
Analytic Algebraic Number Theory
November 11, 2019

Exercise sheet #8

Exercises marked with a Ò are to be handed in before Monday November 18 at noon, in the
mailbox at Spiegelgasse 1. Each of these is worth a number of points, as indicated.

Questions marked with a ? are more difficult.

Exercise 1 – Let A be a Dedekind ring with field of fractions K. We assume that K has characteristic 0.
Let L/K be a finite Galois extension with Galois group G, and B be the integral closure of A in L.

Let p be a maximal ideal in A, and q be a maximal ideal of B such that q ∩ A = p (i.e., q appears
in the factorisation of pB as a product of prime ideals in B). We say that q lies above p.

We assume that A/p is finite or of characteristic p.

1.1. Prove that ` := B/q is a finite Galois extension of k := A/p. What is the degree of that extension?

1.2. Let Dq be the subgroup of G formed by elements σ ∈ G such that σ(q) = q. Show that the
reduction map A→ A/p induces a surjective group morphism ρq : Dq → Gal(`/k).

1.3. Let Iq denote the kernel of ρq. Prove that, for all σ ∈ G, we have Dσ(q) = σDqσ
−1 where

σDqσ
−1 =

{
στσ−1, τ ∈ Dq

}
, and Iσ(q) = σIqσ−1.

1.4. Show that Dq/Iq ' Gal(`/k) and deduce that #Iq is equal to the multiplicity e(q/p) with which q
appears in pB (i.e., the ramification index of p in L).

1.5. Assume that G is abelian. Prove that Dq = Dq′ for all maximal ideals q, q′ of B lying over p.

Exercise 2 – For this exercise, we work in the setting of Section VII.3 of the lecture notes:

q ⊂ OL L

p := q ∩ OK ⊂ OK K.

integral
closure

Gal(L/K)=G

Here p is a maximal ideal of OK and q is a prime ideal appearing in the factorisation of pOL. We assume
that p does not ramify in L. Recall that there is a Frobenius automorphism (q,L/K) ∈ Gal(L/K).

Let F/K be a subextension of L/K. Let p′ be the maximal ideal q ∩ OF of OF.

2.1. Let d := [OF/p
′ : OK/p]. Prove that the two elements (q,L/F) and (q,L/K)d of Gal(L/K) coincide.

2.2. If F/K is Galois, prove that the restriction (q,L/K) |F coincides with (p′,F/K) in Gal(F/K).

Exercise 3 (The quadratic reciprocity law) – Let q be an odd prime number. We let L := Q(ζq)
denote the q-th cyclotomic field. Recall that L/Q is an abelian extension of degree ϕ(q) = q− 1, whose
Galois group Gal(L/Q) is isomorphic to F×q .

3.1. Prove that the only prime number which ramifies in L/Q is q.

3.2. Show that G has a unique subgroup H of index 2, and that H corresponds to the subgroup of
squares in F×q in the isomorphism G ' F×q .
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3.3. Deduce that L has a unique subfield K with [K : Q] = 2.

3.4. Prove that K = Q(
√
q∗), where q∗ = (−1)(q−1)/2q. Hint: which primes can ramify in K/Q?

We identify Gal(K/Q) with {±1} via the unique group morphism θ : Gal(K/Q)→ {±1}.
Let p be an odd prime which is distinct from q. For any maximal ideal p of OL which appears in

the decomposition of pOL as a product of prime ideals of OL, we let σp := (p,L/Q) ∈ Gal(L/Q) be the
Frobenius automorphism associated to p.

3.5. Prove that σp is well-defined (i.e., that the definition of σp does not depend on the choice of p).
Show that the restriction σp |K is (p ∩ OK,K/Q) ∈ Gal(K/Q).

Recall from Exercise 2 on Sheet #7 the definition of the Legendre symbol
(
a
p

)
∈ {±1, 0}.

3.6. Show that σp |K= id if and only if p is a square in F×q . Deduce that θ(σp |K) =
(
p
q

)
.

For any maximal ideal π of OK appearing in the decomposition of pOK, we let τp ∈ Gal(K/Q) denote
the Frobenius automorphism (π,K/Q) ∈ Gal(K/Q). One easily checks, as in 3.5, that this definition is
independent of π.

3.7. Prove that θ(τp) = 1 if and only if p splits in K, and that θ(τp) = −1 if and only if p is inert.

3.8. Deduce from Exercise 2 on Sheet #7 that θ(τp) =
(
q∗

p

)
.

3.9. Recall why
(
−1
p

)
= (−1)(p−1)/2.

3.10. Conclude the proof of the quadratic reciprocity law: For all odd prime numbers p 6= q, we have(
p

q

)
·
(
q

p

)
= (−1)(p−1)(q−1)/4.

Exercise 4 (A Fermat–Pell equation) {Ò : 9 points} – The goal of this exercise is to find the
smallest solution in positive integers (x, y) ∈ N2 of the Diophantine equation

x2 − 509 · y2 = 1.

We work in the quadratic number field K = Q(
√

509), and we let α := (1 +
√

509)/2. You may want to
use a computer to help with some of the calculations.

4.1. Compute the discriminant ∆K and the Minkowski bound MK = (4/π)r2 · n!/nn · |∆K|1/2 for K.

4.2. Describe the splitting of the primes 2, 3, 5, 7, 11 in K. Deduce a set of generators for Cl(OK). Hint:
you should obtain 4 generators.

4.3. Factor the ideals (2− α), (3− α), (8 + α) and (11 + α) as products of prime ideals. Deduce from
these factorisations some relations between the generators of Cl(OK).

4.4. Conclude that Cl(OK) is trivial.

4.5. Consider the element η = −5−3(2−α)(11 +α)3 ∈ K. With as little computation as possible, prove
that η is a unit in OK.

4.6. Compute η and NK/Q(η).

4.7. Let ε0 = a + bα > 1 denote the fundamental unit of OK, with a, b ∈ Z>0. Prove that a > 1 and
that b > 4 (by proving that b = 0, 1, 2, 3 would not give rise to a unit 6= ±1). Deduce that ε0 > 4α.

4.8. Check that η6 is the smallest power of η which lies in Z[
√

509] and has norm 1.

4.9. Prove that η = ε0. Hint: estimate log η/ log ε0.

4.10. Deduce from the above the smallest pair of integers (x, y) ∈ N2 such that x2 − 509y2 = 1.
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