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EXERCISE SHEET #-38

Exercises marked with a #* are to be handed in before Monday November 18 at noon, in the
mailbox at Spiegelgasse 1. Each of these is worth a number of points, as indicated.
Questions marked with a x are more difficult.

Exercise 1 — Let A be a Dedekind ring with field of fractions K. We assume that K has characteristic 0.
Let L/K be a finite Galois extension with Galois group G, and B be the integral closure of A in L.

Let p be a maximal ideal in A, and q be a maximal ideal of B such that ¢ N A = p (i.e., q appears
in the factorisation of pB as a product of prime ideals in B). We say that q lies above p.

We assume that A/p is finite or of characteristic p.

1.1. Prove that ¢ := B/q is a finite Galois extension of k := A/p. What is the degree of that extension?

1.2. Let Dy be the subgroup of G formed by elements 0 € G such that o(q) = gq. Show that the
reduction map A — A/p induces a surjective group morphism pq : Dy — Gal(¢/k).

1.3. Let I; denote the kernel of p;. Prove that, for all ¢ € G, we have D, = qua_l where

O’quil = {UTU’l, 7 € Dg}, and Liq) = anJ’l.

1.4. Show that Dg/I; ~ Gal(¢/k) and deduce that #I; is equal to the multiplicity e(q/p) with which g
appears in pB (i.e., the ramification index of p in L).

1.5. Assume that G is abelian. Prove that Dy = Dy for all maximal ideals ¢, ¢’ of B lying over p.

Exercise 2 — For this exercise, we work in the setting of Section VII.3 of the lecture notes:

q - oL L
integral Gal(L/K)=G
closure
p:=qnN 0Ok C Ogx ——— K.

Here p is a maximal ideal of Ok and q is a prime ideal appearing in the factorisation of pOr,. We assume
that p does not ramify in L. Recall that there is a Frobenius automorphism (q,L/K) € Gal(L/K).
Let F/K be a subextension of L/K. Let p’ be the maximal ideal g N Op of OF.

2.1. Let d:= [Op/p’ : Ox/p]. Prove that the two elements (q, L/F) and (q, L/K)? of Gal(L/K) coincide.

2.2. If F/K is Galois, prove that the restriction (q,L/K)|r coincides with (p’, F/K) in Gal(F/K).

Exercise 3 (The quadratic reciprocity law) - Let ¢ be an odd prime number. We let L := Q(¢,)
denote the g-th cyclotomic field. Recall that L/Q is an abelian extension of degree ¢(q) = ¢ — 1, whose
Galois group Gal(L/Q) is isomorphic to Fy.

3.1. Prove that the only prime number which ramifies in L/Q is q.

3.2. Show that G has a unique subgroup H of index 2, and that H corresponds to the subgroup of
squares in F in the isomorphism G ~ F.
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3.3. Deduce that L has a unique subfield K with [K: Q] = 2.
3.4. Prove that K = Q(y/¢¥), where ¢* = (—1)(¢=1/2¢. Hint: which primes can ramify in K/Q?

We identify Gal(K/Q) with {£+1} via the unique group morphism 6 : Gal(K/Q) — {£1}.

Let p be an odd prime which is distinct from ¢. For any maximal ideal p of O, which appears in
the decomposition of pOy, as a product of prime ideals of O, we let o, := (p,L/Q) € Gal(L/Q) be the
Frobenius automorphism associated to p.

3.5. Prove that o, is well-defined (i.e., that the definition of o, does not depend on the choice of p).
Show that the restriction o, |k is (p N Ok, K/Q) € Gal(K/Q).

Recall from Exercise 2 on Sheet #7 the definition of the Legendre symbol (%) € {£1,0}.

3.6. Show that o) |x= id if and only if p is a square in F;. Deduce that 0(o,|x) = (§>'

For any maximal ideal m of Ok appearing in the decomposition of pOk, we let 7, € Gal(K/Q) denote
the Frobenius automorphism (7, K/Q) € Gal(K/Q). One easily checks, as in 3.5, that this definition is
independent of 7.

3.7. Prove that 6(7,) = 1 if and only if p splits in K, and that 6(7,) = —1 if and only if p is inert.

3.8. Deduce from Exercise 2 on Sheet #7 that 6(7,) = (%).

3.9. Recall why (1) = (~1)¢-1/2.

3.10. Conclude the proof of the quadratic reciprocity law: For all odd prime numbers p # q, we have

(S) . (2) _ (—1)-Da-D/4

Exercise 4 (A Fermat—Pell equation) {¢* : 9 points}— The goal of this exercise is to find the
smallest solution in positive integers (z,y) € N? of the Diophantine equation

z? =509 -y = 1.

We work in the quadratic number field K = Q(v/509), and we let a := (1 + v/509)/2. You may want to
use a computer to help with some of the calculations.

4.1. Compute the discriminant Ak and the Minkowski bound My = (4/7)"2 - n!/n™ - |Ak|Y/? for K.

4.2. Describe the splitting of the primes 2,3,5,7,11 in K. Deduce a set of generators for C1(Oxk). Hint:
you should obtain 4 generators.

4.3. Factor the ideals (2 — a), (3 — ), (8 + @) and (11 + «) as products of prime ideals. Deduce from
these factorisations some relations between the generators of Cl(Ok).

4.4. Conclude that Cl(Ok) is trivial.

4.5. Consider the element n = —573(2—a)(11 +«)? € K. With as little computation as possible, prove
that n is a unit in Ok.

4.6. Compute n and N /g(n).

4.7. Let ¢¢ = a 4+ ba > 1 denote the fundamental unit of Ok, with a,b € Z>¢. Prove that a > 1 and
that b > 4 (by proving that b = 0, 1,2, 3 would not give rise to a unit # £1). Deduce that ¢y > 4a.

4.8. Check that 7° is the smallest power of i which lies in Z[v/509] and has norm 1.
4.9. Prove that n = ¢y. Hint: estimate logn/logeg.

4.10. Deduce from the above the smallest pair of integers (x,%) € N? such that 22 — 509y2 = 1.
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