. Let C =
∫

ST
w be as in Lemma 5.11 and γp be as in The-

orem 5.10. Choose γ > max{γp, 1/4} and set ε = (qa)−γ . In particular, we then
have 0 < ε < min{π/4, (qa)−γp}, so we can use the results from Propositions
5.14, 5.16 and 5.17. Hence:

∣∣Avg(w, a)−Avg(wε, a)
∣∣ = 0,∣∣∣∣Avg(wε, a)−

∫
ST

wε

∣∣∣∣ = O

(
a1/2

qa/4
| log ε|

)
, as a→∞.,∣∣∣∣∫

ST

w −
∫

ST

wε

∣∣∣∣ = O(ε|log ε|).

Then from (5.15) and noting that ε = (qa)−γ < q−a/4, we get:

∣∣Avg(w, a)− C
∣∣ = 0 +O

(
a1/2

qa/4
· aγ log(q)

)
+O

(
1

qaγ
· aγ log(q)

)

= O

(
a3/2

qa/4

)
+O

(
a

qaγ

)
= O

(
a3/2

qa/4

)
, as a→∞,

and hence we have Avg(w, a)→ C, as a→∞.
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6 Conclusion

Let Fq be a finite field of characteristic p ≥ 5 with q elements, and write K :=
Fq(t). For any integer a ≥ 1, let ℘a(t) = tq

a − t and we define the elliptic curve
Ea over K by the following Weierstrass model:

Ea : y2 = x3 + ℘a(t)x2 − x. (6.1)

Let Na be the conductor of Ea, and we define Na := qdegNa . Then by Proposi-
tion 2.5, we have Na = q2(qa+1).

In section 4.1 we saw that the BSD conjecture holds for Ea, and hence the
Tate-Shafarevich group X(Ea) of Ea is finite. We can even give a bound on∣∣X(Ea)

∣∣. First note that with the combination of the upper bound found in
Theorem 5.1 and the lower bound found in Corollary 5.7, we have:∣∣∣∣ logL∗(Ea)

logNa

∣∣∣∣ ≤ o(1), as a→∞. (6.2)

In Proposition 4.7 we found the following relation:

logL∗(Ea)

logNa
=

log |X(Ea)|
logNa

− 1

4
+ o(1) as a→∞. (6.3)

and combining (6.2) and (6.3) gives:

log
∣∣X(Ea)

∣∣
logNa

→ 1

4
, as a→∞. (6.4)

With this, our main result follows:

Theorem 6.1. Let K = Fq(t) be of characteristic at least 5, and for any integer
a ≥ 1, let Ea/K be the elliptic curve defined by (6.1) and set Na := qdegNa ,
where Na is the conductor of Ea. Then for all ε > 0, there exist constants
c1, c2 > 0, depending only on ε and q, such that for all a ≥ 1, we have:

c1 ·N1/4−ε
a ≤

∣∣X(Ea)
∣∣ ≤ c2 ·N1/4+ε

a .

Let H(Ea) := q(1/12) deg ∆min(Ea). Corollary 2.7 states logH(Ea)/ logNa = 1/4,

hence H(Ea) = N
1/4
a , from which we now deduce:

Corollary 6.2. Let K = Fq(t) be of characteristic at least 5, and for any
integer a ≥ 1, let Ea/K be the elliptic curve defined by (6.1) and consider
H(Ea) := q(1/12) deg ∆min(Ea), where ∆min(Ea) is the minimal discriminant of
Ea. Then for all ε > 0, there exist constants c′1, c

′
2 > 0, depending only on ε

and q, such that for all a ≥ 1, we have:

c′1 ·H(Ea)1−ε ≤
∣∣X(Ea)

∣∣ ≤ c′2 ·H(Ea)1+ε.
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