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Introduction

In this thesis, we study the positive rational solutions (x, y) of the equation x3 + y3 = n for any integer
n ≥ 1. Our goal is to find the ”smallest” solution if there even is one. Here a solution is called the smallest
if the nominators and denominators of x and y are as small as possible.

This search is based on two of the Canterbury Puzzles of Henry E. Dudeney [1].

Example 1 (The Silver Cubes). A merchant has some silver, which he always keeps under the form of two
cubes. One day, he has 16 cm3 of silver in two cubes of side-length 2 cm. After a transaction, he earns one
more cube centimetre of silver. How can he divide 17 cm3 of silver in two cubes with rational side-length?
In other words, the problem is to find x, y ∈ Q>0 such that x3 + y3 = 17.

Example 2 (Doctor of Physics). A doctor has two spherical bottles containing a drug: one sphere has
diameter 1 cm3 and the other has diameter 2 cm3. One day, she wants to transfer the contents of these
bottles into two other spherical bottles with other diameters. What can the diameters of these new bottles be
such that together they contain the same volume of drug? In other words, the problem is to find x, y ∈ Q>0

such that x3 + y3 = 13 + 23 = 9 with x and y different from 1 and 2.

In the end of the book, Dudeney gives the solutions to the puzzles. For Example 1 and Example 2 he
gives respectively the solutions:

(x1, y1) =

(
104940

40831
,

11663

40831

)
and (x2, y2) =

(
415280564497

348671682660
,

676702467503

348671682660

)
.

Unfortunately, he does not give a clue how he found these solutions, but it is really unlikely that he found
them by trial-and-error.

In this thesis we always assume that n ∈ Z≥1 is a cube-free integer. This assumption is not really re-
strictive, because a solution (x, y) for n = c3m produces a solution (x/c, y/c) for m. Furthermore, we often
assume that n is greater or equal to 3. The cases n = 1 and n = 2 are special, because they have the special
solutions (1, 0) and (1, 1) respectively and with that we already found their smallest solutions. However,
some of the obtained theory is still applicable in these cases.

We will consider the equation x3 + y3 = n as a curve E◦n. Notice that the line x + y = 0 is an asymp-
tote of E◦n so there is some point O ‘at infinity’. To include this point we consider the projective version
of E◦n: the curve En given by X3 + Y 3 = nZ3 for (X : Y : Z) ∈ P2. Then we have O = (1 : −1 : 0) and
a solution (x, y) of x3 + y3 = n corresponds to (x : y : 1). We denote by E◦n(Q) and En(Q) the rational
points on E◦n and En respectively. So we have En(Q) ∼= E◦n(Q)∪{O}. Note that we also include the rational
points with negative coordinates. We define E+

n (Q) ⊂ E◦n(Q) as the set of rational solutions with positive
coordinates.

In Chapter 1, we will equip En(Q) with an abelian group law ⊕ and we give explicit formulas for this
operation. Then we will focus on constructing a measure of the elements of En(Q) in Chapter 2. This gives

us the Néron-Tate Height ĥ which is a quadratic form on En(Q) In Chapter 3, we will show for n ≥ 3 that if
E◦n(Q) is non-empty, E◦n(Q) has infinitely many elements and therefore E+

n (Q) has infinitely many elements.
In the end, we will discuss the Mordell-Weil Theorem, which states that En(Q) is finitely generated as an
abelian group with group law ⊕.

With these results, we can try to find a solution such that its Néron-Tate Height is a small as possible.
Therefore, we have to find the generators of En(Q), but we don’t know how many generators En(Q) has.
When we found one, we search for the smallest multiple of a generator in E+

n (Q).
In Example 1, we can easily find the point P = (18 : −1 : 7) ∈ E17(Q). Then we have 2P = (11663 :

104940 : 40831) ∈ E+
17(Q), which gives the same solution as the solution Dudeney found.

For Example 2, we already have Q = (2 : 1 : 1) ∈ E+
9 (Q) from the solution (2, 1), but want to find

another one. We will find that 2P, . . . , 5P 6∈ E+
9 (Q), but

6P = (415280564497 : 676702467503 : 348671682660).

This gives also the same solution as the solution Dudeney found.
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1 Chapter 1

We study the rational solutions of the equation x3 +y3 = n. Therefore, we look at the curve E◦n : x3 +y3 = n
and its projective version En ⊂ P2 given by X3+Y 3 = nZ3 for (X : Y : Z) ∈ P2. Notice that O = (1 : −1 : 0)
and some point (x, y) on E◦n corresponds to (x : y : 1) on En. Since F = X3 + Y 3 − nZ3 is an irreducible
polynomial in R[X,Y, Z], En is an irreducible curve. Moreover, En is a smooth curve since(

∂F

∂X
,
∂F

∂Y
,
∂F

∂Z

)
6= 0

and hence every point has a tangent line.
To talk about rational and real points on a curve, we define for any field extension K ⊂ R of Q the sets:

E◦n(K) := {(x, y) ∈ K2|x3 + y3 = n},
En(K) := {(X : Y : Z) ∈ P2(K)|X3 + Y 3 = nZ3}.

Note that En(K) = E◦n(K) ∪ {O}.
In this chapter, we will construct a group law ⊕ on En(K) and give explicit formulas for this operation.

This is based on §5.1 (p. 169− 174) from [2].

1.1 Introduction to projective geometry

Here we give a brief overview of some definitions from projective geometry. For some field extension K ⊂ R
of Q, some degree d ≥ 1 and any distinct points P1, . . . , Pm ∈ P2(K) with m ≥ 1, we consider following
vector spaces of polynomials:

Wd := {F ∈ K[X,Y, Z]|F is homogeneous of degree d}

=

F (X,Y, Z) =
∑

0≤i,j≤d
i+j≤d

aijX
iY jZd−i−j

∣∣∣∣∣∣∣∣ aij ∈ K
 ,

Wd(P1, . . . , Pm) := {F ∈Wd|F (P1) = · · · = F (Pm) = 0}.

When we want to emphasize the field K we denote Wd(K) and Wd(K)(P1, . . . , Pm) respectively. Note that
dim(Wd) = 1

2 (d+ 1)(d+ 2) and hence dim(Wd(P1, . . . , Pm)) ≥ 1
2 (d+ 1)(d+ 2)−m, because vanishing in a

point is a linear condition.
We call a set C ⊂ P2(K) a line, a conic or a cubic if C is given by an equation F (X,Y, Z) = 0 for some

polynomial F in respectively W1, W2 or W3. In particular, En ⊂ P2(K) is a cubic for any field extension K
of Q.

Notice that for any two distinct points P1, P2 ∈ P2(K), there is exactly one line through P1 and P2. So
dim(W1(P1, P2)) = 1. Moreover, for any five points P1, . . . , P5 ∈ P2(K) such that no 4 of them are on the
same line (they are not colinear), there is exactly one conic through P1, . . . , P5. So dim(W2(P1, . . . , P5)) = 1.

Usuallly we identify a curve of degree d by a polynomial F ∈Wd such that this curve is given by F = 0.
Notice that this polynomial is not unique: for all λ ∈ K∗ and F ∈Wd the equations F = 0 and λF = 0 give
the same curve.

For the vector spaces of polynomials in an m-dimensional projective space, we introduce:

Wd,m := {F ∈ Q[X0, . . . , Xm]|F is homogeneous of degree d}.

1.2 The points on the curve as an abelian group

We have a closer look at the set En(K) for some field extension K ⊂ R over Q. We want to describe a
group law ⊕ on En(K). Let A,B ∈ En(K). First we define lAB as the line through A and B. If A = B,
then lAB is the tangent line of En in A = B. Since A and B have K-rational coordinates, we have that
lAB ∈W1(K)(A,B), so the coefficients of lAB are as well K-rational.
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Since En is a conic with K-rational coefficients, the intersection of En with lAB consists of three points
counting multiplicity. Finding these points amounts to solving a cubic equation with coefficients in K and
in one variable. Two solutions are known: A and B. Then we define A ◦ B as the third intersection point.
Since A and B have K-rational coordinates, A ◦B has K-rational coordinates as well and therefore we have
A ◦B ∈ En(K). Note that this third intersection point can be A or B if lAB is the tangent line of En in A
or B. Finally we define A⊕B := (A ◦B) ◦ O.

In Figure 1 one can find two examples of the construction of A ◦ B. In Figure 1a A and B are different
so lAB is the line joining them and in Figure 1b we have A = B so lAA is the tangent line of En in A.

(a) Construction of A ◦B with A 6= B (b) Construction of A ◦A

Figure 1: Some examples of the construction of A ◦B.

Theorem 1.1. For any field extension K ⊂ R of Q, the operation ⊕ defines a abelian group law on En(K).

Proof. Notice that we have A ⊕ O = A = O ⊕ A for any A ∈ En(K). Therefore, O is indeed the neutral
element with respect to the operation ⊕.

Furthermore we have A⊕ (A ◦ O) = O, since A, A ◦ O and O lie on one line for all A ∈ En(K). Hence
A ◦ O is the inverse of A, because ⊕ is clearly commutative. Since we write the group additively, we denote
the inverse by: −A = A ◦ O.

The associativity will be proved in Theorem 1.5.

Remark 1.2. For A⊕−B, we denote A	B.

1.2.1 Associativity of ⊕

The last thing we need to verify that ⊕ is a group law, is its associativity. Although it may seem easy
to verify, it is really hard to prove it by writing out the explicit formulas we will introduce in Theorem
1.6. Therefore, we use projective geometry to prove the associativity. First we need two lemmas from the
projective geometry.

Lemma 1.3. Let P1, . . . , P8 be eight distinct points in P2 such that no subset of four points is colinear and
no subset of seven points lie on the same conic. Then the vector space of homogeneous polynomials of degree
3 which vanish at P1, . . . , P8 has dimension 2.

Proof. Note that dim(W3) = 10 and dim(W3(P1, . . . , P8) ≥ 2 by the discussion in §1.1. Now we distinguish
3 cases.

Suppose that there are three colinear points, say P1, P2 and P3 are on the same line L = 0 with
L ∈W1(P1, P2, P3). Then we choose P9 on this line L. Hence, for any F ∈W3(P1, . . . , P9), we have F = LQ,
with Q ∈ W2(P4, . . . , P8). Since no 4 of these points are colinear, we have dim(W2(P4, . . . , P8)) = 1. So
there is only one conic Q0 vanishing in P4, . . . , P8 up to scaling. Hence dim(W3(P1, . . . , P9)) = 1 and thus
dim(W3(P1, . . . , P8)) ≤ dim(W3(P1, . . . , P9)) + 1 = 2.

Suppose that there are six points on the same conic, say P1, . . . , P6 are on the same conic Q = 0 with
Q ∈ W2(P1, . . . , P6). Then we choose P9 on this conic Q. Hence, for any F ∈ W3(P1, . . . , P9), we have
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F = LQ, with L ∈W1(P7, P8). Note that there is only one line between P7 and P8, so dim(W1(P7, P8)) = 1.
Hence dim(W3(P1, . . . , P9)) = 1 and thus dim(W3(P1, . . . , P8)) ≤ dim(W3(P1, . . . , P9)) + 1 = 2.

Suppose that there are no three colinear points and no six points all lie on the same conic. Then we choose
P9 and P10 on the line (P1, P2) given by L = 0 with L ∈W1(P1, P2). Suppose that dim(W3(P1, . . . , P8)) ≥ 3,
then dim(W3(P1, . . . , P10)) ≥ 1. Thus there is a non-trivial F ∈W3(P1, . . . , P10). Then we can write F = LQ
with some non-trivial conic Q ∈W2(P3, . . . , P8). However, we assumed that there is no conic passing through
any subset of six points of P1, . . . , P8. Therefore, we have dim(W3(P1, . . . , P8)) ≤ 2.

Thus we have dim(W3(P1, . . . , P8)) = 2.

Lemma 1.4. Let C1 and C2 be two cubics and C1 is irreducible. Assume that a cubic C passes through 8
distinct points P1, . . . , P8 of the 9 intersection points P1, . . . , P9 of C1 and C2. Then C also passes through
the ninth intersection point P9.

Proof. Suppose that there are 4 distinct points A1, . . . , A4 on C1 on the same line L ∈ W1(A1, . . . , A4).
Note that a cubic and a line can only intersect in 3 points or the whole line. Therefore, every point on the
line L also lies on C1. Therefore C1 can be written as C1 = LQ for some conic Q. However C1 is irreducible,
so this is not possible. Thus there are no 4 colinear points on C1.

Suppose that there are 7 distinct points A1, . . . , A7 on C1 on the same conic Q ∈ W2(A1, . . . , A7). Note
that a cubic and a conic can only intersect in 6 points or the whole conic. Therefore, every point on the
conic Q also lies on C1. Therefore C1 can be written as C1 = QL for some line L. However C1 is irreducible,
so this is not possible. Thus there are no 7 points on C1 on the same conic.

Hence we can apply Lemma 1.3 and thus dim(W3(P1, . . . , P8)) is of dimension 2 and therefore generated
by C1 and C2. So we can write C as a linear combination of C1 and C2 and hence C(P9) = 0. Thus C also
passes through P9.

Now we can prove the associativity by applying Lemma 1.4.

Theorem 1.5. The operation ⊕ is associative.

Proof. To show the associativity, we take some P,Q,R ∈ En(K) distinct to each other, each other’s inverses
and sums and O. We will consider the special cases later.

First we construct (P ⊕ Q) ⊕ R. Therefore, we draw the line L1 through P and Q and call the third
intersection point T := P ◦ Q. Then we take its inverse T ′ := T ◦ O = P ⊕ Q by drawing the line L2

through T and O. To add R, we draw the line L3 through T ′ and R, whose third intersection point we call
U := T ′ ◦R = (P ⊕Q) ◦R. Taking its inverse, we construct U ′ := U ◦O = (P ⊕Q)⊕R by drawing the line
L4 through U and O. In Figure 2a you can find an example of this construction.

Then we also construct P ⊕ (Q ⊕ R). Therefore, we draw the line M1 through Q and R and call the
third intersection point S := Q ◦ R. Then we take its inverse S′ := S ◦ O = Q⊕ R by drawing the line M2

through S and O. To add P , we draw the line M3 through P and S′, whose third intersection point we call
V := P ◦ S′ = P ◦ (Q⊕R). Taking its inverse, we construct V ′ := V ◦O = P ⊕ (Q⊕R) by drawing the line
M4 through V and O. In Figure 2b you can find an example of this construction.

(a) Construction of (P ⊕Q)⊕R (b) Construction of P ⊕ (Q⊕R)

Figure 2: An example of the associativity of ⊕ on E17(R).
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Next, we observe the cubics C1 = L1 ·M2 · L3 and C2 = M1 · L2 ·M3. Hence we have:

En(K) ∩ C1 = {P,Q, T, S,O, S′, T ′, R, U},
En(K) ∩ C2 = {Q,R, S, T,O, T ′, P, S′, V }.

Since En is an irreducible conic, C1 has to pass through V and C2 has to pass through U by Lemma 1.4.
Therefore U and V have to be the same and hence U ′ = V ′. Thus (P ⊕Q)⊕R = P ⊕ (Q⊕R).

In conclusion, ⊕ is in general associative but for some special cases where En(K) ∩ C1 and En(K) ∩ C2

does not contain 8 distinct points and U respectively V .
Let P,Q,R ∈ En(R) be a special case. Then we can write P , Q and R as the limits of some sequences

{Pk}∞k=0, {Qk}∞k=0 and {Rk}∞k=0 respectively where Pk, Qk, Rk is a nonspecial case for all k ∈ Z≥0. Then we
have (Pk ⊕Qk)⊕ Rk = Pk ⊕ (Qk ⊕ Rk) for all k ∈ Z≥0. Taking limits we get (P ⊕Q)⊕ R = P ⊕ (Q⊕ R)
by the continuity of ⊕. The continuity of ⊕ will be proved in Corollary 1.7 from the explicit formulas for ⊕.
Therefore we use for En(R) the induced topology from P2(R). Hence ⊕ is associative in En(R). Therefore,
⊕ is also associative for fields contained in R.

Thus ⊕ is associative and defines a group law on En(K) for any field extension K ⊂ R of Q.

1.3 The explicit group law

For our curves E◦n we can write the group law explicitly. To avoid fractions and special cases, we will again
use projective geometry and write out the group law for the curve En.

Theorem 1.6. Let P = (x : y : z), P1 = (x1 : y1 : z1), P2 = (x2 : y2 : z2) ∈ En(K) with P1 6= P2. Then we
have:

−P = (y : x : z),

P1 ⊕ P2 = (x1x2(x1y2 − x2y1) + nz1z2(y1z2 − y2z1) :

y1y2(y1x2 − y2x1) + nz1z2(x1z2 − x2z1) :

x1x2(x1z2 − x2z1) + y1y2(y1z2 − y2z1)),

2P = (− y(2x3 + y3) : x(x3 + 2y3) : z(x3 − y3)).

Proof. We parametrize the line through P1 and P2:

(λx1 + µx2 : λy1 + µy2 : λz1 + µz2) with (λ : µ) ∈ P1(Q).

To find the third intersection point of this line with En, we fill in this parametrization in our homegeneous
equation for the curve En:

(λx1 + µx2)3 + (λy1 + µy2)3 = n(λz1 + µz2)3.

Writing out gives us:

λ3x3
1 + 3λ2µx2

1x2 + 3λµ2x1x
2
2 + µ3x3

2 + λ3y3
1 + 3λ2µy2

1y2 + 3λµ2y1y
2
2 + µ3y3

2 =

nλ3z3
1 + 3nλ2µz2

1z2 + 3nλµ2z1z
2
2 + µ3z3

2 .

Since P1 and P2 are on En, we have:

3λ2µx2
1x2 + 3λµ2x1x

2
2 + 3λ2µy2

1y2 + 3λµ2y1y
2
2 = 3nλ2µz2

1z2 + 3nλµ2z1z
2
2 .

Note that λ = 0 and µ = 0 gives us respectively P1 and P2. Since we search for the third intersection point
of the line with the curve, we can assume λ, µ 6= 0. Hence we have:

λx2
1x2 + µx1x

2
2 + λy2

1y2 + µy1y
2
2 = nλz2

1z2 + nµz1z
2
2

λ(x2
1x2 + y2

1y2 − nz2
1z2) = µ(−x1x

2
2 − y1y

2
2 + nz1z

2
2).

7



Thus we have:

(λ : µ) = (−x1x
2
2 − y1y

2
2 + nz1z

2
2 : x2

1x2 + y2
1y2 − nz2

1z2).

This gives us the point:

P1 ◦ P2 = ((−x1x
2
2 − y1y

2
2 + nz1z

2
2)x1 + (x2

1x2 + y2
1y2 − nz2

1z2)x2 :

(−x1x
2
2 − y1y

2
2 + nz1z

2
2)y1 + (x2

1x2 + y2
1y2 − nz2

1z2)y2 :

(−x1x
2
2 − y1y

2
2 + nz1z

2
2)z1 + (x2

1x2 + y2
1y2 − nz2

1z2)z2)

= (− x2
1x

2
2 − x1y1y

2
2 + nx1z1z

2
2 + x2

1x
2
2 + x2y

2
1y2 − nx2z

2
1z2 :

− x1x
2
2y1 − y2

1y
2
2 + ny1z1z

2
2 + x2

1x2y2 + y2
1y

2
2 − ny2z

2
1z2 :

− x1x
2
2z1 − y1y

2
2z1 + nz2

1z
2
2 + x2

1x2z2 + y2
1y2z2 − nz2

1z
2
2)

= (− x1y1y
2
2 + nx1z1z

2
2 + x2y

2
1y2 − nx2z

2
1z2 :

− x1x
2
2y1 + ny1z1z

2
2 + x2

1x2y2 − ny2z
2
1z2 :

− x1x
2
2z1 − y1y

2
2z1 + x2

1x2z2 + y2
1y2z2)

= (y1y2(y1x2 − y2x1) + nz1z2(x1z2 − x2z1) :

x1x2(x1y2 − x2y1) + nz1z2(y1z2 − y2z1) :

x1x2(x1z2 − x2z1) + y1y2(y1z2 − y2z1)).

Notice that for any point P = (x : y : z) ∈ E◦n(K), we hence have (recall that O = (1 : −1 : 0)):

−P = P ◦ O = (− y(y + x) : −x(x+ y) : −z(x+ y)) = (y : x : z).

From this we have:

P1 ⊕ P2 = (P1 ◦ P2) ◦ O
= (x1x2(x1y2 − x2y1) + nz1z2(y1z2 − y2z1) :

y1y2(y1x2 − y2x1) + nz1z2(x1z2 − x2z1) :

x1x2(x1z2 − x2z1) + y1y2(y1z2 − y2z1)).

Since En is given by F (X,Y, Z) = 0 for F (X,Y, Z) = X3 + Y 3 − nZ3 ∈ W3, the tangent line through P is
given by:

∂XF (P )(X − x) + ∂Y F (P )(Y − y) + ∂ZF (P )(Z − z) = 0,

(3X2)(P )(X − x) + (3Y 2)(P )(Y − y) + (−3nZ2)(P )(Z − z) = 0,

3x2X − 3x3 + 3y2Y − 3y3 = 3nz2Z − 3nz3.

Since P is on En, we have x3 + y3 = nz3, so:

TPEn : x2X + y2Y = nz2Z.

Now we want the other intersection point P ◦ P = (a : b : c) of TPEn with En besides P . Therefore we can
combine these equations and we get:

y6X3 + (nz2Z − x2X)3 = ny6Z3

(y6 − x6)X3 + (3nz2x4)X2Z + (−3n2z4x2)XZ2 + (n3z6 − ny6)Z3 = 0.

Since (x : z) is a double root is this equation and the other intersection point is (a : c), this equation can be
rewritten as:

(zX − xZ)2(cX − aZ) = 0

z2cX3 + (−z2a− 2xzc)X2Z + (2xza+ x2c)XZ2 − x2aZ3 = 0.
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This gives us:

(−z2a− 2xzc)(y6 − x6) = (z2c)(3nz2x4)

(−za− 2xc)z(x3 + y3)(y3 − x3) = 3x4z(x3 + y3)c.

If P 6= O, then this gives us:

(−za− 2xc)(y3 − x3) = 3x4c

z(x3 − y3)a = (2xy3 − 2x4 + 3x4)c = x(x3 + 2y3)c.

Thus:

(a : c) = (x(x3 + 2y3) : z(x3 − y3)).

Similarly we get:

(b : c) = (y(2x3 + y3) : z(y3 − x3)) = (−y(2x3 + y3) : z(x3 − y3)).

Thus we have:

P ◦ P = (a : b : c) = (x(x3 + 2y3) : −y(2x3 + y3) : z(x3 − y3)).

Hence we have:

2P = (−y(2x3 + y3) : x(x3 + 2y3) : z(x3 − y3)).

Note that for P = O we have 2P = O and this also satisfies the formulas.

Using the explicit formulas we can prove the continuity of ⊕ on En(R) supplied with the induced topology
of P2(R).

Corollary 1.7. The operation ⊕ is continuous on En(R).

Proof. We need to show that for all P ∈ En(R) the map Q 7→ P ⊕Q is continuous. From the explicit group
law we have that this map is continuous in Q for all Q ∈ En(R) except for Q = P . Thus we need to show
that:

lim
Q→P

(P ⊕Q) = 2P.

This holds true if and only if limQ→P P ◦Q = P ◦ P . Note that this is true for P = O. So if we can show
for all P ∈ E◦n(R) that limQ→P lPQ = lPP , we are done.

Since P ∈ E◦n(R), we can write P = (xP : yP : 1) and for all Q ∈ E◦n(R) we can write Q = (xQ : yQ : 1).
Then lines lPQ and lPP = TPEn in P2(R) are given by:

lPQ : (yP − yQ)(X − xPZ)− (xP − xQ)(Y − yPZ) = 0,

lPP : x2
P (X − xPZ) + yP (Y − yPZ) = 0.

To show that lPQ → lPP as Q→ P , we want to show that

−(xP − xQ)x2
P

(yP − yQ)y2
P

=
x2
PxQ − x3

P

y3
P − y2

P yQ
→ 1 as Q→ P.

Now we write xQ = xP + δ such that δ → 0 as Q → P . Since P,Q ∈ E◦n(R), we can write yP = 3
√
n− x3

P

9



and yQ = 3

√
n− x3

Q. This gives us x2
PxQ − x3

P = δx2
P and by Taylor expansion we have:

y3
P − y2

P yQ = n− x3
P −

3

√
(n− x3

P )2(n− (xP + δ)3)

= n− x3
P −

3

√
(n− x3

P )3 − δ(3x2
P + 3δxP + δ2)(n− x3

P )2

= n− x3
P −

(
3

√
(n− x3

P )3 − 1

3
δ(3x2

P + 3δxP + δ2)(n− x3
P )2 · (n− x3

P )−2 +O(δ2)

)
= δ

(
x2
P + δxP +

1

3
δ2

)
+O(δ2)

= δx2
P +O(δ2).

Hence we have:

lim
Q→P

−(xP − xQ)x2
P

(yP − yQ)y2
P

= lim
δ→0

δx2
P

δx2
P +O(δ2)

= 1.

Thus ⊕ is a continuous operation on En(R) for all n ∈ Z≥1.

Since the explicit formulas are derived without using the associativity of ⊕, we can use the continuity
to prove the associativity.

Remark 1.8. If there were some P = (x : y : z) ∈ En(Q) such that 2P = O, then we have by Theorem 1.6
that z = 0 or x3 = y3 and hence x = y, because x, y ∈ Q. If z = 0 then we have P = O. If x = y, then we
have 2x3 = nz3. This is not possible if n ≥ 3 is cube-free. Thus if n 6= 2 is cube-free then for all P ∈ En(Q)
we have 2P = O if and only if P = O.

Notice that for n = 2, 2x3 = nz3 gives us x = z since x, z ∈ Q. Then we have the point (1 : 1 : 1) ∈ E2(Q)
with 2(1 : 1 : 1) = O.

10



2 Chapter 2

In this section our goal is to measure the sizes of rational solutions on the curve E◦n : x3 +y3 = n. Thereafter
we look for relations between this size and the group law on En(Q). Since we also want to include O, we
work in the rational projective plane P2(Q). This is based on §5.2 (p. 174− 184) from [2].

2.1 The Weil Height

We have a look at the Weil Height on rational projective spaces Pm(Q) and prove some nice properties.
To define the Weil Height, we need the p-adic absolute values for primes p on Q. Let x ∈ Q∗ be given, then

for any prime p we can write x = p−ep · ab with unique a, b, ep ∈ Z and gcd(a, b) = gcd(a, p) = gcd(b, p) = 1.
Then we put:

|x|p := p−ep , |0|p := 0.

One can verify that the p-adic absolute values satisfy the following properties:

|xy|p = |x|p|y|p, |x+ y|p ≤ max{|x|p, |y|p}.

We take | · |∞ as the usual absolute value on Q. Defining MQ as the set of all primes and infinity, we
have a set of absolute values | · |v for v ∈ MQ. For more details, one may be referred to §5.2.1 (p. 174-175)
from [2].

Proposition 2.1 (Product Formula). For all x ∈ Q∗, we have:∏
v∈MQ

|x|v = 1.

Proof. Again we can write x = ±
∏k
i=1 p

ei
i with primes pi and ei ∈ Z. Then we have:

∏
v∈MQ

|x|v = |x|∞ ·
∏

primes p

|x|p =

k∏
i=1

peii ·
k∏
i=1

p−eii = 1.

Definition 2.2. For P = (x0 : · · · : xm) ∈ Pm(Q), the Weil Height of P is defined to be

h(P ) :=
∑
v∈MQ

log
(

n
max
i=0
{|xi|v}

)
.

We need to check that the Weil Height is well-defined: that is that the formula above is independent of
the choice of the homogeneous coordinates. Let x ∈ Q∗ be given, then we can write P = (x0 : · · · : xm) =
(xx0 : · · · : xxm) and hence we have using Proposition 2.1:

h(P ) =
∑
v∈MQ

log
(

n
max
i=0
{|x|v · |xi|v}

)
=
∑
v∈MQ

log(|x|v) + log
(

n
max
i=0
{|xi|v}

)
=
∑
v∈MQ

log
(

n
max
i=0
{|xi|v}

)
.

Remark 2.3. Notice that for any P ∈ Pm(Q), we can write P = (z0 : · · · : zm) with coprime integers
z0, . . . , zm. Then for any prime p ∈MQ we have:

m
max
i=0
{|zi|p} = 1.

since |zi|p ≤ 1 for all i, and at least one zi is coprime with p and hence |zi|p = 1 for this zi. Therefore we
have:

h(P ) = log
(

m
max
i=0
{|zi|∞}

)
.
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2.2 The Weil Height and polynomial maps

In this subsection we study the behaviour of the Weil Height with polynomial maps between projective
spaces. Therefore these polynomials require a special property.

Definition 2.4. Let F0, . . . , Fm ∈ Wd,m(Q) be homogeneous polynomials of degree d ≥ 1. Then we call
this set of m polynomials good if there is an M ∈ Z≥1 and there are polynomials Aij ∈ WM−d,m(Q) for
0 ≤ i, j ≤ m such that for all i ∈ {0, . . . ,m}:

m∑
j=0

AijFj = XM
i .

Theorem 2.5. Let F0, . . . , Fm ∈Wd,m(Q) be a good set of homogeneous polynomials of degree d in (X0, . . . , Xm).
Let Z ⊂ Pm(Q) be the set of common zeros of F0, . . . , Fm and define:

Φ : Pm(Q) \ Z → Pm(Q) : Φ(X0 : · · · : Xm) = (F0(X0, . . . , Xm) : · · · : Fm(X0, . . . , Xm)).

Then there are constants C1 > 0 and C2 > 0 only depending on Φ such that for all P ∈ Pm(Q) \Z we have:

dh(P )− C2

(2)

≤ h(Φ(P ))
(1)

≤ dh(P ) + C1.

In other words, there exists a constant C = max{C1, C2} > 0 depending only on Φ such that for all P ∈
Pm(Q) \ Z we have:

|h(Φ(P ))− dh(P )| ≤ C.

Remark 2.6. Note that inequality (1) is true for any set of homogeneous polynomials F1, . . . , Fm ∈
Wd,m(Q). From the proof it will be clear that we don’t use the assumption that they are good.

Proof. (1) Note that Wd,m is generated by the monomials:
m∏
j=0

X
nj

j

∣∣∣∣∣∣~n ∈ Nd,m
 with Nd,m :=

~n = (n0, . . . , nm) ∈ Nm+1

∣∣∣∣∣∣
m∑
j=0

nj = d

 .

Hence, we have for i = 0, . . . ,m and any ~x = (x0, . . . , xm) ∈ Qm+1

Fi(~x) =
∑

~n∈Nd,m

λi,~n~x
~n with λi,~n ∈ Q and ~x~n :=

m∏
j=0

x
nj

j .

This gives us for any prime p:

|Fi(~x)|p =

∣∣∣∣∣∣
∑

~n∈Nd,m

λi,~n~x
~n

∣∣∣∣∣∣
p

≤ max
~n∈Nd,m

|λi,~n|p
m∏
j=0

|xj |nj
p

 ≤ max
~n∈Nd,m

{|λi,~n|p} ·
m

max
j=0
{|xj |p}d.

Note that #Nd,m = dim(Wd,m) =
(
d+m
d

)
. Thus for the usual absolute value we have:

|Fi(x0, . . . , xm)|∞ =

∣∣∣∣∣∣
∑

~n∈Nd,m

λi,~n~x
~n

∣∣∣∣∣∣
∞

≤
(
d+m

d

)
max

~n∈Nd,m

|λi,~n|∞
m∏
j=0

|xj |nj
∞


≤
(
d+m

d

)
max

~n∈Nd,m

{|λi,~n|∞} ·
m

max
j=0
{|xj |∞}d.

12



Hence we have for all P = (x0 : · · · : xm) ∈ Pm(Q):

h(Φ(P )) =
∑
v∈MQ

log
(

m
max
i=0
{|Fi(~x)|v}

)
= log

(
m

max
i=0
{|Fi(~x)|∞}

)
+

∑
primes p

log
(

m
max
i=0
{|Fi(~x)|p}

)
≤ log

((
d+m

d

))
+ log

(
m

max
i=0

{
max

~n∈Nd,m

{|λi,~n|∞}
})

+ d log

(
m

max
j=0
{|xj |∞}

)
+

∑
primes p

{
log

(
m

max
i=0

{
max

~n∈Nd,m

{|λi,~n|p}
})

+ d log

(
m

max
j=0
{|xj |p}

)}

≤ dh(P ) + log

((
d+m

d

))
+
∑
v∈MQ

log

(
m

max
i=0

{
max

~n∈Nd,m

(|λi,~n|v)
})

.

Thus we have for all P ∈ Pm(Q):

h(Φ(P )) ≤ dh(P ) + C1.

with

C1 = log

((
d+m

d

))
+
∑
v∈MQ

log

(
m

max
i=0

{
max

~n∈Nd,m

{|λi,~n|v}
})

.

(2) Since F0, . . . , Fm is a good set of polynomials, there is an M ∈ Z≥1 and polynomials Aik for 0 ≤ i, k ≤ m
such that for all i = 0, . . . ,m:

XM
i =

m∑
k=1

AikFk.

Then we have for P = (x0 : · · · : xm) ∈ Pm(Q) \ Z:

xMi =

m∑
k=1

Aik(~x)Pk(~x).

Note that Aik ∈WM−d,m(Q), so we can write:

Aik(~x) =
∑

~n∈NM−d,m

aik,~n~x
~n with aik,~n ∈ Q

and hence

|Aik(~x)|p ≤ max
~n∈NM−d,m

{|aik,~n|p} ·
m

max
j=0
{|xj |p}M−d,

|Aik(~x)|∞ ≤
(
M − d+m

M − d

)
max

~n∈NM−d,m

{|aik,~n|∞} ·
m

max
j=0
{|xj |∞}M−d.

So we have:

|xi|Mp ≤
m

max
k=1
{|Aik(~x)|p}

m
max
k=1
{(|Fk(~x)|p}

≤ m
max
k=1

{
max

~n∈NM−d,m

{|aik,~n|p}
}
· m
max
j=0
{|xj |p}M−d ·

m
max
k=1
{|Fk(~x)|p},

|xi|M∞ ≤ m
m

max
k=1
{|Aik(~x)|∞}

m
max
k=1
{|Fk(~x)|∞}

≤ m
(
M − d+m

M − d

)
m

max
k=1

{
max

~n∈NM−d,m

{|aik,~n|∞}
}
· m
max
j=0
{|xj |∞}M−d ·

m
max
k=1
{|Fk(~x)|∞}.
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Hence we have:

m
max
i=0
{|xi|p}M ≤

m
max
i=1

m
max
k=1

{
max

~n∈NM−d,m

{|aik,~n|p}
}
· m
max
j=0
{|xj |p}M−d ·

m
max
k=1
{|Fk(~x)|p},

m
max
i=0
{|xi|∞}M ≤ m

(
M − d+m

M − d

)
m

max
i=1

m
max
k=1

{
max

~n∈NM−d,m

{|aik,~n|∞}
}
· m
max
j=0
{|xj |∞}M−d ·

m
max
k=1
{|Fk(~x)|∞}.

Thus:

m
max
i=0
{|xi|p}d ≤

m
max
i=1

m
max
k=1

{
max

~n∈NM−d,m

{|aik,~n|p}
}
· m
max
k=1
{|Fk(~x)|p},

m
max
i=0
{|xi|∞}d ≤ m

(
M − d+m

M − d

)
m

max
i=1

m
max
k=1

{
max

~n∈NM−d,m

{|aik,~n|∞}
}
· m
max
k=1
{|Fk(~x)|∞}.

Hence we have:

h(Φ(P )) =
∑
v∈MQ

log
(

m
max
i=0
{|Fi(~x)|v}

)
≥
∑
v∈MQ

{
d log

(
m

max
i=0
{|xi|v}

)
− log

(
m

max
i=1

n
max
k=1

{
max

~n∈NM−d,m

{|aik,~n|v}
})}

− log(m)− log

((
M − d+m

M − d

))

≥ dh(P )−

log(m) + log

((
M − d+m

M − d

))
+
∑
v∈MQ

log

(
m

max
i=1

n
max
k=1

{
max

~n∈NM−d,m

{|aik,~n|v}
}) .

Thus we have for all P ∈ Pm(Q) \ Z:

h(Φ(P )) ≥ dh(P )− C2

with

C2 = log(m) + log

((
M − d+m

M − d

))
+
∑
v∈MQ

log

(
m

max
i=1

m
max
k=1

{
max

~n∈NM−d,m

{|aik,~n|v}
})

.

Lemma 2.7. For all x, y ∈ Q, we have:

|h(1 : x+ y : xy)− h(x : 1)− h(y : 1)| ≤ log(2).

Proof. First we show that for all v ∈ MQ, there are constants Cv and Dv such that for all x, y ∈ Q, we
have:

Cv ≤
max{|1|v, |x+ y|v, |xy|v}

max{|1|v, |x|v}max{|1|v, |y|v}
≤ Dv.

For any prime p we have:

|x+ y|p ≤ max{|x|p, |y|p} ≤ max{|1|p, |x|p, |y|p, |xy|p} = max{|1|p, |x|p}max{|1|p, |y|p},
|x+ y|∞ ≤ |x|∞ + |y|∞ ≤ 2 max{|x|∞, |y|∞} ≤ 2 max{|1|∞, |x|∞}max{|1|∞, |y|∞}.

So Dp = 1 and D∞ = 2 are suitable constants.
Let p be a prime, then we can assume |x|p ≤ |y|p without loss of generality. If |x|p ≤ |y|p ≤ 1, then

we also have |x + y|p ≤ 1 and |xy|p ≤ 1. If |x|p ≤ 1 ≤ |y|p, then we have |xy|p ≤ |y|p ≤ |x + y|p. If
1 ≤ |x|p ≤ |y|p, then we have |y|p ≤ |xy|p. So Cp = 1 is a suitable constant.
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Note that (x − y)2 ≥ 0, so x2 + 2xy + y2 ≥ 4xy. Hence 4xy ≤ (x + y)2 and thus 2
√
|xy|∞ ≤ |x + y|∞.

So C∞ = 1
2 is a suitable constant.

By summing over all v ∈MQ, we have:

|h(1 : x+ y : xy)− h(x : 1)− h(y : 1)| ≤ log(2)

for all x, y ∈ Q.

Remark 2.8. In the proof above, we have discovered the remarkable result that for any prime p and x, y ∈ Q,
we have:

max{1, |x+ y|p, |xy|p} = max{1, |x|p}max{1, |y|p}.

2.3 Sizes of solutions

To define the size of a solution of En : X3 +Y 3 = nZ3, we could use directly the Weil Height, but to acquire
some nice properties, we use the map:

Ω : E◦n(Q)→ Q : Ω(x, y) =
1

x+ y
.

This is well-defined, because the only point in En(Q) with x+ y = 0 is O.

Definition 2.9. For any solution P ∈ En(Q) of the equation X3 + Y 3 = nZ3, we define its height by:

h̄(P ) := h(Ω(P ) : 1) for P ∈ E◦n(Q) and h̄(O) := 0

with h the Weil Height on P1(Q).

We also call h̄(P ) the size of a solution P ∈ En(Q). In addition, h(P ) is proportional to the number of
digits of P = (z0 : · · · : zm) where z0, . . . , zm are coprime integers.

Remark 2.10. Notice that for any P = (x, y) ∈ E◦n(Q), we have −P = (y, x) and hence Ω(−P ) = Ω(P ).
Thus we also have h̄(−P ) = h̄(P ).

Remark 2.11. For any point R = (xR, yR) ∈ E◦n(Q), we have:

n = x3
R + y3

R = (xR + yR)3 − 3xRyR(xR + yR) =
1

Ω(R)3
− xRyR

3

Ω(R)
.

So:

xRyR =
1− nΩ(R)3

3Ω(R)2
.

By similar calculations we have:

x2
R + y2

R =
1 + 2nΩ(R)3

3Ω(R)2
, x4

R + x4
R =

−1 + 8nΩ(R)3 + 2n2Ω(R)6

9Ω(R)4
.

For any P = (xP , yP ), Q = (xQ, yQ) ∈ E◦n(Q) with P ⊕Q,P 	Q, 2P 6= O we have by Theorem 1.6:

P ⊕Q =

(
xPxQ(xP yQ − xQyP ) + n(yP − yQ)

xPxQ(xP − xQ) + yP yQ(yP − yQ)
,
yP yQ(yPxQ − yQxP ) + n(xP − xQ)

xPxQ(xP − xQ) + yP yQ(yP − yQ)

)
,

P 	Q =

(
xP yQ(xPxQ − yQyP ) + n(yP − xQ)

xP yQ(xP − yQ) + yPxQ(yP − xQ)
,
yPxQ(yP yQ − xQxP ) + n(xP − yQ)

xP yQ(xP − yQ) + yPxQ(yP − xQ)

)
,

2P =

(
−yP (2x3

P + y3
P )

x3
P − y3

P

,
xP (x3

P + 2y3
P )

x3
P − y3

P

)
.
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Hence we have:

Ω(P ⊕Q) =
(xPxQ(xP − xQ) + yP yQ(yP − yQ))

(xP yQ − yPxQ)(xPxQ − yP yQ) + n((xP + yP )− (xQ + yQ))
,

Ω(P 	Q) =
(xP yQ(xP − yQ) + yPxQ(yP − xQ))

(xP yQ − yPxQ)(xPxQ − yP yQ) + n((xP + yP )− (xQ + yQ))
,

Ω(2P ) =
x3
P − y3

P

x4
P − 2x3

P yP + 2xP y3
P − y4

P

=
(xP − yP )(x2

P + xP yP + y2
P )

(xP − yP )(x3
P + x2

P yP + xP y2
P + y3

P )− 2xP yP (xP − yP )(xP + yP )

=
x2
P + xP yP + y2

P

x3
P + x2

P yP + xP y2
P + y3

P − 2x2
P yP − 2xP y2

P

=
x2
P + xP yP + y2

P

x3
P − x2

P yP − xP y2
P + y3

P

.

Lemma 2.12. The height h̄ is almost quadratic: there is a constant C > 0 such that for all P ∈ En(Q), we
have: ∣∣h̄(2P )− 4h̄(P )

∣∣ ≤ C.
Proof. The case that P = O is trivial. If n 6= 2, we have 2P 6= O for P ∈ E◦n(Q) by Remark 1.8. Recall
that for n = 2, we have the point (1 : 1 : 1) such that 2(1 : 1 : 1) = O, but for all P ∈ E◦2 (Q) \ {(1 : 1 : 1)},
we have 2P 6= O.

By Remark 2.11 we have for all P = (xP , yP ) ∈ E◦n(Q) with 2P 6= O:

Ω(2P ) =
x2
P + xP yP + y2

P

x3
P − x2

P yP − xP y2
P + y3

P

=
nΩ(P )4 + 2Ω(P )

4nΩ(P )3 − 1
.

Now we introduce the maps:

φ : P1(Q) → P1(Q) : φ(T : U) = (4nTU3 − T 4 : nU4 + 2T 3U),
ψ : E◦n(Q) → P1(Q) : ψ(P ) = (1 : Ω(P )),
θ : E◦n(Q) → E◦n(Q) : θ(P ) = 2P.

Notice that we have:

φ ◦ ψ : E◦n(Q) → P1(Q) : P 7→ (1 : Ω(P )) 7→ (4nΩ(P )3 − 1 : nΩ(P )4 + 2Ω(P )) = (1 : Ω(2P )),
ψ ◦ θ : E◦n(Q) → P1(Q) : P 7→ 2P 7→ (1 : Ω(2P )).

So φ ◦ ψ = ψ ◦ θ on E◦n(Q).
Now we want to apply Theorem 2.5 to φ. Therefore, we need to show that the polynomials P0(T : U) =

4nTU3 − T 4 and P1(T : U) = nU4 + 2T 3U are good and we need to identify the set Zφ of common zeros of
P0 and P1 in P1(Q).

Suppose (T : U) is a common zero. If T = 0, then we also have U = 0, so this is not possible. Therefore
we have T 6= 0 and hence we can assume that T = 1. This gives us the following two equations.{

4nU2 = 1 (1)
nU4 + 2U = 0 (2)

From (2), we can derive that U = 0 or nU3 = −2. By (1) we know that U 6= 0, so U3 = − 2
n and U2 = 1

4n .
Hence U = −8n

n = −8. However (−8)2 = 64 > 1 > 1
4n , since n ∈ Z≥1. So U 6= −8 and this gives a

contradiction. Thus Zφ = ∅.
We introduce the following polynomials Aij ∈W3,2:

A00(T : U) = − 1
9 (4nU3 + 9T 3), A01(T : U) = 16

9 nTU
2,

A10(T : U) = − 4
9n2T

2U, A11(T : U) = 1
9n2 (9nU3 − 2T 3).

Then one can check by a direct computation that:

A00P0 +A01P1 = T 7, A10P0 +A11P1 = U7.
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So P0, P1 ∈W4,2 are good.
Therefore we can apply Theorem 2.5 to φ. So there is a constant C > 0 such that for all (x : y) ∈ P1(Q)

we have:

|h(φ(x : y))− 4h(x : y)| ≤ C.

Hence we have for all P ∈ E◦n(Q) with 2P 6= O:

|h̄(2P )− 4h̄(P )| = |h(Ω(2P ) : 1)− 4h(Ω(P ) : 1)|
= |h(ψ(2P ))− 4h(ψ(P ))|
= |h(ψ(θ(P )))− 4h(ψ(P ))|
= |h(φ(ψ(P )))− 4h(ψ(P ))| ≤ C.

Thus there is a constant C > 0 such that for all P ∈ En(Q) we have
∣∣h̄(2P )− 4h̄(P )

∣∣ ≤ C. Note that for
n = 2, we have to take a new constant c = max{C, h̄(1 : 1 : 1)} = max{C, log(2)}.

Remark 2.13. Note that C depends only on n and therefore we can express C in n. Recall that we have
d = 4, m = 1 and M = 7. From Theorem 2.5 we have for the upper bound:

C1 = log

((
d+m

d

))
+
∑
v∈MQ

log

(
m

max
i=0

{
max

~n∈Nd,m

{|λi,~n|v}
})

= log(5) + log(4n) = log(20n).

From Theorem 2.5 we have for the lower bound:

C2 = log(m) + log

((
M − d+m

M − d

))
+
∑
v∈MQ

log

(
m

max
i=1

m
max
k=1

{
max

~n∈NM−d,m

{|aik,~n|v}
})

= log(4) + log

(
max

{
|n|2,

1

2

})
+ log(16n3) ≤ log(64n3).

Note that log(20n) ≤ log(64n3) = 3 log(4n). Thus for all P ∈ En(Q) we have:∣∣h̄(2P )− 4h̄(P )
∣∣ ≤ 3 log(4n).

For n = 2 we have 3 log(4n) > log(2), thus then this estimation still holds.

Lemma 2.14. The height h̄ almost satisfies the parallelogram law: there is a constant C > 0 such that for
all P,Q ∈ En(Q), we have: ∣∣h̄(P ⊕Q) + h̄(P 	Q)− 2h̄(P )− 2h̄(Q)

∣∣ ≤ C.
Proof. If P = O or Q = O, then we have h̄(P ⊕Q)+ h̄(P 	Q) = 2h̄(P )+2h̄(Q) by Remark 2.10. Moreover,
if P = Q or P = −Q we can see the statement is obviously true by Lemma 2.12.

Let P = (xP , yP ), Q = (xQ, yQ) ∈ E◦n(Q) with P ⊕ Q,P 	 Q 6= O, then we have by Remark 2.11 with
U := Ω(P ) + Ω(Q) and V := Ω(P )Ω(Q):

Ω(P ⊕Q) + Ω(P 	Q) =
12n((x2

P + y2
P )(xQ + yQ)− (xP + yP )(x2

Q + y2
Q))

(x2
P + y2

P )(xQyQ)− (xP yP )(x2
Q + y2

Q) + n((xP + yP )− (xQ + yQ))

=
2nΩ(P )Ω(Q)(Ω(P ) + Ω(Q))− 1

n(Ω(P )− Ω(Q))2
=

2nUV − 1

nU2 − 4nV
,

Ω(P ⊕Q) · Ω(P 	Q) =
nΩ(P )2Ω(Q)2 + (Ω(P ) + Ω(Q))

n(Ω(P )− Ω(Q))2
=

nV 2 + U

nU2 − 4nV
.

Now we introduce the maps:

Φ : P2(Q) → P2(Q) : Φ(T : U : V ) = (nU2 − 4nTV : 2nUV − T 2 : nV 2 + TU),
Ψ : E◦n(Q)2 → P2(Q) : Ψ(P,Q) = (1 : Ω(P ) + Ω(Q) : Ω(P )Ω(Q)),
Θ : E◦n(Q)2 → E◦n(Q)2 : Θ(P,Q) = (P ⊕Q,P 	Q).

17



Notice that we have:

Φ ◦Ψ : E◦n(Q)2 → P2(Q) : (P,Q) 7→ (1 : Ω(P ) + Ω(Q) : Ω(P )Ω(Q))
7→ (1 : Ω(P ⊕Q) + Ω(P 	Q) : Ω(P ⊕Q)Ω(P 	Q)),

Ψ ◦Θ : E◦n(Q)2 → P2(Q) : (P,Q) 7→ (P ⊕Q,P 	Q)
7→ (1 : Ω(P ⊕Q) + Ω(P 	Q) : Ω(P ⊕Q)Ω(P 	Q)).

So Ψ ◦Θ = Φ ◦Ψ on E◦n(Q)2.
Now we want to apply Theorem 2.5 to Φ. Therefore, we need to show that the polynomials P0(T : U :

V ) = nU2 − 4nTV , P1(T : U : V ) = 2nUV − T 2 and P2(T : U : V ) = nV 2 + TU are good and we need to
identify the set ZΦ of common zeros of P0, P1, P2 ∈W2,3 in P2(Q).

Suppose (T : U : V ) is a common rational zero. If T = 0, then we have nU2 = 2nUV = nV 2 = 0 and
hence U = V = 0, so this is not possible. Therefore we have T 6= 0 and hence we can assume that T = 1.
This gives us the following three equations. U2 = 4V (1)

2nUV = 1 (2)
nV 2 = −U (3)

Combining (1) and (3) gives us n2V 4 = 4V , so V (n2V 3 − 4) = 0. Thus V = 0 or n2V 3 = 4. Note that we
have V 6= 0 by (2), so we have V 3 = 4

n2 . Thus V = 1
n

3
√

4n. Since V is a rational number and n is a positive
cube-free integer, n has to be 2. This gives us V = 1. From (2) we can derive U = 1

4 , but from (3) we have
U = −2. Hence we have a contradiction. Thus ZΦ = ∅.

We introduce the polynomials Aij ∈W2,3:

A00(T : U : V ) = 4nV 2, A01(T : U : V ) = −2nUV − 9T 2, A02(T : U : V ) = 16nTV,
A10(T : U : V ) = 1

n (4TU + 9U2), A11(T : U : V ) = −16V 2, A12(T : U : V ) = 32UV,

A20(T : U : V ) = T 2

n3 , A21(T : U : V ) = − 4TV
n2 , A22(T : U : V ) = 9nV 2−TU

n2 .

Then one can check by direct computation that:

A00P0 +A01P1 +A02P2 = 9T 4, A10P0 +A11P1 +A12P2 = 9U4, A20P0 +A21P1 +A22P2 = 9V 4.

So P0, P1, P2 ∈W2,3 are good.
Now we can apply Theorem 2.5 to Φ. So there is a constant C ′ > 0 such that for all (x : y : z) ∈ P2(Q)

we have:

|h(Φ(x : y : z))− 2h(x : y : z)| ≤ C ′.

By Lemma 2.7, we also have for all P,Q ∈ E◦n(Q) with P ⊕Q,P 	Q 6= O:

|h(Ψ(P,Q))− h(Ω(P ) : 1)− h(Ω(Q) : 1)|
= |h(1 : Ω(P ) + Ω(Q),Ω(P )Ω(Q))− h(Ω(P ) : 1)− h(Ω(Q) : 1)| ≤ log(2).

From this we can derive that for all P,Q ∈ E◦n(Q) with P ⊕Q,P 	Q 6= O we have:

|h̄(P ⊕Q) + h̄(P 	Q)− 2h̄(P )− 2h̄(Q)|
= |h(Ω(P ⊕Q) : 1) + h(Ω(P 	Q) : 1)− 2h(Ω(P ) : 1)− 2h(Ω(Q) : 1)|
≤ |h(Ψ(P ⊕Q,P 	Q))− 2h(Ψ(P,Q))|+ 3 log(2)

= |h(Ψ(Θ(P,Q)))− 2h(Ψ(P,Q))|+ 3 log(2)

= |h(Φ(Ψ(P,Q)))− 2h(Ψ(P,Q))|+ 3 log(2)

≤ C ′ + 3 log(2).

Since the other cases are trivial or treated in the previous Lemma 2.12, there is a constant C > 0 such that
for all P,Q ∈ En(Q), we have ∣∣h̄(P ⊕Q) + h̄(P 	Q)− 2h̄(P )− 2h̄(Q)

∣∣ ≤ C.
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2.4 The Néron-Tate Height

In the previous subsection, we constructed the height h̄ for solutions (X : Y : Z) ∈ P2(Q) of the equation
En : X3 + Y 3 = nZ3 and in Lemma 2.12 and Lemma 2.14 we proved that h̄ is almost quadratic and almost
satisfies the parallelogram rule. Using this height, we construct the Néron-Tate Height. This new height will
be quadratic and satisfy the parallelogram rule.

Lemma 2.15. Let S be a set, d > 1 a constant and h : S → R and f : S → S two maps such that there
is some C > 0 such that for all x ∈ S we have |(h ◦ f)(x) − dh(x)| ≤ C. Then for all x ∈ S the sequence{
d−kh

(
fk(x)

)}∞
k=0

converges and we define ĥf (x) := limk→∞ d−kh
(
fk(x)

)
which satisfies for all x ∈ S:∣∣∣h(x)− ĥf (x)

∣∣∣ ≤ C

d− 1
, ĥf (f(x)) = dĥf (x).

Proof. Let m < k ∈ Z≥0. Then we have:

∣∣d−mh (fm(x))− d−kh
(
fk(x)

)∣∣ ≤ k−m∑
i=1

∣∣d−m+1−ih
(
fm+1−i(x)

)
− d−m−ih

(
fm−i(x)

)∣∣
≤
k−m∑
i=1

d−m−iC =
C

d− 1

(
d−m − d−k

)
≤ C

dm(d− 1)
,

since d > 1 and m < k. Therefore, for all ε > 0 there exists an m ∈ Z≥0 such that C
dm(d−1) < ε. Thus{

d−kh
(
fk(x)

)}∞
k=0

is a Cauchy sequence and hence it converges.

For all k ∈ Z≥0, we have
∣∣h(x)− d−kh

(
fk(x)

)∣∣ ≤ C
d−1 , so:

|ĥf (x)− h(x)| = lim
n→∞

∣∣h(x)− d−kh
(
fk(x)

)∣∣ ≤ C

d− 1
.

Moreover, we also have for all x ∈ S:

ĥf (f(x)) = lim
k→∞

d−kh
(
fk+1(x)

)
= d lim

k→∞
d−k−1h

(
fk+1(x)

)
= dĥf (x).

Theorem 2.16. For all P ∈ En(Q) we define the Néron-Tate Height by:

ĥ(P ) := lim
n→∞

h̄(2nP )

4n
≥ 0.

This is well-defined and ĥ satisfies the parallelogram rule: for all P,Q ∈ En(Q) we have:

ĥ(P ⊕Q) + ĥ(P 	Q) = 2ĥ(P ) + 2ĥ(Q).

Moreover, for all P ∈ En(Q) and m ∈ Z≥1, we have ĥ(mP ) = m2ĥ(P ). So ĥ is a quadratic form.

Proof. By Lemma 2.12, we can apply Lemma 2.15 to En(Q), d = 4, the height h̄ and the duplication map

P 7→ 2P . Therefore, the Néron-Tate Height ĥ is well-defined. Since h̄(P ) ≥ 0 for all P ∈ En(Q), we also

have ĥ(P ) ≥ 0 for all P ∈ En(Q).
From Lemma 2.14, there is some C > 0 such that for all P,Q ∈ En(Q) and k ∈ Z≥0 we have:∣∣h̄((2kP )⊕ (2kQ)) + h̄((2kP )	 (2kQ))− 2h̄(2kP )− 2h̄(2kQ))

∣∣ ≤ C.
Dividing by 4k we have:

lim
k→∞

∣∣∣∣ h̄(2k(P ⊕Q))

4k
+
h̄(2k(P 	Q))

4k
− 2

h̄(2kP )

4k
− 2

h̄(2kQ))

4k

∣∣∣∣ = 0.
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Thus we have for all P,Q ∈ En(Q):

ĥ(P ⊕Q) + ĥ(P ⊕−Q) = 2ĥ(P ) + 2ĥ(Q).

Assuming that ĥ(mP ) = m2ĥ(P ) for any P ∈ En(Q) and 1 ≤ m < M , we have:

ĥ(MP ) = 2ĥ((M − 1)P ) + 2ĥ(P )− ĥ((M − 2)P ) = (2(M − 1)2 + 2− (M − 2)2)ĥ(P ) = M2ĥ(P ).

Thus for all P ∈ En(Q) and m ∈ Z≥1, we have ĥ(mP ) = m2ĥ(P ), since ĥ(P ) = ĥ(P ).

Remark 2.17. Notice that Lemma 2.15 gives with Remark 2.13 the following remarkable result. For all
n ≥ 3 and P ∈ En(Q) we have: ∣∣∣h̄(P )− ĥ(P )

∣∣∣ ≤ C

3
≤ log(4n).
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3 Chapter 3

In this section, we will investigate how many rational solutions our equation E◦n : x3 + y3 = n has: how
many elements has E◦n(Q)? Since we are interested in the solutions with positive coordinates we also wonder
how many elements E+

n (Q) := {(x, y) ∈ E◦n(Q)|x, y > 0} has. Thereafter we will investigate how En(Q) is
generated.

3.1 The number of solutions

We don’t know if E◦n(Q) has any elements at all, but if we assume that it contains at least one point, we can
derive some really nice results. The following theorem can be found in §17.9 (p. 287-288) from [3].

Theorem 3.1. If E◦n(Q) is non-empty for some n ≥ 3, it has infinitely many elements.

Proof. Since E◦n(Q) is non-empty, there is some P = (x0 : y0 : z0) ∈ E◦n(Q) with coprime integers x0, y0, z0

with z0 6= 0 and x0+y0 6= 0, because P 6= O. Note that x0, y0, z0 are even pairwise coprime since x3
0+y3

0 = nz3
0

and n is cubefree. Furthermore, we also know that x0 6= y0 and x0, y0 6= 0, since n ≥ 3 is cubefree. Thus
x0, y0, z0 6= 0 and x0 6= ±y0. By Theorem 1.6 we have coprime integers x1, y1, z1 such that:

2P = (x1 : y1 : z1) = (−y0(2x3
0 + y3

0) : x0(x3
0 + 2y3

0) : z0(x3
0 − y3

0)).

Then we have:

Ax1 = −y0(2x3
0 + y3

0), (1)

Ay1 = x0(x3
0 + 2y3

0), (2)

Az1 = z0(x3
0 − y3

0), (3)

with A := gcd(−y0(2x3
0 + y3

0), x0(x3
0 + 2y3

0), z0(x3
0 − y3

0)). Since x3
1 + y3

1 = nz3
1 , x1, y1, z1 are even pairwise

coprime.
Let p ∈ Z>1 be a prime divisor of A. If p|x0, then also p|y0 by equation (1), but x0 and y0 are coprime,

so this is not possible. So p - x0. Similarly p - y0 by equation (2). If p|z0, then we have p3|x3
0 + y3

0 thus
p|x3

0 + y3
0 . Since p - y0, we have p|2x3

0 + y3
0 by equation (1). So p|x3

0. However, we already showed that p - x0.
Thus p - z0. So p - x0y0z0.

Suppose that pn | A, but pn+1 - A. Then we have: pn|2x3
0 + y3

0 and pn|x3
0 − y3

0 by equations (1) and (3).
So pn|3x3

0. Since pn - x0, we have pn|3, so p = 3 and n = 0 or n = 1. Therefore A = 1 or A = 3.
To show that there are infinitely many solutions, we want to show that |z1| > |z0|. Then we can create

a sequence by duplication with infinitely distinct elements in E◦n(Q).
Since x0, y0 6= 0 and x0 6= ±y0:

|z1| =
|z0|
A
|x3

0 − y3
0 | =

|z0|
A
|x0 − y0||x2

0 + x0y0 + y2
0 | = |z0|

|x0 − y0|
4A

|(2x0 + y0)2 + 3y2
0 | > |z0|

|x0 − y0|
A

.

If A = 1, we have |z1| > |z0| since |x0 − y0| ≥ 1. If A = 3, we have 3|x3
0 − y3

0 so x3
0 ≡ y3

0 mod 3. This gives
us x0 ≡ y0 mod 3 by Fermat, so |x0 − y0| ≥ 3. Hence we have |z1| > |z0|.

Consider the sequence {Pi}∞i=0 = {2iP}∞i=0 ⊂ En(Q) with Pi = (xi : yi : zi) in pairwise coprime integers.
Then does not contain some point twice, since |zi| < |zj | for any i < j. Therefore, En(Q) contains infinitely
many elements and thus E◦n(Q) does too.

Corollary 3.2. En(Q) is torsion-free for n ≥ 3: for all P ∈ E◦n(Q) and all m ∈ Z≥0 we have mP 6= O.

Moreover, for P ∈ E◦n(Q) we have ĥ(P ) = 0 if and only if P = O.

Proof. Let P ∈ E◦n(Q) be given. Suppose that kP = O for some k ∈ Z≥2 but mP 6= O for all 1 ≤ m < k.
Let p be a prime dividing k such that k = p · a for some a ∈ Z. Let Q = aP , so pQ = O and Q 6= O. Then
we have mQ = (m mod p)Q for all m ∈ Z. Note that 2p ≡ 2 mod p by Fermat. Hence we have 2pQ = 2Q.
However the proof of Theorem 3.1 showed us that for any Q ∈ E◦n(Q) and any m ∈ Z we have 2mQ 6= 2Q.
So we have contradiction. Thus for all P ∈ E◦n(Q) and all k ∈ Z≥2 we have kP 6= O and therefore En(Q) is
torsion-free.
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Let P0 = (x0 : y0 : z0) ∈ E◦n(Q) with coprime integers x0, y0, z0. Suppose that ĥ(P0) = 0. Defining

Pk = (xk : yk : zk) := 2kP0 for k ∈ Z≥1 with coprime integers xk, yk, zk, we have ĥ(Pk) = 0 for all k ∈ Z≥1

by Theorem 2.16. By Remark 2.17, we know that h̄(Pk) ≤ log(4n) and hence log(|zk|∞) ≤ log(4n) for all
k ∈ Z≥1. From the proof of Theorem 3.1 we have a strictly increasing sequence 0 < |z0| < |z1| < |z2| < . . .

in integers. This contradicts the fact that log(|zk|∞) ≤ log(4n) for all k ∈ Z≥1. Thus ĥ(P0) 6= 0.

Remark 3.3. From the proof of Theorem 3.1 we know that for any integer solution (x : y : 1) ∈ En(Q)
with n ≥ 3 there is no point P ∈ En(Q) such that 2P = (x : y : 1).

Theorem 3.4. If E◦n(Q) has infinitely many elements, then E+
n (Q) has also infinitely many elements.

Proof. Assume that E+
n (Q) has only a finite number of elements. We consider for any field K ⊂ R over Q

the set Fn(K) := {(x, y) ∈ E◦n(K)|x < 0}. By the symmetry of E◦n(Q) in x = y, Fn(Q) has infinitely many
elements.

We define the duplication map on Fn(R) by ψn : Fn(R)→ E◦n(R) : P 7→ 2P . Note that ψn is continuous.

Let P = (x, y) ∈ Fn(R). Then we have ψn(P ) = 2P = (−y 2x3+y3

x3−y3 , x
x3+2y3

x3−y3 ) from Theorem 1.6. Note that

x + y > 0, so x3 + 2y3 > y3 > 0, thus x(x3 + 2y3) < 0. Moreover, x3 − y3 < 0, so xx
3+2y3

x3−y3 > 0. Therefore,

for all P = (x, y) ∈ Fn(R), we have ψn(P ) = (x′, y′) with y′ > 0.
Let P = (xP , yP ), Q = (xQ, yQ) ∈ Fn(R) be given with xQ ≤ xP < 0 and suppose that ψn(P ) = ψn(Q)

but P 6= Q. Consider the tangent lines TPE
◦
n : y = aPx+ bP and TQE

◦
n : y = aQx+ bQ. Note that Fn(R) is

convex, so aQ ≤ aP . On the other hand, we know that the tangent lines TPE
◦
n and TQE

◦
n intersect in a point

(x, y) ∈ E◦n(R). Note that x > 0 and y < yP ≤ yQ. Since Fn(R) is convex, we have aP ≤ aQ. Therefore
aP = aQ and hence P = Q. This gives us a contradiction. Thus ψn is injective.

By the convexity of Fn(R), we know that for any P = (xP , yP ), Q = (xQ, yQ) ∈ Fn(R) with xQ < xP we
have ψn(P ) = (x′P , y

′
P ) and ψn(Q) = (x′P , y

′
P ) with x′Q < x′P .

Consider S0 = (0, 3
√
n) ∈ E◦n(R) and S1 = (x1, y1) ∈ Fn(R) such that ψn(S1) = S0. Note that S1 is

well-defined since ψn is injective. Now we consider F 0
n(K) := {(x, y) ∈ E◦n(K)|x1 < x ≤ 0}.

We want to show that F 0
n(Q) cannot be the empty set. Therefore we construct the sequence {Si}∞i=0 ⊂

Fn(R) with Si = (xi, yi) such that for all i ∈ Z≥1 we have ψn(Si) = 2Si = Si−1. Hence xi > xj for i < j, so
the sequence is monotone and therefore {xi}∞i=0 converges in R ∪ {±∞}. Let S∞ be the convergence point.
Then we have 2S∞ = S∞. Thus S∞ = O.

Defining F in(K) := {(x, y) ∈ E◦n(K)|xi+1 < x ≤ xi}, we have Fn(K) =
⋃∞
i=0 F

i
n(K). Moreover we have

that for any P = (x, y) ∈ F in(K) with 2P = (x′, y′) that xi < x′ < xi−1. So we have ψn(F in(K)) ⊂ F i−1
n (K)

for all i ≥ 1. Suppose that F 0
n(Q) = ∅. Then we have F in(Q) = ∅ for all i ≥ 0. Hence Fn(Q) = ∅. However,

Fn(Q) contains infinitely many elements, so this gives contradiction. Thus F 0
n(Q) 6= ∅.

Suppose that F 0
n(Q) contains infinitely many elements. Note that ψn(F 0

n(Q)) ⊂ E+
n (Q). Thus E+

n (Q)
contains infinitely many elements, since ψn is injective. This is contradiction with our assumption.

Thus F 0
n(Q) contains only finitely many elements. Then there is a point T = (xT , yT ) ∈ F 0

n(Q) such
that for all (x, y) ∈ Fn(Q) we have x ≤ xT < 0. Since T ∈ F 0

n(Q), we have T ⊕ T = 2T ∈ E+
n (Q).

Consider the map φn : Fn(K)→ E◦n(K) : P 7→ P ⊕ T . Suppose that there are P 6= Q ∈ Fn(R) such that
φn(P ) = φn(Q). Then P ⊕T = Q⊕T , so P ◦T = Q◦T and thus P , Q, T and P ◦T are collinear. Therefore
P = Q. Thus φn is injective.

By the convexity of Fn(R), we know that for any P = (xP , yP ), Q = (xQ, yQ) ∈ Fn(R) with xQ < xP
we have the lines LPT : y = aPx + bP and LQT : y = aQx + bQ through respectively P and T and Q
and T with aQ < aP . Therefore, we have φn(P ) = (x′P , y

′
P ) and φn(Q) = (x′Q, y

′
Q) with x′Q < x′P and

y′Q > y′P . Thus for any P = (x, y) ∈ Fn(Q), we have φn(P ) = (x′, y′) with y′ > 0 and x′ > xT . So x′ > 0.

Hence φn(P ) ∈ E+
n (Q). Thus E+

n (Q) contains infinitely many elements. This is in contradiction with our
assumption. Thus E+

n (Q) contains infinitely many solutions.

Remark 3.5. In fact we can prove a much stronger statement if E◦n(Q) is not empty for some n ≥ 3. Then
En(Q) with the topology induced from P2(R) is dense in En(R) as a topological space. To prove this we
need some more advanced tools.
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First we note that En(R) is a 1-dimensional Lie group: a smooth real 1-dimensional manifold where the
map ⊕ : En(R)×En(R)→ En(R) and the inversion map En(R)→ En(R) : P 7→ −P are smooth. Moreover,
En(R) is also connected, abelian and compact, since P2(R) is compact. Then we can apply the following
theorem.

Theorem 3.6. A Lie group G which is compact, connected, abelian and of dimension 1 is isomorphic to S1.

This is a well-known classification theorem, but for more details one may be referred to chapter 5 from
[4]. Note that S1 is a compact, connected, abelian Lie group of dimension 1. In this theorem G and S1

are isomorphic as Lie groups. That holds that there is a diffeomorphism φ : G → S1: a smooth group
isomorphism such that φ−1 is smooth too.

So En(R) is isomorphic to the unit circle S1. By Theorem 3.1 we hence know that the subgroup En(Q) ⊂
En(R) is isomorphic to an infinite subgroup S ⊂ S1. Note that a subgroup of S1 is either the group µk of
k-th roots of unity or dense in S1. Since #µk < ∞, S is dense in S1. Therefore, En(Q) is also dense in
En(R).

3.2 Generators of En(Q)

Now we will look how En(Q) is generated. We can prove the following theorem:

Theorem 3.7 (Mordell-Weil Theorem). The group En(Q) is finitely generated.

We will prove this except for the Weak Mordell-Weil Theorem, which we will assume in the proof. In
this proof we will use both the group structure of ⊕ and the Néron-Tate Height ĥ defined in Theorem 2.16.

Theorem 3.8 (Weak Mordell-Weil Theorem). The quotient En(Q)/2En(Q) is a finite group.

The Weak Mordell-Weil Theorem will not be proved here, but the proof can be found in §VIII.1 (p. 208−
214) from [5]. Before we can prove the Mordell-Weil Theorem, we need to prove a lemma about the sets

H(c) =
{
P ∈ En(Q)

∣∣∣ĥ(P ) < c
}

for c ∈ R.

Lemma 3.9. For all c ∈ R, H(c) is finite.

Proof. Note that H(c) = ∅ for c < 0 and H(0) = {O}, because En(Q) is torsion-free by Corollary 3.2 and

ĥ is quadratic by Theorem 2.16.
By Remark 2.17 we know that for all c ∈ R we have

H(c) =
{
P ∈ En(Q)

∣∣∣ĥ(P ) < c
}
⊂
{
P ∈ En(Q)

∣∣h̄(P ) < c+ log(4n)
}
.

So H(c) is finite for all c ∈ R>0 if H ′(c) :=
{
P ∈ En(Q)

∣∣h̄(P ) < c
}

is finite for all c ∈ R>0.
Notice that h̄(O) = 0, so O ∈ H ′(c) for all c ∈ R>0. Recall from Definition 2.9 that for all P = (x, y) ∈

E◦n(Q) we have h̄(P ) := h(Ω(P ) : 1) = h(1 : x+ y). Consider for all u ∈ R the sets

lu := {(x, y) ∈ Q2|Ω(x, y) = x+ y = u} ⊂ {(x : y : z) ∈ P2(Q)|x+ y = uz} =: Lu.

Then we have:

O(u) := {P ∈ E◦n(Q)|Ω(P ) = u} = E◦n(Q) ∩ lu ⊂ En(Q) ∩ Lu.

Since En(Q) is a cubic and Lu is a line and Lu 6⊂ En(Q), because En(Q) is an irreducible cubic, this
intersection can contain at most 3 distinct elements. Therefore we have #O(u) < ∞ for all u ∈ Q. Note
that for u ∈ R \Q we have O(u) = ∅.

Now we need to show that {P ∈ P1(Q)|h(P ) < c} is finite for all c ∈ R>0. From Remark 2.3, we can write
any P ∈ P1(Q) as P = (x : y) with x, y coprime integers. Moreover, we have h(P ) = log(max(|x|∞, |y|∞)).
So if h(P ) < c, this gives us max(|x|∞, |y|∞) < ec and hence −ec < x, y < ec. Hence #{P ∈ P1(Q)|h(P ) <
c} ≤ (2ec + 1)2 <∞.

Therefore #H ′(c) <∞ for all c ∈ R>0. Thus H(c) is finite for all c ∈ R.
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Proof. (Theorem 3.8 implies Theorem 3.7) We define for all P ∈ En(Q) the euclidean norm |P | :=
√
ĥ(P )

and we have inner product 〈P,Q〉 := 1
2 (ĥ(P ⊕ Q) − ĥ(P ) − ĥ(Q)) since ĥ is a quadratic form by Theorem

2.16. Then the Cauchy-Schwarz Inequality |〈P,Q〉| ≤
√
〈P, P 〉〈Q,Q〉 gives us |ĥ(P ⊕Q) − ĥ(P ) − ĥ(Q)| ≤

2

√
ĥ(P )ĥ(Q). Hence we have |P ⊕Q| ≤ |P |+ |Q| for all P,Q ∈ En(Q). We also have |mP | = m|P | for all

P ∈ En(Q) and m ∈ Z≥1.
Since we assume the Weak Mordell-Weil Theorem 3.8, we have a finite set S ⊂ En(Q) of representations

of En(Q) modulo 2En(Q). Then we take C := maxP∈S ĥ(P ) and consider H(C).
Let P0 ∈ En(Q) be such that P0 6∈ H(C). Then we can write P0 = Q1 ⊕ 2P1 for some Q0 ∈ S and

P1 ∈ En(Q) \ S. Iterating this process gives a sequence {Pk} and Qk ∈ S with Pk = Qk+1 ⊕ 2Pk+1. Notice
that for any k ∈ Z≥1 we have:

|Pk| =
|Pk−1 −Qk|

2
≤ |Pk−1|+ |Qk|

2
≤ |Pk−1|+

√
C

2
< |Pk−1|.

Furthermore, Pk ∈ H(ĥ(P )). Since H(ĥ(P )) is finite by Lemma 3.9, there is some m ∈ Z≥1 such that
Pm ∈ H(C). Therefore we have P0 =

⊕m
k=1Qk ⊕ 2mPm. Hence H(C) generates En(Q). Thus En(Q) is

finitely generated since H(C) is finite by Lemma 3.9.

3.3 Applying the theory to the problem

Now we apply the acquired knowledge to the original problem. From the Mordell-Weil Theorem 3.7 we know
that En(Q) is finitely generated. So if we are looking for the solution (x, y) ∈ E◦n(Q) with the smallest height

ĥ, this has to be a generator because ĥ is quadratic by Theorem 2.16. However we also require that this
solution has positive coordinates: i.e. (x, y) ∈ E+

n (Q). Then we look for a multiple of a generator in E+
n (Q).

Although this may seem easy, the number of generators is still unknown.
In Example 1, we have n = 17. By trial-and-error, we can find the point P = (18 : −1 : 7) ∈ E17(Q),

which is the element in E17(Q) with the smallest positive z-coordinate. Therefore it has to be a generator.
Then we have 2P = (11663 : 104940 : 40831) ∈ E+

17(Q). This gives us the same solution as Dudeney:

Q17 :=

(
11663

40831
,

104940

40831

)
.

In Example 2 we have n = 9 and the initial solutions (2, 1) and (1, 2) or in homogeneous coordinates
(2 : 1 : 1) and (1 : 2 : 1). Therefore, one of them has to be a generator of E9(Q) by Remark 3.3. To find
another solution in E+

n (Q), we list the multiples of P = (2 : 1 : 1).

P = (2 : 1 : 1) 4P = (−36520 : 188479 : 90391)
2P = (−17 : 20 : 7) 5P = (169748279 : −152542262 : 53023559)
3P = (919 : −271 : 438) 6P = (415280564497 : 676702467503 : 348671682660)

This gives us the same solution as Dudeney:

Q9 :=

(
415280564497

348671682660
,

676702467503

348671682660

)
.

Notice that we can verify that some solution Qn ∈ E+
n (Q) has the smallest Néron-Tate Height (except

for some initial solutions) by checking that

{P ∈ E+
n (Q)|ĥ(P ) < ĥ(Qn)} ⊂ {P ∈ E+

n (Q)|h̄(P ) < h̄(Qn) + 2 log(4n)}

are empty or contained in the set of initial solutions.
In fact, n = 9 and n = 17 are both cases where En(Q) is generated by one element. However, there are

also a lot of cases where En(Q) is the trivial group {O}, for example n = 3, n = 4 and n = 5. The cases
where En(Q) is generated by two or more elements are rarer. For example E19(Q) has generators (3 : −2 : 1)
and (5 : 3 : 2).
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