

EXERCISE SHEET #8

Exercises marked with a are to be handed in before Monday November 18 at noon, in the mailbox at Spiegelgasse 1. Each of these is worth a number of points, as indicated. Questions marked with a ★ are more difficult.

Exercise 1 – Let A be a Dedekind ring with field of fractions K. We assume that K has characteristic 0. Let L/K be a finite Galois extension with Galois group G, and B be the integral closure of A in L.

Let \mathfrak{p} be a maximal ideal in A, and \mathfrak{q} be a maximal ideal of B such that $\mathfrak{q} \cap A = \mathfrak{p}$ (i.e., \mathfrak{q} appears in the factorisation of $\mathfrak{p}B$ as a product of prime ideals in B). We say that \mathfrak{q} lies above \mathfrak{p} .

We assume that A/\mathfrak{p} is finite or of characteristic p.

- **1.1.** Prove that $\ell := B/\mathfrak{q}$ is a finite Galois extension of $k := A/\mathfrak{p}$. What is the degree of that extension?
- **1.2.** Let $D_{\mathfrak{q}}$ be the subgroup of G formed by elements $\sigma \in G$ such that $\sigma(\mathfrak{q}) = \mathfrak{q}$. Show that the reduction map $A \to A/\mathfrak{p}$ induces a surjective group morphism $\rho_{\mathfrak{q}} : D_{\mathfrak{q}} \to \operatorname{Gal}(\ell/k)$.
- **1.3.** Let $I_{\mathfrak{q}}$ denote the kernel of $\rho_{\mathfrak{q}}$. Prove that, for all $\sigma \in G$, we have $D_{\sigma(\mathfrak{q})} = \sigma D_{\mathfrak{q}} \sigma^{-1}$ where $\sigma D_{\mathfrak{q}} \sigma^{-1} = \{\sigma \tau \sigma^{-1}, \tau \in D_{\mathfrak{q}}\}$, and $I_{\sigma(\mathfrak{q})} = \sigma I_{\mathfrak{q}} \sigma^{-1}$.
- **1.4.** Show that $D_{\mathfrak{q}}/I_{\mathfrak{q}} \simeq \operatorname{Gal}(\ell/k)$ and deduce that $\#I_{\mathfrak{q}}$ is equal to the multiplicity $e(\mathfrak{q}/\mathfrak{p})$ with which \mathfrak{q} appears in $\mathfrak{p}B$ (i.e., the ramification index of \mathfrak{p} in L).
- 1.5. Assume that G is abelian. Prove that $D_{\mathfrak{q}} = D_{\mathfrak{q}'}$ for all maximal ideals $\mathfrak{q}, \mathfrak{q}'$ of B lying over \mathfrak{p} .

Exercise 2 – For this exercise, we work in the setting of Section VII.3 of the lecture notes:

Here \mathfrak{p} is a maximal ideal of \mathcal{O}_{K} and \mathfrak{q} is a prime ideal appearing in the factorisation of $\mathfrak{p}\mathcal{O}_{L}$. We assume that \mathfrak{p} does not ramify in L. Recall that there is a Frobenius automorphism $(\mathfrak{q}, L/K) \in \operatorname{Gal}(L/K)$.

Let F/K be a subextension of L/K. Let \mathfrak{p}' be the maximal ideal $\mathfrak{q} \cap \mathcal{O}_F$ of \mathcal{O}_F .

2.1. Let d := [O_F/p' : O_K/p]. Prove that the two elements (q, L/F) and (q, L/K)^d of Gal(L/K) coincide.
2.2. If F/K is Galois, prove that the restriction (q, L/K)|_F coincides with (p', F/K) in Gal(F/K).

Exercise 3 (The quadratic reciprocity law) – Let q be an odd prime number. We let $L := \mathbb{Q}(\zeta_q)$ denote the q-th cyclotomic field. Recall that L/\mathbb{Q} is an abelian extension of degree $\varphi(q) = q - 1$, whose Galois group $\operatorname{Gal}(L/\mathbb{Q})$ is isomorphic to \mathbb{F}_q^{\times} .

- **3.1.** Prove that the only prime number which ramifies in L/\mathbb{Q} is q.
- **3.2.** Show that G has a unique subgroup H of index 2, and that H corresponds to the subgroup of squares in \mathbb{F}_q^{\times} in the isomorphism $\mathbf{G} \simeq \mathbb{F}_q^{\times}$.

3.3. Deduce that L has a unique subfield K with $[K : \mathbb{Q}] = 2$.

3.4. Prove that $K = \mathbb{Q}(\sqrt{q^*})$, where $q^* = (-1)^{(q-1)/2}q$. Hint: which primes can ramify in K/\mathbb{Q} ?

We identify $\operatorname{Gal}(K/\mathbb{Q})$ with $\{\pm 1\}$ via the unique group morphism $\theta : \operatorname{Gal}(K/\mathbb{Q}) \to \{\pm 1\}$.

Let p be an odd prime which is distinct from q. For any maximal ideal \mathfrak{p} of \mathcal{O}_{L} which appears in the decomposition of $p\mathcal{O}_{L}$ as a product of prime ideals of \mathcal{O}_{L} , we let $\sigma_{p} := (\mathfrak{p}, L/\mathbb{Q}) \in \operatorname{Gal}(L/\mathbb{Q})$ be the Frobenius automorphism associated to \mathfrak{p} .

3.5. Prove that σ_p is well-defined (i.e., that the definition of σ_p does not depend on the choice of \mathfrak{p}). Show that the restriction $\sigma_p|_{\mathrm{K}}$ is $(\mathfrak{p} \cap \mathcal{O}_{\mathrm{K}}, \mathrm{K}/\mathbb{Q}) \in \mathrm{Gal}(\mathrm{K}/\mathbb{Q})$.

Recall from Exercise 2 on Sheet #7 the definition of the Legendre symbol $\left(\frac{a}{p}\right) \in \{\pm 1, 0\}$.

3.6. Show that $\sigma_p|_{\mathbf{K}} = \mathrm{id}$ if and only if p is a square in \mathbb{F}_q^{\times} . Deduce that $\theta(\sigma_p|_{\mathbf{K}}) = \left(\frac{p}{q}\right)$.

For any maximal ideal π of \mathcal{O}_{K} appearing in the decomposition of $p\mathcal{O}_{K}$, we let $\tau_{p} \in Gal(K/\mathbb{Q})$ denote the Frobenius automorphism $(\pi, K/\mathbb{Q}) \in Gal(K/\mathbb{Q})$. One easily checks, as in **3.5**, that this definition is independent of π .

3.7. Prove that $\theta(\tau_p) = 1$ if and only if p splits in K, and that $\theta(\tau_p) = -1$ if and only if p is inert.

- **3.8.** Deduce from Exercise 2 on Sheet #7 that $\theta(\tau_p) = \left(\frac{q^*}{p}\right)$.
- **3.9.** Recall why $\left(\frac{-1}{p}\right) = (-1)^{(p-1)/2}$.
- **3.10.** Conclude the proof of the quadratic reciprocity law: For all odd prime numbers $p \neq q$, we have

$$\left(\frac{p}{q}\right) \cdot \left(\frac{q}{p}\right) = (-1)^{(p-1)(q-1)/4}.$$

Exercise 4 (A Fermat–Pell equation) $\{ \mathscr{O} : 9 \text{ points} \}$ – The goal of this exercise is to find the smallest solution in positive integers $(x, y) \in \mathbb{N}^2$ of the Diophantine equation

$$x^2 - 509 \cdot y^2 = 1.$$

We work in the quadratic number field $K = \mathbb{Q}(\sqrt{509})$, and we let $\alpha := (1 + \sqrt{509})/2$. You may want to use a computer to help with some of the calculations.

- **4.1.** Compute the discriminant $\Delta_{\rm K}$ and the Minkowski bound $M_{\rm K} = (4/\pi)^{r_2} \cdot n!/n^n \cdot |\Delta_{\rm K}|^{1/2}$ for K.
- **4.2.** Describe the splitting of the primes 2, 3, 5, 7, 11 in K. Deduce a set of generators for $Cl(\mathcal{O}_K)$. *Hint: you should obtain 4 generators.*
- **4.3.** Factor the ideals (2α) , (3α) , $(8 + \alpha)$ and $(11 + \alpha)$ as products of prime ideals. Deduce from these factorisations some relations between the generators of $Cl(\mathcal{O}_K)$.
- **4.4.** Conclude that $Cl(\mathcal{O}_K)$ is trivial.
- **4.5.** Consider the element $\eta = -5^{-3}(2-\alpha)(11+\alpha)^3 \in K$. With as little computation as possible, prove that η is a unit in \mathcal{O}_K .
- **4.6.** Compute η and $N_{K/\mathbb{Q}}(\eta)$.
- **4.7.** Let $\epsilon_0 = a + b\alpha > 1$ denote the fundamental unit of \mathcal{O}_K , with $a, b \in \mathbb{Z}_{\geq 0}$. Prove that $a \geq 1$ and that $b \geq 4$ (by proving that b = 0, 1, 2, 3 would not give rise to a unit $\neq \pm 1$). Deduce that $\epsilon_0 > 4\alpha$.
- **4.8.** Check that η^6 is the smallest power of η which lies in $\mathbb{Z}[\sqrt{509}]$ and has norm 1.
- **4.9.** Prove that $\eta = \epsilon_0$. *Hint: estimate* $\log \eta / \log \epsilon_0$.
- **4.10.** Deduce from the above the smallest pair of integers $(x, y) \in \mathbb{N}^2$ such that $x^2 509y^2 = 1$.