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Abstract

Let p be a prime, let r and q be powers of p, and let a and b be relatively prime integers
not divisible by p. Let C/Fr(t) be the superelliptic curve with affine equation yb + xa = tq − t,
and let J be the Jacobian of C. By work of Pries–Ulmer [PU16], J satisfies the Birch and
Swinnerton-Dyer conjecture (BSD). Generalizing work of Griffon–Ulmer [GU20], we compute
the L-function of J in terms of certain Gauss sums. In addition, we estimate several arithmetic
invariants of J appearing in BSD, including the rank of the Mordell–Weil group J(Fr(t)), the
Faltings height of J , and the Tamagawa numbers of J in terms of the parameters a, b, q. For any
p and r, we show that for certain a and b depending only on p and r, these Jacobians provide
new examples of families of simple abelian varieties of fixed dimension and with unbounded
analytic and algebraic rank as q varies through powers of p. Under a different set of criteria on
a and b, we prove that the order of the Tate–Shafarevich group X(J) grows exponentially fast
in q as q → ∞.

1 Introduction

Let p be a prime number, let r be a power of p, let Fr denote the finite field with r elements, and
let K = Fr(t). Let J/K be a principally polarized abelian variety of dimension g.

The Birch and Swinnerton-Dyer conjecture (abbreviated as BSD in what follows) is a sweeping
statement that predicts a relationship between several important analytic and arithmetic quantities
associated to J . On the analytic side, the central object of study is the L-function L(J, T ), a
meromorphic function on the complex plane which encodes the action of Frobenius elements.

The order of vanishing ordT=r−1 L(J, T ) of L(J, T ) at the ‘central point’ and the leading coef-
ficient L∗(J) of L(J, T ) expanded as a power series at T = r−1 are of particular interest. On the
arithmetic side, J(K) is a finitely generated abelian group by the Mordell–Weil theorem. Its rank,
rank J(K) := dimQ J(K) ⊗ Q is conjectured to equal ordT=r−1 L(J, T ). Other terms include the
size of the torsion subgroup J(K)tors, the regulator Reg(J), the Tate–Shafarevich group X(J), the
local Tamagawa numbers cv(J), and the exponential Faltings height H(J). In this article, we study
the BSD invariants for a family of abelian varieties J/K, which we now describe.

Let q be a power of p and let a, b > 1 be coprime integers which are both coprime to p. Let C/K
be the unique (up to isomorphism) smooth projective curve containing the affine curve defined by

yb + xa = tq − t (1.1)

as a dense open subset. The curve C is a cyclic Galois cover of P1, i.e. a superelliptic curve. Let J
be the Jacobian of C. Since J satisfies BSD by [PU16, Corollary 3.1.4], it is particularly interesting
to study its L-function and BSD invariants.

Our main results include: an explicit formula for L(J, T ) in terms of Gauss sums, an analogue
of the Brauer–Siegel theorem relating the asymptotic growth of X(J),Reg(J), and H(J) for J ,
and a criterion on a and b depending only on r so that rank J(K) grows quasi-linearly in q. This
last result provides new explicit examples of families of simple abelian varieties of fixed dimension,
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but unbounded rank. Under different criteria on a and b, we prove that rank J(K) = 0 and (via our
Brauer–Siegel analogue for J) that the order of the Tate–Shafarevich group X(J) is unbounded as
q → ∞. In fact, by computing the Faltings height H(J), we are able to provide explicit asymptotics
for X(J) · Reg(J) more generally.

We also study a number of other arithmetic and geometric properties of J . For instance, we
show that J is simple if and only if a and b are both primes. We also compute the minimal proper
regular simple normal crossings model of J (using the method described in [Dok20]) and apply it
to show that at any place v of bad reduction, J has unipotent reduction, to determine that the
Tamagawa numbers cv of J are all equal to 1, to compute the conductor N(J), and to give an
explicit formula for the the Faltings height of J .

In the interest of giving a self-contained treatment, in Section 4.5, we also include a proof of the
Birch and Swinnerton-Dyer conjecture for J using work of Shioda [Shi86]. In that article, Shioda
introduces a powerful way of producing abelian varieties that satisfy the Birch and Swinnerton-
Dyer conjecture; he proves that if C is a curve over a function field Fq(t) whose associated surface
over Fq is dominated by a product of curves, then Jac(C) satisfies BSD. Using this method, we
conclude:

Theorem 1.1. The Jacobian J of C satisfies the Birch and Swinnerton-Dyer conjecture. That is:

• The algebraic and analytic ranks of J coincide: ordT=r−1 L(J, T ) = rank J(K).

• The Tate–Shafarevich group X(J) is finite.

• The BSD formula holds:

L∗(J) =
|X(J)|Reg(J)

!
v cv(J)

H(J) r−g |J(K)tors|2
, (1.2)

where the cv(J) are the local Tamagawa numbers of J and Reg(J) is the regulator.

Theorem 1.1 follows from [PU16, Theorem 3.1.2]. In our setting, BSD opens up a powerful an-
alytic approach to computing rank J(K). The strategy is to determine the L-function sufficiently
explicitly so that one can compute/bound ordT=r−1 L(J, T ). In several cases, this strategy has
led to new families of abelian varieties of fixed dimension but with unbounded rank. In [Ulm02],
Ulmer used this strategy to produce the first non-isotrival families of elliptic curves over Fp(t)
satisfying BSD and with arbitrarily large analytic rank. (Isotrivial families of elliptic curves over
Fp(t) with unbounded rank had previously been constructed by more algebraic methods in [TS67].)
In [Ulm07], Ulmer proves an analogue of the previous results for abelian varieties of larger dimen-
sion; in particular, he proves that for every g > 0 and for every prime p, there is an absolutely
simple, non-isotrivial abelian variety of dimension g over Fp(t) satisfying BSD and of arbitrarily
large analytic rank. These two papers use Kummer towers of field extensions to produce the abelian
varieties. In [BHP+15], the authors prove similar results for another family of curves over function
fields. They develop new algebro-geometric techniques involving explicit subgroups of divisors on
the Jacobian over towers of function fields, thereby expanding the tools used to study curves of
arbitrary genus over function fields.

Following [GU20], we compute the L-function using two different techniques: once using the
arithmetic of Gauss sums (Section 4) and a second time via a cohomological computation (Sec-
tion 5). In [GU20], the authors were able to apply results of Shioda [Shi92] to compute the
L-functions of their family of elliptic curves. Since Shioda’s results depend upon the classifica-
tion of reduction types of elliptic curves, they do not apply directly to higher genus curves, such
as our family of superelliptic curves. Fortunately, we have a detailed description of the minimal
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proper regular SNC model (Section 2), which we use to extend Shioda’s argument to compute the
L-function of our family.

Other work has studied ranks of Jacobians of curves when the field varies in Artin–Schreier
towers, which corresponds to varying q in our setup. Given rational functions f, g ∈ Fr(t), [PU16]
includes a study of curves with affine model f(x) − g(y) = tq − t. Under genericity conditions
on f and g, including critical points having multiplicity 1 and restrictions on the order of poles,
they prove that the rank of the Jacobian is unbounded as q varies through powers of p. The
case f(x) = x2 satisfies their genericity assumptions, so their work applies to generic hyperelliptic
curves. However, the critical points of f(x) = xa are not generic when a > 2, so their work does
not apply to most superelliptic curves. In fact, [PU16] shows that many families of superelliptic
curves over Fr(t) have Jacobians with bounded rank as q varies. More recently, [GU20] studied the
family of elliptic (and superelliptic) curves with affine model y2 = x3 + tq − t. In this case, they
show that, as q varies, either the the rank is always 0 or the rank is unbounded, depending only on
the congruence class of p modulo 6.

In this article, we generalize the work of [GU20], showing that the rank of J is sometimes 0
and sometimes unbounded as q varies, depending on r, a and b. To state our results, we define
op(n) to be the order of p in Z/nZ and recall that an integer n is said to be supersingular for p if
some power of p is congruent to −1 modulo n. Note that if n is supersingular for p, then op(n) is
automatically even.

In Section 6.4, we prove:

Theorem 1.2. Suppose that the pair (a, b) satisfies one of the following:

(1) aop(a) and bop(b) are relatively prime;

(2) aop(a) is odd, and b is supersingular for p; or

(3) a is supersingular for p, and bop(b) is odd.

Then, for any power q of p, we have ordT=r−1 L(J, T ) = rank J(K) = 0.

For any prime p, the hypotheses of Theorem 1.2 are satisfied for infinitely many pairs of primes
a, b, as we show in Lemma 6.14. In Section 6.5, we prove:

Theorem 1.3. Let p ∕= 2 be an odd prime. Let a and b be relatively prime positive integers which
are both supersingular for p. Let νa, νb ≥ 1 be the least positive integers such that pνa ≡ −1 (mod a)
and pνb ≡ −1 (mod b). Suppose also that [Fr : Fp] is a multiple of both 4νa and 4νb.

Then, we have

(a− 1)(b− 1)

"
1

logp(q)

#
q − 1

ab
−

p
√
q − 1

p− 1

$%
≤ rank J(K) .

For any p, there are infinitely many pairs of primes a, b satisfying the hypotheses of Theo-
rem 1.3. Fixing such a pair, as q varies among powers of p, Theorem 1.3 gives a family of Jacobians
of fixed dimension satisfying BSD with unbounded rank. When a and b are both prime, Theo-
rem 1.3 actually gives a family of simple abelian varieties with these properties, which we prove in
Section 2.6:

Theorem 1.4. The Jacobian of yb + xa = tq − t is simple over Fr(t) if and only if both a and b
are prime.
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Our other major results focus on understanding the BSD invariants and other properties of C
and J via their geometry. Most notably, we show that many of these Jacobians are simple abelian
varieties with Tate–Shafarevich group unbounded as q varies. Recall that H(J) is the exponential
Faltings height of J . In Section 8, we prove that for infinitely many a, b, the size of X(J) is
asymptotic to H(J).

Theorem 1.5. Fix parameters a, b, and r which satisfy the hypotheses of Theorem 1.2. Then, as
q runs through powers of p, we have

|X(J)| = H(J)1+o(1).

Moreover, in Lemma 2.7 we show that there is a positive constant D depending only on a and
b and a positive constant E depending only on a, b, and the residue class of q mod ab such that
H(J) = rDq+E . In particular, the order of X(J) grows exponentially in q as q varies.

Theorem 1.5 generalizes [GdW21, Theorem C], which exhibits a sequence of elliptic curves over
Fq(t) with arbitrarily large Tate–Shafarevich group, to simple abelian varieties of dimension greater
than 1.

We remark briefly that in contrast to our results in the function field setting, much less is known
over number fields, and especially over Q. Work of Clark and Sharif [CS10] (in the elliptic curve
case) and of Creutz [Cre11] (in the higher-dimensional case, building on previous work of Clark)
shows that all principally polarized abelian varieties satisfying a certain technical hypothesis have
arbitrarily large X after a suitable extension of the base field. If one restricts the ground field to
Q, work of Cassels in the 1960s [Cas64] showed that when A/Q is an elliptic curve, X(A/Q) can
be arbitrarily large. Recent work of Flynn [Fly19] extends this to abelian surfaces, but it is not
known whether X(A/Q) can be arbitrarily large when A is a simple abelian variety of dimension
greater than 2.

In contrast, in the function field setting, our results give examples of simple, principally polarized
abelian varieties A of arbitrarily large dimension over Fp(t) and with X(A/Fp(t)) arbitrarily large.

The proof of Theorem 1.5 contains several statements which are of interest in their own right.
For instance, in Section 7, we describe the asymptotics of the special value of the L-function as
q → ∞ via analytic methods, generalizing results from [GU20] in the elliptic curve case. We prove:

Theorem 1.6. For fixed a, b, and r, as q → ∞ runs through powers of p,

logL∗(J)

logH(J)
= o(1).

In particular, note that this theorem does not require special assumptions on a and b.
On the algebraic side, we are able to compute many BSD invariants of J by studying the

geometry of C. To begin, we use recent machinery from [Dok20] to compute the minimal regular
proper simple normal crossings model of our curves at any place of bad reduction. In our case,
the special fibers of these models have a very simple structure — all irreducible components have
genus 0 and the dual graph is a tree. From this information, we are able to conclude that J has
unipotent reduction at all bad places, to show that the local Tamagawa numbers cv(J) of J are all
equal to 1, and to compute the conductor divisor of J . We also leverage the recipe from [Dok20]
to compute a formula for the Faltings height H(J) in Lemma 2.7.

Combining these computations with Theorem 1.6, we deduce an analogue of the Brauer–Siegel
theorem for the family of Jacobians (Ja,b,q)q. (See [HP16] for a nice explanation of the connection
with the Brauer–Siegel theorem.) In Section 7.3 we prove:
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Corollary 1.7. For fixed a, b, and r, as q → ∞ runs through powers of p,

log
&
|X(J)|Reg(J)

'
∼ logH(J).

Theorem 1.5 follows from the above since Reg(J) = 1 when rank J(K) = 0.
Several sequences of elliptic curves A/K are known to satisfy a similar asymptotic description

of |X(A)|Reg(A) in terms of the height H(A) as in Corollary 1.7. (For instance, see [HP16, Gri16,
Gri18, Gri19, GU20].) However, such asymptotic results for sequences of simple abelian varieties
of higher dimension are much rarer: the only previous examples we are aware of appear in [Ulm19,
§10.4, §11.4]. Corollary 1.7 thus provides some more evidence towards the conjecture in [HP16] to
the effect that the ratio log

&
|X(A)|Reg(A)

'(
logH(A) should have a limit as H(A) → ∞.

1.1 Roadmap to this article.

The paper is organized as follows. In Section 2, we study the geometry of C and use [Dok20] to
compute the minimal regular proper simple normal crossings model of our curves. This model is
used to compute the reduction types, Tamagawa numbers, and Faltings height of these curves.
We also prove Theorem 1.4 on the simplicity of J in Section 2. In Section 3, we recall classical
results on Gauss sums which will be used in the computation of the L-function. In Section 4, we
give an explicit computation for the L-function of the Jacobian in terms of the valuations of some
associated Gauss sums. In Section 5, we provide a second computation of the L-function of the
Jacobian, this time using the geometry of the minimal proper regular SNC model S of C, confirming
our computation in the previous section. In Section 6, we use p-adic valuations of Gauss sums to
prove estimates on rank J(K) in Theorems 1.2 and 1.3. In Section 7 we prove our asymptotic
formula for L∗(J) in Theorem 1.6 and our analogue of Brauer–Siegel in Corollary 1.7. Finally, in
Section 8, we prove Theorem 1.5 giving infinitely many families of simple abelian varieties with
unbounded X(J) as q varies.
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2 Geometry of C and its Jacobian

Fix a prime p, and let r be a power of p. Let Fr be the finite field with r elements, and letK := Fr(t)
denote the function field of the projective line P1

Fr
. When the field of definition is understood, we

write P1 for P1
Fr
. For any power q of p, and any pair of relatively prime integers a, b > 1 which are

both coprime to p, consider the superelliptic curve Ca,b,q over K given by the affine model

Ca,b,q : yb + xa = tq − t.

In other words, Ca,b,q is the unique (up to a birational morphism) smooth projective curve over
K which contains the affine curve yb + xa = tq − t as a dense open subset. Let Ja,b,q denote the
Jacobian variety of Ca,b,q, which is an abelian variety over K.

Throughout the paper, the curve Ca,b,q is denoted by C, and its Jacobian Ja,b,q by J . We
suppress the “/K” in the notation for invariants of C and J , since both of these objects will only
be studied over K.

Proposition 2.1. The genus of the curve C = Ca,b,q is g = (a− 1)(b− 1)/2.

Proof. The result follows from a direct computation using the Hurwitz genus formula and the
assumption that a and b are coprime.

We prove various geometric properties about C and J in this section. In particular, we use the
minimal proper regular SNC model of C to prove that J has unipotent reduction at each place of
bad reduction. For more specific information about the reduction type in the elliptic curve case,
see [GU20]. We also compute the height of J , and prove that it is K-simple for when both a and
b are prime.

2.1 The minimal proper regular SNC model of C

In this section, we give a brief description of the minimal proper regular simple normal crossings
model π : S → P1

Fr
of C/Fr(t) using the recipe provided in [Dok20]. This description allows us

to read off the reduction of the Jacobian of J at the places of bad reduction, which will in turn
be necessary for the computation of the L-function. It is also useful for computing the Tamagawa
numbers, exponential Faltings height, and conductor of J .

We will use notation from [Dok20] freely throughout this section. The results presented here
could alternately be recovered via a toric resolution of singularities.

We now recall the definition of a simple normal crossings model. We note that some authors
call this a strict normal crossings model instead. First, recall (e.g. from [Sta21, Section 0CBN,
Definition 41.21.1]) that a simple normal crossings divisor on a locally Noetherian scheme W is an
effective Cartier divisor D ⊂ W such that for every prime w ∈ D, the local ring OW,w is regular
and there exists a regular system of parameters x1, . . . , xd in the maximal ideal mw and 1 ≤ r ≤ d
such that D is cut out by the product x1 · · ·xr in OX,p. When W is a curve over a DVR or a
surface over a finite field, these conditions amount to saying that the irreducible components of
D are smooth and any singular points of D ‘look like’ the intersection of the coordinate axes in
A2. More generally, an effective Cartier divisor E on W is supported on a simple normal crossings
divisor if there is some simple normal crossing divisor D on W such that E ⊂ D set-theoretically.
In this situation, if D decomposes into irreducible components as

)
i∈I Di, then E =

*
i∈I aiDi for

some integers ai ≥ 0.

6

https://stacks.math.columbia.edu/tag/0CBN


Definition 2.2. Given a smooth proper curve W over the fraction field Kv of a discrete valuation
ring OKv , a simple normal crossings model of W is a scheme W over OKv such that the generic
fiber WKv is isomorphic to W and the special fiber Wkv , viewed as a Cartier divisor on W, is
supported on a simple normal crossing divisor.

More generally, given a smooth proper curve W/Fr(t), a simple normal crossings model of W
is a surface W/Fr equipped with a map π : W → P1

Fr
such that the fiber over the generic point of

P1
Fr

is isomorphic to W and the fiber Wv over any closed point of v ∈ P1
Fr

is supported on a simple
normal crossings divisor of W.

For v ∈ P1 a closed point, we study the fiber Sv of the minimal proper regular simple normal
crossings model π : S → P1

Fr
of C/Fr(t). Taking Kunram.

v to be the maximal unramified extension
of the completion of K at v, we will also describe the special fiber of the minimal proper regular
simple normal crossings model of the base change C⊗SpecK SpecKunram.

v . We call this special fiber
Sv. As we shall see, Sv

∼= Sv ⊗Spec kv Spec kv.
We abuse notation slightly by writing v ∈ Fq ∪{∞} to mean that v decomposes into degree one

points over the compositum FrFq. Equivalently, v ∈ Fq ∪ {∞} if every element of v(Fq) is fixed by
the Gal(Fq/Fq)-action on P1(Fq).

When v /∈ Fq ∪ {∞} ⊂ P1, the curve C has good reduction, so Sv/kv and Sv/kv are smooth
curves of genus g.

When v ∈ Fq ∪ {∞} ⊂ P1, the curve C has bad reduction at v. Set Q = 1 if v ∈ Fq and Q = −q
if v = ∞. In the notation of [Dok20], the Newton polytopes associated to C at v are

∆ = convex hull({(0, 0), (a, 0), (0, b)}) ⊂ R2

and
∆v = lower convex hull({(0, 0, Q), (a, 0, 0), (0, b, 0)}) ⊂ R2 × R .

The polytope ∆v consists of three 0-dimensional vertices (a, 0, 0), (0, b, 0), and (0, 0, Q); three 1-
dimensional (open) edges

• L3 connecting (a, 0, 0) to (0, b, 0) with denominator δL3 = 1,

• L2 connecting (0, b, 0) to (0, 0, Q) with denominator δL2 = b, and

• L1 connecting (a, 0, 0) to (0, 0, Q) with denominator δL1 = a; and

a single 2-dimensional (open) face F with denominator δF = ab. Moreover, F (Z)Z ⊂ F ∩ Z3 = ∅,
so |F (Z)Z| = 0 . The face-polynomial XF and the side polynomials XLi are all smooth, so C is
∆v-regular, as defined in [Dok20, Definition 3.9]. As a result, we can read off the structure of Sv

using [Dok20, Theorem 3.13].
We find that Sv consists of three chains of P1s (corresponding to the edges L1, L2, and L3)

branching off of a central curve corresponding to the face F . Since the interior of F contains no
lattice points, |F (Z)Z| = 0 . Moreover, δF = ab, so the central curve has genus 0 and multiplicity
ab. For i = 1, 2, 3, every curve in the chain of P1s corresponding to Li has multiplicity a multiple
of δi. The final curve in the chain has multiplicity exactly δi. For a more precise description of the
multiplicities of the components, see [Dok20]. We give an examples of the resulting special fiber Sv

when v is a finite place of bad reduction or v = ∞ in the case a = 7, b = 5, q = 67 in Figure 1.
Moreover, we note that the Newton polytopes associated to C ⊗SpecK Kunram.

v are the same as
those associated to C at v. In particular, Sv admits the same description as a tree of P1s with
multiplicity as does Sv. It follows immediately that Sv is obtained from Sv via base change to kv.
More precisely, Sv

∼= Sv ⊗Spec kv Spec kv.
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For later use, we note that the final component in Sv of the chain corresponding to L3 always
has multiplicity 1. In particular, the gcd of the multiplicities of the components of Sv is 1. This
means that SKunram.

v
is a (Spec OKunram.

v
)-curve (or S-curve) in the notation of [Lor90].

1

35
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30 28
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Figure 1: Fibers of the minimal proper regular SNC model of y5 + x7 = t67 − t over P1
F67

at finite
places of bad reduction (left) and at infinity (right)

2.2 Unipotent reduction of J at bad places.

We give an analysis of the reduction types of J at the finite places and the infinite place.

Proposition 2.3. The Jacobian J has potentially good, unipotent reduction above any v ∈ Fq ∪
{∞} ⊂ P1, and it has good reduction elsewhere.

Proof. The roots of tq − t lie in Fq, so C has good reduction away from Fq ∪ {∞}. Moreover, C
is isotrivial and becomes isomorphic to yb + xa = 1 over Fr(

ab
√
tq − t) so C has potentially good

reduction everywhere.
When v ∈ Fq ∪ {∞}, we can read off the reduction of the Jacobian from the special fiber of the

simple normal crossings model S. Write J /Fr for the (global) Néron model of J . Given a point
v ∈ P1, let kv denote the residue field at v and let J 0

v denote the connected component of the
identity of the fiber of J above v.

Similarly, let J 0
v denote the connected component of the identity of the special fiber of the

Néron model of the base change JKunram.
v

. Since Sv
∼= Sv⊗Spec kv Spec kv, we have J 0

v
∼= (Jv⊗Spec kv

Spec kv)
0. The advantage of passing to a Néron model over Kunram.

v is that we may apply results
from [Lor90], which requires an algebraically closed residue field.

We recall some facts on the structure of J 0
v from Section 1 of [Lor90].

Above any point v ∈ P1, there is a unipotent group scheme U , a torus T and an abelian variety
A fitting into the following exact sequence of group schemes over t0:

0 → U × T → J 0
v → A → 0 .

Since the Sv is the special fiber of a simple normal crossings model of a curve over Kunram.
v ,

Corollary 1.4 of [Lor90] states that dim(T ) is equal to the first Betti number of the dual graph of
Sv. The dual graph of Sv is a tree, so it has trivial homology. Hence, T is trivial.

Also, if Sv has irreducible components C1, . . . , Cr, then dimA =
*r

i=1 genus(Ci). For v ∈
Fq ∪ {∞}, all of the components of Sv have genus 0, so dimA = 0 as well.

In summary, for any place v of bad reduction for C, the group scheme J 0
v is unipotent, since

both the toric and abelian parts are trivial. We conclude that, up to twist, the same is true of J 0
v .
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2.3 Tamagawa numbers of J.

From our description of the reduction of J at bad places, we deduce an explicit expression for
another important invariant of J : its Tamagawa number. First, recall the definition:

Given an abelian variety A/K and a place v of K, let A/Ov be the Néron model of AKv . The
special fiber Av (over the residue field kv) of A may have multiple components. Let A0

v be the
component containing the identity. The quotient Av/A0

v is a finite group scheme.

Definition 2.4 (Tamagawa Number). For any abelian variety A/K and place v of K, the local
Tamagawa number is defined by cv(A) := #

&
Av/A0

v

'
(kv) . Equivalently, cv(A) is the number of

irreducible components of Av/kv which remain irreducible after base change to kv. The Tamagawa
number T (A/K) of A is defined as the product

!
v cv(A) over all places of K.

If A has good reduction at v, the special fiber Av is connected, so that Av/A0
v is trivial. Hence,

as v varies among all places of K, all but finitely many of the local Tamagawa numbers cv(A) are
equal to 1. The Tamagawa number T (A/K) is therefore well defined.

Proposition 2.5. For J = Ja,b,q, the Tamagawa number T (J/K) is equal to 1.

This fact is used in Section 7.3.

Proof. As mentioned above, if v is a place of good reduction for J , then cv(J) = 1.
To compute the local Tamagawa numbers from the simple normal crossings model at each place

of bad reduction, we show that #
&
Jv/J 0

v

'
(kv) = 1. Since 1 ≤ #

&
Jv/J 0

v

'
(kv) ≤ #

&
Jv/J 0

v

'
(kv),

it will follow that cv(J) = 1 as well.
Let Jv be the special fiber of the Néron model of the base change J ⊗SpecKv SpecK

unram.
v . As

in the proof of Proposition 2.3, since Sv
∼= Sv ⊗Spec kv Spec kv, we have Jv

∼= Jv ⊗Spec kv Spec kv. In
particular, we have #

&
Jv/J 0

v

'
(kv) ≤ #

&
Jv/J 0

v

'
(kv) .

The advantage of base change to Kunram.
v is that we may apply Corollary 1.5 of [Lor90] to

compute the local Tamagawa numbers from the simple normal crossings models at the places of
bad reduction. We recall this result here for convenience: If the special fiber of the SNC model is
given by

*n
i=1 riCi, let di :=

*
i ∕=j Ci · Cj . If the associated Jacobian has toric dimension 0, the

local Tamagawa number is given by

cv(J) =

n+

i=1

rdi−2
i .

Proposition 2.3 says that Jv (and so also Jv) has toric dimension 0, so we may apply this
result. We recall the relevant intersection numbers and multiplicities from Section 2.1. At each
place of bad reduction, there is one fiber of multiplicity ab with 3 intersections, and three fibers
of multiplicities a, b, and 1 with 1 intersection. All other fibers have 2 intersections, so the local
Tamagawa number is #

&
Jv/J 0

v

'
(kv) = (ab)1a−1b−11−1 = 1. We conclude that cv(J) = 1 as well.

Since all of the local Tamagawa numbers are equal to 1, we conclude T (J/K) = 1.

2.4 Conductor of J

We also use the reduction type of J to compute the conductor divisor NJ ∈ Div(P1) of J/K in
Proposition 2.6. In Section 4, we use this computation to verify the degree of L(J, T ).

We refer the reader to [Ser70] for the construction of NJ . Fix, once and for all, a prime ℓ ∕= p
and let V = Vℓ(J) be the ℓ-adic Tate module of J viewed as a representation of Gal(K/K). Given
a place v ∈ P1, let Iv be the inertia subgroup and denote by V Iv the subspace fixed by Iv.

9



Proposition 2.6. The conductor NJ is an effective divisor on P1, supported on Fq ∪ {∞}, with

degNJ = (a− 1)(b− 1)(q + 1) = 2g(q + 1).

Proof. From the definition of NJ , we see that

deg(NJ) =
,

v bad reduction

(2g − dim(V Iv)) deg v .

By Proposition 2.3, the places of bad reduction of J are exactly those closed points v of P1 with
v ∈ Fq ∪{∞}. At each of those places, the Jacobian J has unipotent reduction, hence V Iv is trivial
by [ST68, §3]. Therefore, 2g − dim(V Iv) = 2g at every such place v. So,

,

v bad reduction

(2g − dim(V Iv)) deg v = 2g
,

v∈Fq∪{∞}
deg v = 2g(q + 1) .

2.5 Height of J

In this section, we compute the Faltings height of J . Let J → P1 be the (global) Néron model of
J/Fr(t). Let z : P1 → J be the identity section. Let Ωg

J /P1 be the relative dualizing sheaf on J .

This sheaf pulls back to a line bundle ωJ := z∗Ωg
J /P1 on P1. The Faltings height of J is defined as

h(J) := deg(ωJ)

and the exponential Faltings height of J is defined as H(J) := rh(J).

Lemma 2.7. There is a positive D ∈ Q depending only on a and b and a positive E ∈ Q depending
only on a, b, and the congruence class of q mod ab such that the Faltings height of J is

h(J) = Dq + E .

The values D and E satisfy

(ab− a− b)3

6a2b2
< D <

ab

6
and 0 < E < gC .

Proof. Since J is a Jacobian, the Faltings height can be reinterpreted in terms of our regular model
S for C and the map π : S → P1. There is a section s : P1 → S which maps P1 isomorphically
onto the Zariski closure in S of the point at infinity on the generic fiber C. So, we may apply
Proposition 7.4 of [BHP+15], which gives

ωJ
∼=∧gπ∗Ω

1
S/P1 .

For any integers i, j ≥ 1, consider the meromorphic differential ωi,j := xi−1yj−bdx ∈ Ω1
S/P1 .

The set -
ωi,j |C : i > 0, j > 0, and ab > bi+ aj

.

of differentials restricted to the generic fiber C of S → P1 forms a K-basis for Ω1
C . We may thus

compute degωJ in terms of the orders of poles/zeros of the relative differential g-form on S defined
by

η :=
/

(i,j):i,j>0
ab>bi+aj .

ωi,j .
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More precisely, we have

deg(ωJ) =
,

v∈P1

ordv(π∗η) deg v .

Since π∗η has finitely many zeros and poles, the sum is finite. Given a point v of P1, let Ov denote
the local ring at v and let Sv be the base change of S to Ov. We use [Dok20, Theorem 8.12] to
understand ordv(π∗η). For v ∈ A1 ⊂ P1 , set

Vi,j,v =

0
(ab− bi− aj)/ab if v ∈ Fq ,

0 otherwise.

In all cases, ⌊Vi,j,v⌋ = 0. So, by [Dok20, Theorem 8.12] the ωi,j |Sf
form a Rf basis for the relative

canonical sheaf on Sf . Hence, the g-form η is regular and nonvanishing on Sf . In other words,
ordf (π∗η) = 0. It follows that deg(ωJ) = ord∞(η).

Set
Vi,j,∞ := (bi+ aj − ab)

q

ab
.

Taking local parameter s = t−1 on the fiber S∞ above infinity, Theorem 8.12 of [Dok20] says that
an Fq[[s]]-basis for the relative dualizing sheaf is given by

{s⌊Vi,j,∞⌋ωi,j : i > 0, j > 0, ab > bi+ aj} .

Hence,

ord∞(η) =
,

(i,j):i,j>0
ab>bi+aj .

−⌊Vi,j,∞⌋ =
,

(i,j):i,j>0
ab>bi+aj .

−
1
(bi+ aj − ab)

q

ab

2
=

,

(i,j):i,j>0
ab>bi+aj

"
q
ab− (bi+ aj)

ab

%
.

If we set

D :=
,

(i,j):i,j>0
ab>bi+aj

ab− (bi+ aj)

ab

and

E :=
,

(i,j):i,j>0
ab>bi+aj

"
q
ab− (bi+ aj)

ab

%
− q

ab− (bi+ aj)

ab
,

then h(J) = deg(ωJ) = Dq+E. The definition of D depends only on a and b, while E only depends
on a, b and the residue class of q (mod ab).

To bound E, we note that

E =
,

(i,j):i,j>0
ab>bi+aj

"
q
ab− (bi+ aj)

ab

%
− q

ab− (bi+ aj)

ab
<

,

(i,j):i,j>0
ab>bi+aj

1 = g .

To bound D, we interpret each term (ab − bi − aj)/ab as the volume of a rectangular prism
with height (ab− bi− aj)/ab and base a square of side length 1. If we take as the base the square
[i, i+1]× [j, j+1], then the tops of these prisms lie above the hyperplane z = (ab− bx− ay)/ab. If
we take as base the square [i− 1, i]× [j − 1, j], the tops of these prisms lie below this hyperplane.
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Hence, we may bound D between the areas of two right triangular pyramids, or equivalently the
integrals

(ab− a− b)3

6a2b2
=

33

!
(x,y):x,y>1,
ab>bx+ay

"

ab− (bx+ ay)

ab
dxdy < D <

33

!
(x,y):x,y>0,
ab>bx+ay

"

ab− (bx+ ay)

ab
dxdy =

ab

6
.

Remark 2.8. When a = 2, we can compute that D = (b− 1)2/8b, since

D =
1

2b

,

j:0<ja<b

(b− ja) =
1

2b

#
b− 1

2

$2

=
(b− 1)2

8b
.

Remark 2.9. For a fixed pair a, b, note that the ratio h(J)/q is bounded from above and from
below by positive constants depending only on a and b as q tends to +∞ through powers of p.

2.6 Simplicity of the Jacobian

In this section, we prove Theorem 1.4 on the simplicity of J . In Section 6.5, we produce examples
of abelian varieties with large rank. In Section 7.3, we show that J satisfies an analogue of the
Brauer–Siegel theorem as q varies. In Section 8, we produce examples of abelian varieties whose
Tate–Shafarevich groups have large order. Theorem 1.4 shows that, provided we add some mild
assumptions, the abelian varieties involved in these sequences are simple (that is, do not have
proper positive-dimensional abelian subvarieties defined over K).

Theorem 1.4. The Jacobian J = Ja,b,q is K-simple if and only if a and b are both prime.

The proof of the “only if” direction of the statement is rather short: Suppose that at least
one of a and b is composite. Assume, by symmetry, that a is composite and let d be one of
its proper divisors. Let Cd,b,q be the projective curve defined over K with affine open defined
by xd + yb = tq − t, and let Jd,b,q/K denote its Jacobian variety. The same computation as in
Proposition 2.1 shows that Cd,b,q has genus g′ = (d − 1)(b − 1)/2. Since 1 < d < a, we have
0 < g′ < g. The map (x, y) 3→ (xa/d, y) extends to a nonconstant K-morphism Ca,b,q → Cd,b,q.
The contravariant functoriality of the Jacobian then implies the existence of a morphism of abelian
varieties Jd,b,q ↩→ Ja,b,q, whose image is a positive-dimensional strict abelian subvariety of Ja,b,q
defined over K. Hence Ja,b,q is not simple over K.

Our proof of the converse implication is more subtle, and requires an auxiliary discussion, which
we carry out before continuing on with the proof of Theorem 1.4.

We first describe the ℓ-adic Tate module of an auxiliary curve. For any integer n ≥ 1 we let
µn denote the group of nth roots of unity in Fr. Let a and b be coprime integers which are both
coprime to p, let F be the finite extension of Fr generated by µab, and write κ for |F|. Throughout
this section, we let Ca,b/F be the projective curve with a dense open subset defined by the affine
equation

Ca,b : xa + yb = 1 . (2.1)

Given our assumptions on a and b, it is straightforward to check that Ca,b is smooth of genus
g = (a− 1)(b− 1)/2. The curve Ca,b admits an action of µab by

∀ζ ∈ µab, ζ · (x, y) = (ζbx, ζay) . (2.2)

12



By functoriality, this action induces an action of µab on the Jacobian Ja,b/F of Ca,b, therefore also
on its ℓ-adic Tate module Vℓ(Ja,b) for any prime ℓ ∕= p. For simplicity, we pick a prime ℓ ∕= p such
that ℓ ≡ 1 mod ab (there are infinitely many such primes). This choice of ℓ ensures that Qℓ contains
all (ab)th roots of unity.

The Qℓ-vector space Vℓ(Ja,b) is dual to the first ℓ-adic cohomology group H1
ét(Ca,b,Qℓ). The

latter can easily (by a direct generalization of Corollary 2.4 in [Kat81]) be decomposed as a direct
sum of Gal(F/F)-stable lines. In terms of Vℓ(Ja,b), this result reads as follows: Vℓ(Ja,b) decomposes
as a direct sum of lines

Vℓ(Ja,b) =
4

χa:µa→Q×
ℓ

χb:µb→Q×
ℓ

both nontrivial

L(χa,χb), (2.3)

where the sum is over nontrivial Qℓ-valued characters χa and χb of µa and µb respectively. Because
of our assumption on ℓ, there are (a− 1)(b− 1) = 2g such pairs (χa,χb).

As proven by the analysis on p. 180 in [Kat81], the Frobenius map Fr : x 3→ xκ, which topolog-
ically generates Gal(F/F), acts on the line indexed by (χa,χb) as multiplication by the inverse of a
certain Jacobi sum jF(χa,χb) associated to the pair (χa,χb). (Since the characteristic polynomial
of Fr−1 acting on Vℓ(Ja,b) is the numerator L(Ca,b/F, x) ∈ Z[x] of the zeta function of Ca,b/F, the
above decomposition implies that the inverse roots of L(Ca,b/F, x) are the Jacobi sums jF(χa,χb)).
The action of µab on Vℓ(Ja,b) induced from the action on Ca,b defined by (2.2) also preserves the
direct sum decomposition in (2.3). More precisely, for a given pair (χa,χb), a short computation
shows that

∀z ∈ L(χa,χb), ∀ζ ∈ µab, ζ · z = χa(ζ
b)χb(ζ

a) z = (χb
aχ

a
b )(ζ) z. (2.4)

Now let Vℓ(Ja,b)prim denote the subspace
5

(χa,χb)
L(χa,χb) of Vℓ(Ja,b) where the sum is over pairs of

characters χa : µa → Q×
ℓ , χb : µb → Q×

ℓ where χa has exact order a and χb has exact order b. One
sees that Vℓ(Ja,b)prim is endowed with a µab-action, and that dimQℓ

Vℓ(Ja,b)prim = φ(a)φ(b).
As a consequence of (2.3) and its compatibility with the action of µab, we have:

Lemma 2.10. Let V be a nonzero subspace of Vℓ(Ja,b)prim which is stable under the action of µab.
Then the action of µab on V is faithful i.e., the induced map µab → AutQℓ

(V ) is injective.

Proof. Since V is µab-stable, the action of µab on Vℓ(Ja,b)prim restricts to an action on V . The
subspace V decomposes as V =

5
(χa,χb)

V ∩ L(χa,χb) where the sum is over pairs of characters
(χa,χb) where χa has exact order a and χb has exact order b. Let χa have exact order a and χb

have exact order b. Since a and b are coprime and given our assumptions on χa,χb, the character
χb
aχ

a
b of µab

∼= µa × µb has exact order ab. In other words, the map χb
aχ

a
b : µab → Q×

ℓ is injective.
By (2.4), any ζ ∈ µab which acts trivially on V ∩L(χa,χb) satisfies (χ

b
aχ

a
b )(ζ) = 1, and the above

shows that ζ must be 1.

We now relate the Jacobian Ja,b to our main subject of investigation J . We fix a separable
closure K of K, and we let K ′ = F ·K = F(t). We pick an element u in K such that uab = tq − t,
and we set L′ = F(u). The extension L′/K ′ is Galois; further, we know from Kummer theory that

Gal(L′/K ′) = Gal
&
F(ab

√
tq − t)/F(t)

' ∼= Gal(F/F)×Gal(F(u)/F(t)).

The first factor Gal(F/F) is topologically generated by the Frobenius Fr : x 3→ xκ and is isomor-
phic to 6Z; while the second factor Gal(F(u)/F(t)) is isomorphic to µab(K

′) = µab(F) via the map
σ 3→ σ(u)/u. We thus deduce that Gal(L′/K ′) ∼= 6Z× µab.
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The morphism φ : Ca,b ×F L′ → C ×K L′, which extends the map on affine patches given by
(x, y) 3→ (u−ax, u−by), yields an isomorphism between Ca,b ×F L

′ and C ×K L′. By functoriality, φ
induces an isomorphism between (Ja,b)L′ = Ja,b×FL

′ and JL′ = J×K L′, as well as an isomorphism
of Qℓ-vector spaces Vℓ((Ja,b)L′) ∼= Vℓ(JL′). The Jacobian Ja,b is defined over F, hence the ℓ-power
torsion points on the base change Ja,b×FL

′ are defined over F; thus there is a natural isomorphism
Vℓ((Ja,b)L′) ≃ Vℓ(Ja,b). Similarly, we have Vℓ(JK′) ≃ Vℓ(JL′). Composing these, we obtain an
isomorphism of Qℓ-vector spaces

φℓ : Vℓ(Ja,b)
∼=−→ Vℓ(JK′).

Both of these vector spaces are equipped with a Galois action: the leftmost with a Gal(F/F)-action,
and the rightmost with a Gal(K/K ′)-action.

Our next task is to describe the action of Gal(K/K ′) on Vℓ(JK′). We first note that the
corresponding representation Gal(K/K ′) → AutQℓ

&
Vℓ(JK′)

'
factors through Gal(L′/K ′), as follows

from the previous paragraph. Though φℓ is not equivariant for the Galois actions, we can describe
how φℓ “transports” the Galois structure, as follows.

In the Kummer isomorphism Gal(L′/K ′) ∼= 6Z × µab, an element σ ∈ Gal(L′/K ′) corresponds
to a pair (Frm, ζ) for an integer m and ζ ∈ µab. By construction of this isomorphism, for any
z = f(u) with f(X) ∈ F(X), we have σ(z) = (Frm(f))(ζ u). By definition of φ, we deduce that, for
all (x, y) ∈ Ca,b(F), we have

σ(φ(x, y)) = σ(u−bx, u−ay) = (ζ−bu−bFrm(x), ζ−au−aFrm(y)) = ζ−1 · Frm
&
φ(x, y)

'
.

So, the action of Gal(L′/K ′) ∼= 6Z × µab on C(L′) is carried through φ−1 to the action on Ca,b(F)
given by the product of the usual action of Gal(F/F) on Ca,b by the inverse of the action of µab on
Ca,b defined by (2.2). By functoriality again, a similar conclusion holds for the Gal(L′/K ′)-action on
Vℓ(JK′) and Vℓ(Ja,b). Explicitly, the isomorphism φ−1

ℓ carries the action of Gal(L′/K ′) on Vℓ(JK′)
to the action on Vℓ(Ja,b) given by the product of the standard Gal(F/F)-action on Vℓ(Ja,b) by the
inverse of the action of µab on Vℓ(Ja,b) induced by (2.2).

Combining the above paragraph with the properties of the decomposition (2.3) of Vℓ(Ja,b) ex-
plained above proves that Vℓ(JK′) decomposes as

Vℓ(JK′) =
4

χa:µa→Q×
ℓ

χb:µb→Q×
ℓ

both nontrivial

L′
(χa,χb)

, (2.5)

where the sum is over pairs (χa,χb) of nontrivial Qℓ-valued characters of µa, µb respectively,
and where each L′

(χa,χb)
is one-dimensional. Furthermore, the action of Gal(K/K ′) on Vℓ(JK′),

which factors through Gal(L′/K ′), preserves this direct sum decomposition. More precisely, if
σ ∈ Gal(L′/K ′) corresponds to a pair (Frm, ζ) for m ∈ Z and ζ ∈ µab, then for any pair (χa,χb) of
characters as above, we have

∀z ∈ L′
(χa,χb)

, σ · z = (χ−b
a χ−a

b )(ζ) jF(χa,χb)
−m z.

In particular, the subgroup Gal(F(u)/F(t)) ≃ µab of Gal(L′/K ′) acts on Vℓ(JK′). Note that this
action of µab is not the same as the µab-action induced by the action on C defined in an analogous
way to the one on Ca,b by (2.2). Similarly to what we did earlier, we now let Vℓ(JK′)prim denote
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the subspace
5

(χa,χb)
L′
(χa,χb)

of Vℓ(JK′), in which the sum is over pairs (χa,χb) of characters of

µa × µb
∼= µab where χa (resp. χb) has exact order a (resp. b). This space is equipped with an

action of µab and has dimension φ(a)φ(b).
Since Gal(F(u)/F(t)) ≃ µab, a direct consequence of Lemma 2.10 and the above argument is:

Lemma 2.11. Let W be a nonzero subspace of Vℓ(JK′)prim. If W is stable under the action of
Gal(F(u)/F(t)), then there is an injective map µab → AutQℓ

(W ).

End of the proof of Theorem 1.4. We now finally prove the “if” direction of the statement. Assume,
then, that a, b are distinct prime numbers both different from p, and pick a prime ℓ ∕= p so that
ℓ ≡ 1 mod ab. We let F denote the finite extension of Fr containing all the abth roots of unity, and
set K ′ = F(t) and L′ = F(u) as above. We actually prove the slightly stronger statement that the
base changed Jacobian JK′ = J ×K K ′ is simple.

Let A be a positive-dimensional abelian subvariety of JK′ defined over K ′. The ℓ-adic Tate
module Wℓ := Vℓ(A) is then a nonzero subspace of Vℓ(JK′), which is stable under the action of
Gal(L′/K ′). A fortiori, Wℓ is stable under the action of Gal(F(u)/K ′) ≃ µab. Applying Lemma 2.11
to Wℓ (given that a and b are primes, we have Vℓ(JK′)prim = Vℓ(JK′)), there is an injective map
j : µab ↩→ AutQℓ

(Wℓ). Faltings’ isogeny theorem (proved by Zarhin in the context of function
fields) shows that EndQℓ

(Wℓ) ≃ End(A) ⊗Z Qℓ. It follows from the existence and injectivity of j
that the Q-algebra End(A)⊗ZQ contains a subalgebra E which is isomorphic to the abth cyclotomic
field extension Q(ξab) of Q. On the other hand, we know from the Corollary to Theorem 4 in §19
of [Mum08] that the dimension of a semi-simple commutative subalgebra of End(A) ⊗Z Q cannot
exceed 2 dimA. Thus the chain of inequalities:

2 dim JK′ ≥ 2 dimA ≥ dimQE = [Q(ξab) : Q] = φ(ab) = (a− 1)(b− 1) = 2g = 2dim JK′ .

We conclude that dimA = dim JK′ , so that A = JK′ . This shows that JK′ is simple.

Before we close off this discussion about the simplicity of J , we remark that the “primitive”
part Vℓ(JK′)prim of Vℓ(JK′) “comes” from an abelian subvariety Jprim of JK′ . We begin by a lemma.

Lemma 2.12. Let G be a finite group, and X be a curve over F equipped with a G-action. We let
Y = X/G and f : X → Y be the quotient map. Write JX and JY for the Jacobians of X and Y ,
respectively. Then JY is isogenous to the G-invariant subabelian variety (JX)G ⊂ JX . Moreover,
for any prime ℓ ∕= p there is an isomorphism Vℓ((JX)G) ∼= Vℓ(JY ).

Proof. By the isogeny theorem of Tate (see [Mum08, Appendix I]), the second assertion follows
from the first one: if indeed JY and JG

X are isogenous then, on the level of ℓ-adic Tate modules, we
have an isomorphism between Vℓ(JY ) and Vℓ((JX)G) ≃ Vℓ(JX)G.

The quotient map f : X → Y induces, by contravariance of the Jacobian, an algebraic group
morphism f∗ : JY → JX . The image of f∗ is then contained in the subabelian variety (JX)G

formed by G-invariant elements in JX . By restriction, we thus obtain an algebraic group morphism
φ : JY → (JX)G. Since JY and (JX)G have the same dimension, it suffices to prove that φ is finite
in order to conclude. Let x ∈ (JX)G be a G-invariant point, and pick a divisor D ∈ Div(X) on X
whose image in JX is x. Let 7D :=

*
g∈G g ·D ∈ Div(X). Writing n for the order of G, the image

of 7D in JX is
*

g∈G g · x = [n]x. On the other hand, it is clear that 7D is G-invariant, so that 7D
is the pullback by f of some divisor D′ on Y . Let y ∈ JY denote the image of D′ in JY . We thus
have [n]x = f∗(y) = φ(y).

This shows that the image of φ : JY → (JX)G has finite index, which implies that φ is an
isogeny, thus concluding the proof.
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Let a and b be coprime integers, both coprime to p, and fix a power q of p. For any divisors
α | a and β | b, we let Cα,β be the smooth projective curve over F with open affine defined by
xα + yβ = 1, and denote by Jα,β/F its Jacobian. We have mentioned above (Proposition 2.1) that
Cα,β has genus (α−1)(β−1)/2 = dim Jα,β . The map (x, y) 3→ (xa/α, yb/β) extends into a surjective
morphism Ca,b → Cα,β . Functoriality of the Jacobian yields a surjective push-forward morphism of
abelian varieties ϖα,β : Ja,b → Jα,β . We then let

(Ja,b)prim := ker

8

99:Ja,b

#
ϖα,β−−−−→

+

α|a
1<α<a

+

β|b
1<β<b

Jα,β

;

<<= ,

where the right-most product is over proper divisors α of a and β of b. This subabelian variety of
Ja,b is defined over F. We remark the following:

Lemma 2.13. There is an F-isogeny Ja,b →
+

α|a

+

β|b
(Jα,β)prim.

Proof. Let J′a,b denote the product
!

α|a
!

β|b(Jα,β)prim. Both Ja,b and J′a,b are abelian varieties
over the finite field F. We know by Tate’s isogeny theorem (see [Mum08, Appendix I]) that
there is an isomorphism between Hom(Ja,b, J

′
a,b) ⊗Z Qℓ and the subspace of Gal(F/F)-invariants

in HomQℓ
(Vℓ(Ja,b), Vℓ(J

′
a,b)). In order to conclude, it thus suffices to prove that there is a Gal(F/F)-

equivariant isomorphism of Qℓ-vectors spaces between Vℓ(Ja,b) and Vℓ(J
′
a,b).

By definition of J′a,b, we have Vℓ(J
′
a,b)

∼=
5

α|a
5

β|b Vℓ((Jα,β)prim). Note that the summands
with α = 1 or β = 1 are trivial (since Jα,β then has dimension zero). Combining this with the
decomposition (2.3), we have Gal(F/F)-equivariant isomorphisms

Vℓ(J
′
a,b)

∼=
4

α|a
α>1

4

β|b
β>1

Vℓ((Jα,β)prim) ∼=
4

α|a
α>1

4

β|b
β>1

8

99:
4

χα of order α
χβ of order β

L(χα,χβ)

;

<<= ∼=
4

χa of order >1
χb of order >1

L(χa,χb).

The right-most sum equals Vℓ(Ja,b), by decomposition (2.3). This concludes the proof.

We may now prove

Lemma 2.14. Vℓ((Ja,b)prim) is isomorphic, as a Qℓ-vector space with µab-action, to Vℓ(Ja,b)prim.

Proof. Combining Lemma 2.13 to a straightforward application of the inclusion-exclusion princi-
ple (using that

*
δ|d φ(δ) = d for any integer d ≥ 1), one shows that (Ja,b)prim has dimension

φ(a)φ(b)/2 for any a, b > 1. Since (Ja,b)prim is contained in Ja,b, we may view Vℓ((Ja,b)prim) as a
subspace of Vℓ(Ja,b). By the dimension computations we did, we know that dimVℓ((Ja,b)prim) =
dimVℓ(Ja,b)prim = φ(a)φ(b). It thus suffices to show one inclusion.

To do so, we note the following. For any divisors α | a and β | b, there is a unique subgroup
γα,β of µab of order ab/(αβ). This subgroup γα,β acts on Ca,b (and thus, on Ja,b) and the quotient
Ca,b/γα,β is isomorphic to Cα,β , the quotient map being ϖα,β : Ca,b → Cα,β . Lemma 2.12 yields
an isogeny Jα,β → (Ja,b)

γα,β and an isomorphism Vℓ(Jα,β) ∼= Vℓ(Ja,b)
γα,β . Since µab ≃ µa × µb,

we may write γα,β ≃ γα × γβ . With our description (2.4) of the µab-action on the lines the
decomposition (2.3), we immediately see that

Vℓ(Ja,b)
γα,β =

4

χa, χb nontrivial
χa|γα trivial
χb|γβ trivial

L(χa,χb).
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The condition that a character χa : µa → Q×
ℓ is trivial on γα is equivalent to requiring that this

character has order dividing a/|γα| = α. Similarly for characters χb.
With this at hand, let χa,χb be a pair of non trivial characters of µa and µb. By definition,

the line L(χa,χb) appears in Vℓ(Ja,b)prim if and only if χa has exact order a and χb has exact
order b. Recalling how (Ja,b)prim was constructed, the above shows that the line L(χa,χb) appears
in Vℓ((Ja,b)prim) if and only if χa does not factor through any proper subgroup of µa and χb does
not factor through any proper subgroup of µb. Thus, the conditions for the line L(χa,χb) to appear
in one of Vℓ(Ja,b)prim or Vℓ((Ja,b)prim) match. Hence the result.

Recall from the preceding discussion that there is an isomorphism φ∗ : (Ja,b)L′ → JL′ . We let

Jprim := φ∗((Ja,b)prim ×F L
′) ⊂ JL′ .

The subabelian variety (Ja,b)prim is defined over F and is stable under the action of µab. As was
proved above, (φ∗)−1 carries the Gal(L′/K ′)-action on JL′ to the action on Vℓ(Ja,b) given by the
product of the standard Gal(F/F)-action on Vℓ(Ja,b) by the inverse of the action of µab on Vℓ(Ja,b)
induced by (2.2). Given the invariance of (Ja,b)prim under both of these latter actions, we deduce
that Jprim is an abelian subvariety of JK′ which is defined over K ′. Moreover, Lemma 2.14 yields
a Gal(K/K ′)-equivariant isomorphism

Vℓ(J)prim ∼= Vℓ(Jprim).

With this notation we obtain the following strengthening of (part of) Theorem 1.4:

Theorem 2.15. Let a, b be two coprime positive integers which are both coprime to p, and q be
any power of p. Let J = Ja,b,q/K be as before, and Jprim ⊂ JK′ be the abelian subvariety defined
above. Then Jprim is simple over K ′.

Proof. One simply has to repeat the argument proving the ‘if’ part of Theorem 1.4 with JK′ replaced
by Jprim, and Vℓ(JK′) replaced by Vℓ(Jprim) ∼= Vℓ(JK′)prim.

Remark 2.16. Note that Theorem 1.4 cannot be refined to show that J is geometrically simple
when a, b are both primes. Under certain congruence conditions on a, b, and r, the Jacobian Ja,b
indeed has repeated isogeny factors over Fr. For instance, the Jacobian of the genus 2 curve
y2 + x5 = 1 over F19 is geometrically isogenous to the square of a supersingular elliptic curve.
Since J and Ja,b become isomorphic after a suitable base change, the Jacobian of the genus 2 curve
y2 + x5 = tq − t over F19(t) is not geometrically simple.

3 Background on Gauss sums

In this section, we gather some facts about Gauss sums which will prove useful in future sections.

3.1 Multiplicative and additive characters on extensions of Fp

We fix an algebraic closure Q of Q and denote by Z the ring of algebraic integers. We choose, once
and for all, a prime ideal p of Z which lies over the rational prime p. We write νp : Q → Q for the
p-adic valuation on Q, normalised so that νp(r) = 1.

The quotient Z/p is an algebraic closure of Fp, denoted by Fp. All finite extensions of Fp will
be viewed as subfields of Fp. The quotient map Z → Z/p = Fp further induces an isomorphism
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between the group of roots of unity in Q whose order is prime to p, and Fp
×
. Let χ : Fp

× → Q×

denote the inverse of this isomorphism. The isomorphism χ is sometimes called the Teichmüller
character of Fp.

Definition 3.1. Let F be a finite field extension of Fp, and n be a positive integer dividing |F×|.
We define a multiplicative character χF,n on F by

χF,n : F× → Q×
, x 3→ χ(x)|F

×|/n.

A straightforward computation shows that χF,n has exact order n.

We fix a nontrivial additive character ψ0 on Fp. We may, and will, assume that ψ0 takes values
in Q(ζp). For any finite extension F/Fp, we denote the relative trace map by TrF/Fp

: F → Fp. The
composition ψ0 ◦ TrF/Fp

is then a nontrivial additive character on F. More generally:

Definition 3.2. Let F be any finite field extension of Fp, and let α ∈ F. We define an additive
character ψF,α on F by

ψF,α : F → Q(ζp)
×, x 3→ (ψ0 ◦ TrF/Fp

)(αx) .

The character ψF,α is nontrivial for any α ∕= 0.

To lighten expressions, we suppress F from the notation when it is clear from context.

3.2 Classical properties of Gauss Sums

We begin by recalling the definition of Gauss sums and some of their classical properties.

Definition 3.3. Let F be a finite field of characteristic p. Given an additive character ψ and a
multiplicative character χ on F, we define the Gauss sum GF(χ,ψ) by

GF(χ,ψ) = −
,

x∈F×

χ(x)ψ(x).

Let F be a finite field of characteristic p. For any additive character ψ and any multiplicative
character χ on F, the following hold:

1. If χ has order n, then GF(χ,ψ) is an algebraic integer in the cyclotomic field Q(µnp).

2. If χ is nontrivial, orthogonality of characters implies that in any complex embedding,

|GF(χ,ψ)| = |F|1/2 . (3.1)

3. For α ∈ F×, in the notation introduced in the previous subsection,

GF(χ,ψF,α) = χ(α)−1GF(χ,ψF,1) . (3.2)

4. (Hasse-Davenport relation) For any finite extension F′/F,

GF′
&
χ ◦NF′/F,ψ ◦ TrF′/F

'
= GF(χ,ψ)

[F′:F]. (3.3)

(For proofs of these, see [Was97, Chapter VI, §1-2] for instance.)
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3.3 Orbits

Let p be a prime number, and r be a fixed power of p. For any integers a, b which are relatively
prime to each other and coprime to p, and for any power q of p, define

S := Sa,b,q = (Z/aZ! {0})× (Z/bZ! {0})× F×
q .

The subgroup 〈r〉 of Q× generated by r acts on S via the rule

∀(i, j,α) ∈ S, r · (i, j,α) := (ri, rj,α1/r).

In other words, 〈r〉 acts on (Z/aZ! {0})× (Z/bZ! {0}) by component-wise multiplication and on
F×
q by the inverse of the r-power Frobenius.
We denote by O := Or,a,b,q the set of orbits of 〈r〉 on S. For any integer n ≥ 1 coprime to p,

recall that we write op(n) (resp. or(n)) for the multiplicative order of p (resp. r) modulo n. For
n ≥ 1 coprime to p and i ∈ Z/nZ! {0}, we let κr,n(i) denote the multiplicative order of r modulo
n/ gcd(n, i). I.e.,

κr,n(i) := or
&
n/ gcd(n, i)

'
.

If o ∈ O is the orbit of (i, j,α) ∈ S, its length |o| is the least integer f ≥ 1 such that α ∈ Frf , a
divides i(rf − 1), and b divides j(rf − 1). This shows that

|o| = lcm
&
κr,a(i),κr,b(j), [Fr(α),Fr]

'
. (3.4)

For any integer n coprime to p, let

S′
n := (Z/nZ! {0})× F×

q .

We endow S′
n with an action of 〈r〉 via the rule r · (i,α) = (ri,α1/r). We write O′

n for the set of
orbits of S′

n under this action.
If (i,α) ∈ S′

n, then the length |o′| of its orbit o′ ∈ O′
n is the smallest integer f ≥ 1 such that

both α ∈ Frf and n divides i(rf − 1). In other words,

|o′| = lcm
&
κr,a(i), [Fr(α) : Fr]

'
. (3.5)

Notation being as above, the natural projection maps Sa,b,q → S′
a and Sa,b,q → S′

b clearly
commute with the actions of 〈r〉 on these sets. These projections therefore induce surjective maps
πa : O → O′

a and πb : O → O′
b. For any o ∈ O, we let

νa(o) := |o|/|πa(o)| and νb(o) := |o|/|πb(o)|.

If o is the orbit of (i, j,α), we have

νa(o) =
lcm

&
κr,a(i),κr,b(j), [Fr(α) : Fr]

'

lcm
&
κr,a(i), [Fr(α) : Fr]

' =
lcm

&
|πa(o)|,κr,b(j)

'

|πa(o)|
=

κr,b(j)

gcd
&
|πa(o)|,κr,b(j)

' .

In particular, νa(o) and νb(o) are integers, and νa(o) = 1 if and only if κr,b(j) divides |πa(o)|.
Since a and b are relatively prime, the Chinese remainder theorem gives a natural isomorphism

φ : Z/aZ × Z/bZ ≃ Z/abZ. The set φ((Z/aZ ! {0}) × (Z/bZ ! {0})) is clearly stable under the
action of 〈r〉 by component-wise multiplication on Z/abZ ! {0}, so the orbit set Or,a,b,q may be
viewed as a subset of O′

ab.
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3.4 Gauss sums associated to orbits

Recall that we have fixed a nontrivial additive character ψ0 on Fp. Let n be an integer which is
coprime to p. Consider the set S′

n as above, with its action of 〈r〉. Let (i,α) ∈ S′
n, and write

o′ ∈ O′
n for its orbit under the action 〈r〉 on S′

n. Let F′ be the extension of Fr of degree |o′|. By

construction, we have αr|o
′|
= α, so that α ∈ F′. Hence, we may consider the nontrivial additive

character Ψ(i,α) on F′ defined by

∀x ∈ F′, Ψ(i,α)(x) := ψF′,α(x) = (ψ0 ◦ TrF′/Fp
)(αx).

By construction, n divides i (r|o| − 1) = i |F′×|. We may thus introduce a nontrivial multiplicative
character λ(i,α) on F′ defined by

∀x ∈ F′, λ(i,α)(x) := χ(x)i(r
|o|−1)/n.

This allows to consider the Gauss sum GF′
&
λ(i,α),Ψ(i,α)

'
, about which we prove the following:

Lemma 3.4. For all (i,α) ∈ S′
n, we have

GF′
&
λ(i,α),Ψ(i,α)

'
= GF′

&
λr·(i,α),Ψr·(i,α)

'
.

In other words, the value of GF
&
λ(i,α),Ψ(i,α)

'
is constant along the 〈r〉-orbit o′ of (i,α).

Proof. By definition,

−GF
&
λr·(i,α),Ψr·(i,α)

'
=

,

x∈(F′)×

χ(x)ri(r
|o|−1)/n (ψ0 ◦ TrF′/Fp

)(α1/rx).

The map x 3→ xr being a bijection (F′)× → (F′)×, we may reindex by setting y = xr. This yields

−GF
&
λr·(i,α),Ψr·(i,α)

'
=

,

y∈(F′)×

χ(y)i(r
|o|−1)/n (ψ0 ◦ TrF′/Fp

)(α1/ry1/r)

=
,

y∈(F′)×

λ(i,α)(y) (ψ0 ◦ TrF′/Fp
)((αy)1/r) .

Since Fr ⊂ F′, any z ∈ F′ is conjugate to zr over Fr, and hence TrF′/Fp
(z) = TrF′/Fp

(zr). We finally
get

−GF
&
λr·(i,α),Ψr·(i,α)

'
=

,

y∈(F′)×

λ(i,α)(y) (ψ0 ◦ TrF′/Fp
)(αy) = −GF′

&
λ(i,α),Ψ(i,α)

'
.

Lemma 3.4 allows us to associate a Gauss sum to each 〈r〉-orbit:

Definition 3.5. In the above setting, for an orbit o′ ∈ O′
n, we write F′ for the extension of Fr of

degree |o′|, and we set
G

&
o′
'
:= GF′

&
λ(i,α),Ψ(i,α)

'

for one/any representative (i,α) ∈ S′
n of o′.
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Since λ(i,α) is nontrivial, equation (3.1) shows that

|G
&
o′
'
| = |F′|1/2 = r|o

′|/2

in any complex embedding of Q.
Now let a and b be relatively prime integers which are coprime to p, and consider the set O

of orbits of 〈r〉 acting on the set Sa,b,q introduced in §3.3. Recall that there are surjective maps
πa : O → O′

a and πb : O → O′
b. We may finally introduce:

Definition 3.6. In the above setting, for any orbit o ∈ O, we let

ω(o) := G (πa(o))
νa(o)G (πb(o))

νb(o) ,

where νa(o) = |o|/|πa(o)| and νb(o) = |o|/|πb(o)|.
For any orbit o ∈ O, we have |ω(o)| = r|o| in any complex embedding of Q.

For any a, b as above, we let θa,b := lcm(op(a), op(b)). Recall that an algebraic integer g is called
a Weil integer of size pθ (with θ ∈ 1

2Z) if and only if g has magnitude pθ in any complex embedding
of Q. We record the following proposition for future use.

Proposition 3.7. For any orbit o ∈ O, there exist an (ab)th root of unity ζo and a Weil integer go
of size pθa,b such that

ω(o) = ζo g
[Fr:Fp]·|o|/θa,b
o .

Proof. Let (i, j,α) ∈ S have orbit o ∈ O: then, (i,α) ∈ S′
a is a representative of o′ := πa(o) ∈ O′

a

and (j,α) ∈ S′
b is a representative of πb(o) ∈ O′

b. Let F′ be the extension of Fr of degree |o′|. By
the definition of G (o′) and equation (3.2), we have

G
&
o′
'
= λ(i,α)(α)

−1GF′
&
λ(i,α),ψF′,1

'
.

Observe that ζo′ := λ(i,α)(α)
−1 is an ath root of unity because λ(i,α) has order dividing a. Let F be

the extension of Fp of degree κp,a(i) = op(a/ gcd(i, a)). We note that [F′ : F] = [Fr : Fp] · |o′|/κp,a(i).
Moreover, the character λ(i,α) is none other than χ

i|F×|/a
F,|F×| ◦NF′/F.

Define go′ := GF

>
χ
i|F×|/a
F,|F| ,ψF,1

?
. Then, go′ is a Weil integer of size pκp,a(i)/2 according to (3.1).

Applying the Hasse–Davenport relation (3.3) for Gauss sums, we deduce that

G
&
o′
'
= λ(i,α)(α)

−1
>
GF

>
χ
i|F×|/a
F,|F×| ,ψF,1

??[F′:F]
= ζo′ g

[Fr:Fp]|o′|/κp,a(i)
o′ .

A similar argument shows that, if we define ζπb(o)
:= λ(j,α)(α)

−1 and gπb(o) := GF

>
χ
j|F×|/b
F,|F| ,ψF,1

?
,

then G (πb(b)) = ζπb(o) g
[Fr:Fp]|πb(o)|/κp,b(j)

πb(o)
.

By the definition of ω(o), we may write

ω(o) = ζ
νa(o)
πa(o)

ζ
νb(o)
πb(o)

g
[Fr:Fp]|o|/κp,a(i)
πa(o)

g
[Fr:Fp]|o|/κp,b(j)

πb(o)

=
>
ζ
νa(o)
πa(o)

ζ
νb(o)
πb(o)

?>
g
θa,b/κp,a(i)

πa(o)
g
θa,b/κp,b(j)

πb(o)

?[Fr:Fp]·|o|/θa,b
.

Note that both κp,a(i) and κp,b(j) divide θa,b. In this expression, ζo := ζ
νa(o)
πa(o)

ζ
νb(o)
πb(o)

is a root of unity
of order dividing ab, and the term

go := g
θa,b/κp,a(i)

πa(o)
g
θa,b/κp,b(j)

πb(o)

is a Weil integer of size pθa,b . Therefore, ω(o) may be written in the desired form.
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4 Explicit expression for the L-function and the BSD conjecture

In this section, we provide an explicit formula for the L-function of the Jacobian J of the curve C.
(See Theorem 4.2.) Our first proof, given in this section, is based on a computation with character
sums. In Section 4.5, we remark that J satisfies the BSD conjecture: this fact will be crucial in
Section 6 for us to make further observations about the rank of J . Section 5 contains an alternate
cohomological proof of our explicit formula (4.2) for L(J, T ).

4.1 Definition of the L-function

Fix a prime number ℓ ∕= p, and let H1(J) := H1
ét(J,Qℓ) denote the first ℓ-adic étale cohomology

group of J/K. It is well-known that H1(J) is a Qℓ-vector space of dimension 2g which is equipped
with a natural action of the absolute Galois group of K. For any place v of K, we let Iv denote an
inertia group at v (the possible choices form a conjugacy class), Frv denote a geometric Frobenius
at v (the possible choices form a coset of Iv), and we let Vℓ(J) denote the ℓ-adic Tate module of J .
As a Galois module, H1(J) is isomorphic to the dual of Vℓ(J)⊗Qℓ. (This duality follows by using
the short exact sequence 0 → µℓn → Gm → Gm → 0 of sheaves on J and taking an inverse limit
over n.)

The Hasse–Weil L-function of J may be defined by the Euler product:

L(J, T ) =
+

v

det
&
1− T deg v Frv | H1(J)Iv

'−1
, (4.1)

where the product runs over all places v of K. Here, H1(J)Iv designates the Iv-invariant subspace
of H1(J). Recall from [ST68] that J has good reduction at a place v if and only if Iv acts trivially
on H1(J), or equivalently, if and only if H1(J)Iv has dimension 2g.

The power series in T resulting from the formal expansion of the product (4.1) is known, by
the Hasse–Weil bound on the eigenvalues of Frv acting on H1(J), to converge on the complex open
disc {T ∈ C : |T | < r−3/2}. But actually, much more is true! We summarize deep results of
Grothendieck, Deligne, and others in the following theorem.

Theorem 4.1. Let J/K be as above. Write g = dim J for its dimension, and NJ ∈ Div(P1) for
its conductor divisor.

(1. Rationality) The L-function L(J, T ) is a rational function in T with integral coefficients.
The global degree of L(J, T ), defined to the degree of the numerator minus the degree of the
denominator, is denoted by b(J). The degree b(J) is related to degNJ by b(J) = degNJ −4g.

(2. Functional equation) There is some w(J) ∈ {±1} such that L(J, T ) satisfies

L(J, T ) = w(J) (rT )b(J)L
&
J, (r2T )−1

'
.

(3. Riemann Hypothesis) If z ∈ C is such that L(J, z) = 0, then |z| = r−1.

Proof. For the proofs of rationality, the functional equation, and the Riemann hypothesis, we
refer the reader to [Del80]. We provide a proof of the formula for the degree b(J) of L(J, T ) in
Proposition A.1.

Once we compute the L-function of J in Theorem 4.2, we check the degree in Remark 4.9 using
the formula b(J) = degNJ − 4g. This formula will also be used in the cohomological computation
of L(J, T ) in Section 5.
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4.2 Explicit expression for the L-function

We let p, r, a, b, q have the same meaning as in the introduction. With the notation introduced in
Section 3, we state our formula for the L-function of J .

Theorem 4.2. Let O be the orbit set defined in §3.3 and, for any o ∈ O, define ω(o) as in
Definition 3.6. The L-function L(J, T ) ∈ Z[T ] of J/K admits the following expression:

L(J, T ) =
+

o∈O

>
1− ω(o)T |o|

?
. (4.2)

The proof of Theorem 4.2 occupies most of the rest of Section 4. We start by proving a number of
elementary lemmas in Section 4.3, before gathering our results to conclude the proof in Section 4.4.

4.3 Preliminary lemmas

We first recall an expression for the logarithm of L(J, T ). For any β ∈ Fr
×
, let Xβ denote the

smooth projective curve over Fr(β) which is birational to the curve defined by the affine model
xa + yb = βq − β.

Lemma 4.3. For m ∈ Z≥1 and β ∈ Frm, set AJ(β,m) = rm + 1− |Xβ(Frm)|. Then,

logL(J, T ) =
,

m≥1

8

9:
,

β∈F×
rm

AJ(β,m)

;

<=
Tm

m
.

Proof. We have shown in Proposition 2.3 that J has unipotent reduction at all of its places of bad
reduction. At a place v of unipotent reduction for J , dimQℓ

H1(J)Iv = 0, as shown in [ST68]. Hence,
the associated Euler factor det(1− T deg v Frv | H1(J)Iv) in L(J, T ) is equal to 1. Consequently, in
the Euler product (4.1) defining L(J, T ), we may ignore the factors corresponding to places of bad
reduction. We thus have

L(J, T ) =
+

good v

det(1− T deg v Frv | H1(J)Iv)−1 .

At a place v of good reduction, the inertia group Iv acts trivially on H1(J) (see [ST68] again), so
that dimQℓ

H1(J)Iv = 2g. We write αv,1, . . . ,αv,2g ∈ Qℓ for the eigenvalues of Frv acting on H1(J).
Formally expanding the power series logL(J, T ) ∈ Qℓ[[T ]], we obtain that

logL(J, T ) = −
,

good v

2g,

i=1

log(1− αv,i T
deg v) =

,

good v

2g,

i=1

∞,

k=1

(αv,i T
deg v)k

k

=

∞,

k=1

8

:
,

good v

@
2g,

i=1

αk
v,i

A
T k deg v

k

;

= .

We write m = k deg v and reindex the outer sums. By definition, we have

2g,

i=1

α
m/ deg v
v,i = Tr(Frm/ deg v

v |H1(J)) , (4.3)
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hence the reindexation yields

logL(J, T ) =

∞,

m=1

8

99:
,

good v
deg v|m

Tr(Frm/ deg v
v |H1(J)) deg v

Tm

m

;

<<= . (4.4)

Since K is the function field of P1, a place v of K may be viewed as the Gal(Fr/Fr)-orbit of an
Fr-rational point on P1. The degree of v is the number of elements in the associated orbit.

Let β ∈ P1(Fr) and vβ be the corresponding place of K. The orbit of β under the action
of Gal(Fr/Fr) has exactly [Fr(β) : Fr] elements, so that deg(vβ) = [Fr(β) : Fr]. Note that tshe

numbers Tr(Fr
m/ deg vβ
vβ |H1(J)) do not depend on the choice of a representative β ∈ P1(Fr) of the

orbit vβ .
Let U be the largest subscheme of P1 such that Jv has good reduction at all places v ∈ U . By

Proposition 2.3, we have U = A1 ! {z : zq − z = 0} . We may thus rewrite identity (4.4) as

logL(J, T ) =

∞,

m=1

8

:
,

β∈U(Frm )

Tr(Fr
m/ deg vβ
vβ |H1(J))

;

= Tm

m
. (4.5)

By flat base change, we have H1(J) ∼= H1
ét(Jv,Qℓ). From [Poo06, 5.3.5], we have H1

ét(Jv,Qℓ) ∼=
H1

ét(Xv,Qℓ). Together, we see

H1(J)Iv = H1(J) ∼= H1
ét(Jv,Qℓ) ∼= H1

ét(Xv,Qℓ) .

The Grothendieck–Lefschetz trace formula then yields

Tr(Fr
m/ deg vβ
vβ |H1(J)) = |Frm |+ 1− |Xβ(Frm)| = AJ(β,m).

Plugging this last identity into (4.5) concludes the proof.

We now interpret the quantities AJ(β,m) appearing in Lemma 4.3 in terms of character sums.
For any m ≥ 1, we write 1 for the trivial multiplicative character on Frm .

For any m ≥ 1 and c ≥ 2 we set

Mc(r
m) := { characters λ : F×

rm → C× such that λc = 1} ,
M ′

c(r
m) := {nontrivial characters λ : F×

rm → C× such that λc = 1} .

We further define M ′
a,b(r

m) = M ′
a(r

m) ×M ′
b(r

m). We extend all nontrivial multiplicative charac-
ters λ on Fm by λ(0) = 0. For any pair (λ1,λ2) of multiplicative characters on Frm , any additive
character ψ on Frm and any α ∈ Frm , we set

Srm(λ1,λ2,ψ,α) :=
,

(w,z)∈(Frm )2

λ1(z)λ2(w − z)ψ(αw).

With this new notation at hand, we may now state:

Lemma 4.4. For any nontrivial additive character ψr on Fr, and any m ≥ 1, we have

,

β∈F×
rm

AJ(β,m) = −
,

α∈Frm∩Fq ,
(λ1,λ2)∈M ′

a,b(r
m)

Srm(λ1,λ2,ψr ◦ TrFrm/Fr
,α).

24



Remark 4.5. It may seem odd that the right-hand side appears to depend on the choice of a
nontrivial additive character ψr while the left-hand side does not. However, as should be clear after
the proof, a different choice of ψr merely permutes the terms Srm(λ1,λ2,ψ,α).

Proof. For a given β ∈ F×
rm , we begin by giving an expression of |Xβ(Frm)| as a character sum. The

curve Xβ/Frm has a unique point at infinity, and this point is rational over Frm . As a consequence,
we have |Xβ(Frm)| = 1 +

BB-(x, y) ∈ (Frm)
2 : xa + yb = βq − β

.BB, so that

|Xβ(Frm)|− 1 =
,

x∈Frm

BBB
-
y ∈ Frm : xa + yb = βq − β

.BBB . (4.6)

It is classical (see [Coh07, Lemma 2.5.21]) that for any integer N ≥ 2 and any z ∈ Frm , we have

BB-y ∈ Frm : yN = z
.BB =

,

λ∈MN (rm)

λ(z), (4.7)

The term corresponding to λ = 1 ∈ MN (rm) contributes 1. Evaluating (4.7) with N = b and
z = −xa + βq − β into (4.6), and swapping the sums yields

|Xβ(Frm)|− 1 =
,

λ∈Mb(rm)

,

x∈Frm

λ(−xa + βq − β) = rm +
,

λ∈M ′
b(r

m)

,

x∈Frm

λ(−xa + βq − β).

For all β ∈ F×
rm , we therefore have

AJ(β,m) = −
,

λ∈M ′
b(r

m)

,

x∈Frm

λ(−xa + βq − β) .

For each λ ∈ M ′
b(r

m), we use (4.7) once more, this time with N = a, to reindex the sum over x in
the above display. This yields

,

x∈Frm

λ(−xa + βq − β) =
,

z∈Frm

BB-x ∈ Frm : xa = z
.BBλ(−z + βq − β)

=
,

θ∈Ma(rm)

,

z∈Frm

θ(z)λ(−z + βq − β) =
,

θ∈M ′
a(r

m)

,

z∈Frm

θ(z)λ(−z + βq − β).

To justify the last equality, we note that the term corresponding to θ = 1 does not contribute, by
orthogonality of characters for Frm . We have thus proved that

AJ(β,m) =
,

λ∈M ′
b(r

m)

,

θ∈M ′
a(r

m)

,

z∈Frm

θ(z)λ(−z + βq − β) .

Applying orthogonality of characters for F×
rm once again, we also note that if θ and λ are multi-

plicative characters such that θ ∕= λ−1, the sum
*

z∈Frm
θ(z)λ(−z+ βq − β) vanishes if βq − β = 0,

including if β = 0. It follows from the previous paragraph that, for all m ≥ 1, we have

,

β∈F×
rm

AJ(β,m) = −
,

β∈F×
rm

,

θ∈M ′
a(r

m)

,

λ∈M ′
b(r

m)

,

z∈Frm

θ(z)λ(−z + βq − β)

= −
,

θ∈M ′
a(r

m)

,

λ∈M ′
b(r

m)

8

:
,

β∈Frm

,

z∈Frm

θ(z)λ(−z + βq − β)

;

= . (4.8)
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For fixed (θ,λ) ∈ M ′
a,b(r

m), we now reindex the inner sum:

,

β∈Frm

,

z∈Frm

θ(z)λ(−z + βq − β) =
,

w∈Frm

BB-β ∈ Frm : w = βq − β
.BB

8

:
,

z∈Frm

θ(z)λ(−z + w)

;

= .

We now appeal to [Gri19, Lemma 4.5], which states that for any z ∈ Frm and any nontrivial additive
character ψ on Frm we have

BB-β ∈ Frm : w = βq − β
.BB =

,

α∈(Frm∩Fq)

ψ(αw) . (4.9)

Plugging (4.9) into (4.8) and reordering the sums, for any nontrivial additive character ψ on Frm

we obtain

,

β∈U(Frm )

AJ(β,m) = −
,

θ∈M ′
a(r

m)

,

λ∈M ′
b(r

m)

,

α∈(Frm∩Fq)

8

:
,

(w,z)∈(Frm )2

θ(z)λ(w − z)ψ(αw)

;

= .

Note that the sum between brackets is equal to Srm(θ,λ,ψ,α).
To conclude, recall that we have fixed a nontrivial additive character ψr on Fr. For any integer

m ≥ 1, we write the last display for ψ = ψr ◦ TrFrm/Fr
, which is indeed a nontrivial additive

character on Frm . This yields that, for any m ≥ 1,

,

β∈U(Frm )

AJ(β,m) = −
,

(λ1,λ2)∈M ′
a,b(r

m)

,

α∈(Frm∩Fq)

Srm(λ1,λ2,ψr ◦ TrFrm/Fr
,α).

This proves the lemma.

Our next step towards proving Theorem 4.2 is to give a more recognizable form to the inner
sums which appear in Lemma 4.4.

Lemma 4.6. Let m ≥ 1. Given a pair (λ1,λ2) of nontrivial multiplicative characters on F = Frm,
a nontrivial additive character ψ on Frm, and an element α ∈ Frm, we have

Srm(λ1,λ2,ψ,α) = GF(λ1,ψα)GF(λ2,ψα) ,

where ψα is the additive character on Frm defined by x 3→ ψ(αx).

Proof. By definition of Srm(λ1,λ2,ψ,α), we have

Srm(λ1,λ2,ψ,α) =
,

z∈F

,

w∈F
λ1(z)λ2(w − z)ψ(αw) .

Reindexing the inner sum by setting y = w − z, we obtain

Srm(λ1,λ2,ψ,α) =
,

y∈F

,

z∈F
λ1(z)λ2(y)ψ(αy + αz) =

8

:
,

y∈F
λ1(z)ψ(αy)

;

=
@
,

z∈F
λ2(z)ψ(αz)

A

= GFrm
(λ1,ψα)GFrm

(λ2,ψα) .

This concludes the proof. Note that both sides vanish if α = 0.
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Recall that or(n) denotes the multiplicative order of r modulo n and that χ : Fp
× → Q×

is the
Teichmüller character defined in Section 3.1.

Lemma 4.7. Let c ≥ 1 be an integer coprime to p. For i ∈ Z/cZ ! {0}, let κi = or
&
c/ gcd(c, i)

'
.

Then, the map
-
i ∈ Z/cZ! {0} : κi | m

.
→ M ′

c(r
m)

i 3→
C
x 3→

&
χ ◦NFrm/Frκi

'
(x)i(r

κi−1)/c
D

is a bijection.

Proof. For any i ∈ Z/cZ ! {0} such that κi divides m, the character λ : F×
rm → C× defined by

λ(x) = (χ ◦ NFrm/Frκi
)(x)i(r

κi−1)/c for all x ∈ F×
rm has exact order c/ gcd(i, c). In particular, λ is

nontrivial and has order dividing c, so λ ∈ M ′
c(r

m).
Conversely, let λ be a nontrivial multiplicative character on Frm whose cth power is trivial. The

Teichmüller character χ generates the group of multiplicative characters on Frm , so λ = χℓ for some
integer ℓ ∈ {1, . . . , rm − 2}. Since λc is trivial on F×

rm and since χ has order exactly rm − 1, there
exists an integer i ≥ 1 such that ℓc = i(rm−1). Since 1 ≤ ℓ ≤ rm−2, we have 1 ≤ i ≤ c−1. Letting
c′ = c/ gcd(c, i) and i′ = i/ gcd(c, i), we find that ℓc′ = i′(rm − 1). By construction, gcd(c′, i′) = 1
and so c′ divides rm − 1. In particular the order κi of r modulo c′ divides m and so i′(rκi − 1)/c′

is an integer. We have ℓ = i(rm − 1)/c. So, for all x ∈ F×
rm ,

λ(x) = χ(x)i(r
m−1)/c = χ(x)

i′(rκi−1)

c′ (1+rκi+···+rm−κi ) = χ
>
x1+rκi+···+rm−κi

? i′(rκi−1)

c′

=
&
χ ◦NFrm/Frκi

'
(x)i(r

κi−1)/c .

Hence λ has the desired form.

We now connect our last results with the discussion in §3.3–§3.4. There we introduced the set
O = Oa,b,q of orbits of the action of 〈r〉 on (Z/aZ ! {0}) × (Z/bZ ! {0}) × F×

q , as well as the set
O′

n of 〈r〉-orbits of (Z/nZ! {0})× F×
q . We also defined two natural surjective maps

πa : O → O′
a and πb : O → O′

b.

Fix a nontrivial additive character ψ0 on Fp. For any m ≥ 1 and α ∈ Frm ∩ Fq, define an
additive character ψm,α : Frm → Q by putting ψm,α(x) = (ψ0 ◦ TrFrm/Fp

)(αx) for all x ∈ Frm .

Lemma 4.8. For any m ≥ 1, we have
,

o∈O s.t.
|o| divides m

|o|ω(o)m/|o| =
,

α∈(Frm∩Fq)×,
(λ1,λ2)∈M ′

a,b(r
m)

Grm(λ1,ψm,α)Grm(λ2,ψm,α) .

Proof. For any integer m ≥ 1 and any orbit o ∈ O, recall from §3.3 that |πa(o)| and |πb(o)| both
divide |o|. If |o| divides m, then |πa(o)| and |πb(o)| a fortiori do so. Since νa(o) = |o|/|πa(o)|, we
have

ω(o)m/|o| = G (πa(o))
m/|πa(o)|G (πb(o))

m/|πb(o)| .

Pick a representative (i, j,α) ∈ S of o ∈ O. Then, (i,α) ∈ S′
a is a representative of πa(o)

and (j,α) ∈ S′
b is a representative of πb(o). We write ra = r|πa(o)|. Using the Hasse–Davenport

relation (3.3) for Gauss sums, and noting that Ψ(i,α) ◦ TrFrm/Fra
= ψm,α yields

G (πa(o))
m/|πa(o)| = Gra

&
λ(i,α),Ψ(i,α)

'm/πa(o) = Grm
&
λ(i,α) ◦NFrm/Fra

,Ψ(i,α) ◦ TrFrm/Fra

'

= Grm
&
λ(i,α) ◦NFrm/Fra

,ψm,α

'
.
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A similar computation shows that G (πb(o))
m/|πb(o)| = Grm

>
λ(j,α) ◦NFrm/Frb

,ψm,α

?
.

If o is the orbit of (i, j,α) ∈ S, then |o| divides m if and only if (i) α ∈ Frm , (ii) the order of r
modulo a/ gcd(a, i) divides m (which happens if and only if a divides i(rm − 1)) and (iii) the order
of r modulo b/ gcd(b, j) divides m (which happens if and only if b divides j(rm − 1)).

Recall that we have set κr,a(i) = or(a/ gcd(a, i)) and κr,b(j) = or(b/ gcd(b, j)). We have

,

o∈O
|o| divides m

|o|ω(o)m/|o| =
,

(i,j,α)∈S
α∈F×

rm

κr,a(i)|m
κr,b(j)|m

Grm
&
λ(i,α) ◦NFrm/Fra

,ψm,α

'
Grm

>
λ(j,α) ◦NFrm/Frb

,ψm,α

?
.

(4.10)

Set κ = κr,a(i). Then, κ divides or(a) which divides πa(o). Also, note that for any finite field F
of characteristic p and any extension F′ of F, we have χ|F ◦NF′/F = (χ|F′)|F

′×|/|F×|. Together, these
imply that

λ(i,α) ◦NFrm/Fra
= (χ ◦NFrm/Fra

)
i(rκa−1)

a = (χ ◦NFrm/Fra
◦NFrm/Frκ

)
i(rκ−1)

a = (χ ◦NFrm/Frκ
)
i(rκ−1)

a .

For any m ≥ 1, Lemma 4.7 states that, as i runs through all elements of (Z/aZ ! {0}) satisfying
κr,a(i) | m, the character λ(i,α) ◦ NFrm/Fra

varies over all characters λ1 ∈ M ′
a(r

m). Similarly, as j
runs through all elements of (Z/bZ!{0}) such that κr,b(j) | m, the character λ(j,α)◦NFrm/Frb

varies

over all characters λ2 ∈ M ′
b(r

m). Finally, recalling that S = (Z/aZ ! {0}) × (Z/bZ ! {0}) × F×
q ,

we see that if (i, j,α) ∈ S, then α ∈ F×
q . Altogether, we conclude by reindexing the sum on the

right-hand side of (4.10) from a sum over (i, j,α) ∈ S such that α ∈ F×
rm , κr,a(i) | m and κr,b(j) | m

to a sum over (α,λ1,λ2) ∈ (Frm ∩ Fq)
× ×M ′

a,b(r
m).

4.4 Proof of Theorem 4.2

We make use of the notation introduced in the previous subsection. By Lemma 4.3, we have

logL(J, T ) =
,

m≥1

8

9:
,

β∈F×
rm

AJ(β,m)

;

<=
Tm

m
.

Combining Lemmas 4.4 and 4.6 yields that, for all m ≥ 1,

,

β∈F×
rm

AJ(β,m) = −
,

α∈Frm∩Fq ,
(λ1,λ2)∈M ′

a,b(r
m)

GF(λ1,ψm,α)GF(λ2,ψm,α) .

Here, we may ignore the term α = 0 because GF(λ1,ψm,0)GF(λ2,ψm,0) vanishes. We combine this
identity with Lemma 4.8 to obtain

− logL(J, T ) =
,

m≥1

8

99:
,

o∈O s.t.
|o| divides m

|o|ω(o)m/|o|

;

<<=
Tm

m
.
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On the other hand, expanding the logarithm, we see that

− log
+

o∈O
(1− ω(o)T |o|) =

,

o∈O
log

>
1− ω(o)T |o|

?
=

,

o∈O

,

n≥1

&
ω(o)T |o|'n

n

=
,

m≥1

8

99:
,

o∈O
|o| divides m

|o|ω(o)m/|o|

;

<<= · T
m

m
.

Therefore,

logL(J, T ) = log
+

o∈O
(1− ω(o)T |o|).

Exponentiating this identity concludes the proof of Theorem 4.2.
□

Remark 4.9. Theorem 4.1 yields that degL(J, T ) = b(J) = degNJ − 4g. From this formula and
the computation of degNJ in Proposition 2.6, we find

degL(J, T ) = (a− 1)(b− 1)(q + 1)− 4
(a− 1)(b− 1)

2
= (a− 1)(b− 1)(q − 1) .

On the other hand, from our Theorem 4.2, we see that the degree of L(J, T ) equals
*

o∈O |o|,
where O is the set of 〈r〉-orbits on S = (Z/aZ! {0})× (Z/bZ! {0})×F×

q . Since S may be written
as the disjoint union of the 〈r〉-orbits o ∈ O, it is clear that

*
o∈O |o| = |S|.

Since |S| = (a− 1)(b− 1)(q − 1), we recover the result.

4.5 The BSD conjecture for J

The special value L∗(J) of the L-function of J at T = r−1 is defined as

L∗(J) :=
L(J, T )

(1− rT )v

BBBB
T=r−1

, where v = ordT=r−1 L(J, T ).

This definition makes sense since the L-function is a rational function of T . (See Theorem 4.1.)
By definition of L(J, T ), the function L : s 3→ L(J, r−s) is positive on [3/2,∞). By the Riemann
Hypothesis for L-functions of abelian varieties over K, the function L does not vanish on (1, 3/2].
The special value L∗(J) is thus nonnegative. Since L∗(J) is, by definition, a nonzero rational
number, we conclude that L∗(J) ∈ Q>0.

Let 6J denote the dual abelian variety to K and let

〈·, ·〉 : J(K)× 6J(K) → Q

denote the canonical Néron–Tate height divided by log r. Then, 〈·, ·〉 is a bilinear pairing which is
nondegenerate modulo torsion. Choosing a basis P1, . . . , Pr for J(K) modulo torsion and a basis
EP1, . . . ,EPr for 6J(K) modulo torsion, the regulator of J is defined to be

Reg(J) := | det〈Pi,EPj〉1≤i,j≤r|.

These definitions allow us to sate our Theorem 1.1, proving the Birch and Swinnerton-Dyer
conjecture for J/K :
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Theorem 1.1. Let C and J be as above. The abelian variety J satisfies the Birch and Swinnerton-
Dyer conjecture. This means that

• The algebraic and analytic ranks of J coincide: ordT=r−1 L(J, T ) = rank J(K).

• The Tate–Shafarevich group X(J) is finite.

• The BSD formula holds:

L∗(J) =
|X(J)|Reg(J)

!
v cv(J)

H(J) r−g |J(K)tors|2
, (4.11)

where the cv(J) are the local Tamagawa numbers of J and Reg(J) is the regulator.

We refer the reader to [Ulm14, §6.2.3] for more background about the Birch and Swinnerton-
Dyer conjecture for Jacobians over function fields.

Proof. Theorem 1.1 is but a special case of [PU16, Theorem 3.1.2]. One of the main argument in
their proof can, in essence, be traced back to Shioda’s work on surfaces defined by 4-nomials (see
[Shi86]).

This result will allow us to derive precise information about rank J(K) in Section 6.

Remark 4.10. The BSD formula is probably more typically stated as

L∗(J) =
|X(J)|Reg(J)

!
v cv(J)

H(J) r−g |J(K)tors| |J∨(K)tors|
. (4.12)

In our case, J is principally polarized because J is a Jacobian, so that J ∼= J∨. In particular,
|J(K)tors| |J∨(K)tors| = |J(K)tors|2, and our statement agrees with the typical one.

5 Cohomological computation of L(J, T )

Our goal in this section is to provide an alternative computation of the L-function L(J, T ) using
the geometry of the minimal proper regular SNC model S of C. In particular, we compute the zeta
function of S in two different ways – first by decomposing it via the fibers over P1 and a second
time by understanding the cohomology of S in terms of a product of curves which dominates S.

This computation generalizes the one found in [GU20, §7] for a = 2 and b = 3.

Throughout the section, we denote by Hn(−) the nth ℓ-adic cohomology group of a variety
over Fr. That is, Hn(X) denotes Hn

ét(X ×Fr Fr,Qℓ) for a prime ℓ ∕= p. This cohomology group is
endowed with a natural action of the geometric rth power Frobenius Frr.

The following linear algebra fact (also used in [Ulm07], [GU20]) will be useful for the linear
algebra arguments in our cohomology computation:

Lemma 5.1. Let V be a finite-dimensional vector space with subspaces Wi indexed by i ∈ Z/mZ
such that V =

5
i∈Z/mZWi, and let φ : V → V be a linear map such that φ(Wi) ⊂ Wi+1 for all

i ∈ Z/mZ. Then
det (1− φT |V ) = det (1− φmTm|W0) .
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5.1 Preliminaries about Artin–Schreier curves

For any prime-to-p integer d ≥ 1 and any power q of p, let Xd,q be the smooth projective curve
over Fr defined by the affine equation

Xd,q : wd = zq − z .

Since d and q are relatively prime, Xd,q admits a unique point at infinity which we denote by
P∞ ∈ Xd,q. We note that P∞ is Fr-rational. A straightforward application of the Riemann–Hurwitz
formula yields that Xd,q has genus (q − 1)(d− 1)/2. Hence, dimQℓ

H1(Xd,q) = (q − 1)(d− 1).
The curve Xd,q ×Fr Fr is naturally endowed with an action of µd × Fq, defined as follows: for

any ζ ∈ µd and any α ∈ Fq, set (ζ,α) · (w, z) := (ζw, z + α) for any (w, z) ∈ Xd,q ! {P∞}, and
(ζ,α) ·P∞ = P∞. By the functoriality of cohomology, this induces an action of µd×Fq on H1(Xd,q).
For any (i,α) ∈ S′

d, we denote by H1(Xd,q)
(i,α) the subspace of H1(Xd,q) on which µd × Fq acts as

multiplication by λ(i,α)ψ(i,α) . By [Kat81], each H1(Xd,q)
(i,α) has dimension 1.

Recall from §3.3 that we defined S′
d = (Z/dZ!{0})×F×

q and endowed it with an action by 〈r〉,
and let O′

d be the set of orbits of S′
d under this action. Moreover for any (i,α) ∈ S′

d, we defined
(in §3.4) an additive character λ(i,α) and a multiplicative character Ψ(i,α) on Fr|o|′ . By construction,
λ(i,α) induces a character λ(i,α) of µd by composition with the quotient map

(Fr|o′|)
× → (Fr|o′|)

×/ kerλ(i,α) ≃ µd/(d,i) ⊂ µd,

and Ψ(i,α) induces an additive character ψ(i,α) of Fq by composition with the trace map TrF
r|o′|

/Fq
.

The map which takes (i,α) to the product character λ(i,α)ψ(i,α) is a bijection between S′
d and the

group of characters of µd×Fq. Using this bijection, the decomposition of H1(Xd,q) as a direct sum
of lines alluded to in the previous paragraph then reads

H1(Xd,q) =
4

(i,α)∈S′
d

H1(Xd,q)
(i,α). (5.1)

The action of Frr on H1(Xd,q) sends the line H1(Xd,q)
(i,α) indexed by (i,α) ∈ S′

d onto the line
indexed by (ri,α1/r). We deduce from the above that, for any orbit o′ ∈ O′

d, the |o′|th iterate of
Frr stabilizes the line H1(Xd,q)

(i,α) for any representative (i,α) ∈ o′. By [Kat81], the eigenvalue
of (Frr)

|o′| acting on the line H1(Xd,q)
(i,α) is the Gauss sum G (o′) which we defined in §3.4,

Definition 3.6. In other words, we have

det
>
1− Fr|o

′|
r T

BBBH1(Xd,q)
(i,α)

?
= 1−G

&
o′
'
T, (5.2)

for any (i,α) ∈ o′. Furthermore, the direct sum

H1(Xd,q)o′ :=
4

(i,α)∈o′
H1(Xd,q)

(i,α)

is stable under the action of Frr, and the action of Frr cyclically permutes the summands thereof.
By Lemma 5.1, we thus have

det
&
1− Frr T

BBH1(Xd,q)o′
'
= 1−G

&
o′
'
T |o′| .

We conclude that
det

&
1− Frr T

BBH1(Xd,q)
'
=

+

o′∈O′
d

>
1−G

&
o′
'
T |o′|

?
,

is the L-function of the curve Xd,q/Fr (i.e., the numerator of its Hasse–Weil ζ-function, viewed as
a rational function in T ).
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5.2 Domination by a product of curves

Let a, b ≥ 1 be relatively prime integers which are both coprime to p, and let q be a power of p.
Let Xa and Yb be smooth projective curves over Fr defined by the (singular) affine equations

Xa : xa = u1 ,

Yb : y
b = u2 .

Let ∞a denote the unique point at infinity on Xa and let ∞b denote the unique point at infinity
on Yb. Let P be the product Xa × Yb and let π : S0 → P1

Fr
be the minimal proper regular model of

the curve with affine equation xa + yb = u over Fr(u).
The surface P is equipped with a rational map π0 : P ""# P1 defined on the affine patch by

π0 : P ""# P1,
((x, u1), (y, u2)) 3→ u1 + u2 .

The rational map π0 also maps {∞a} × (Yb ! {∞b}) and {∞a} × (Yb ! {∞b}) to ∞ ∈ P1, and
has a unique point of indeterminacy at (∞a,∞b). As is explained in the proof of Proposition 3.1.5
of [PU16], one can resolve the indeterminacy in π0 through a series of blow-ups at the point of
indeterminacy. Moreover, as [PU16] explains in Remark 3.1.6, the exceptional fiber of the last
blow-up maps isomorphically to P1 and all other fibers map to ∞ ∈ P1. Let R be the result of this
blow-up. Examining the construction and comparing to the recipe for constructing minimal proper
regular SNC models from [Dok20], we find that in fact, R is the minimal proper regular model of
the curve with affine equation xa + yb = u over Fr(u).

Let Pq,q = Xa,q × Yb,q. The surface Pq,q is a Galois cover of P with Galois group Fq × Fq. Let
Rq,q be the fiber product R×P Pq,q. Then, Rq,q is a Galois cover of R with Galois group Fq × Fq.
There is an ‘antidiagonal’ action of Fq on Pq,q and Rq,q where α acts by (α,−α) and this action
preserves fibers of the rational map Pq,q to P1. Let Pq := Pq,q/Fq and Rq := Rq,q/Fq be the
quotients by this action. By construction, Pq is a Fq-Galois cover of P and Rq is a Fq-Galois cover
of R. We can also recognize Pq and Rq as pullbacks. We have Pq = P ×P1

u
P1
t and Rq = R×P Pq.

We summarize these maps in the following commutative diagram:

Rq,q Rq R

Pq,q = Xa,q × Yb,q Pq P = Xa × Yb

P1
t P1

t P1
u

/Fq

┘ ┘
/Fq

┘
π0

u=tq−t

We now relate the surfaces appearing in the commutative diagram above to the minimal proper
regular SNC model S of Ca,b, as defined in §2.

First, let π : S0 → P1
Fr

be the minimal proper regular model of the curve with affine equation

xa + yb = u over Fr(u). There is a rational map φ : P → S0 defined on the affine patch by

φ : P ""# S0,
((x, u1), (y, u2)) 3→ (x, y, u1 + u2) .

The rational map φ has a unique point of indeterminacy at (∞a,∞b), and this indeterminacy can
be resolved by the same series of blow-ups that resolves π0, yielding a morphism φ : R → S0. In
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fact, we have already remarked that R is the minimal proper regular model of the curve xa+yb = u,
and φ : R → S0 is an isomorphism.

Now, set Sq := S0×P1
u
P1
t where the second fiber maps P1

t → P1
u via the Artin–Schreier map t 3→

tq−t, so that Sq is a model of xa+yb = tq−t. The rational map φq,q : Pq,q ""# Sq, ((x, t1), (y, t2)) 3→
(x, y, t1+t2) is invariant under the antidiagonal Fq-action. The induced rational map φq : Pq ""# Sq

from the quotient is the same as the pullback of φ : P ""# S0. We now resolve the indeterminacy
of these rational maps.

The isomorphism φ : R → S0 pulls back to an isomorphism φq : Rq → Sq which resolves the
indeterminacy of φq : Pq ""# Sq. Moreover, the induced map Rq,q → Sq given by composing φq

with the antidiagonal quotient resolves the indeterminacy of the rational map φq,q : Pq,q → Sq.
In Section 5.4, these morphisms will allow us to relate the action of Frobenius on the ‘antidi-

agonal Fq’-invariant subspace of H2(Pq,q) to the action of Frobenius on H2(Sq) modulo its ‘trivial
lattice’.

We summarize in Figure 2 the maps considered here in a commutative diagram, where dashed
arrows denote rational maps and solid arrows are everywhere defined. The maps from Rq,q,Rq,
and R resolve the indeterminacy of the maps from Pq,q,Pq and P with the same targets.

R

Rq

Rq,q P S0

Pq Sq

Pq,q P1
u P1

u

P1
t P1

t

P1
t

Figure 2: Summary of maps

Finally, we relate Sq to S. In Section 5.5, this relationship will allow us to identify the action
of Frobenius on H2(S) modulo its ‘trivial lattice’ to the action of Frobenius on H2(Sq) modulo its
‘trivial lattice’.

Upon restricting to the fibers over P1 ! (Fq ∪ {∞}), the surfaces S and Sq become isomorphic
as models of Ca,b. However, since Sq is a ramified cover of S0, the surface Sq may not be a regular
model for Ca,b, and there need not be morphisms between Sq and S in either direction.

Now, Sq → S0 is étale away from the fiber above infinity, so the only singularities of Sq lie
on the fiber above infinity. When blowing up these singularities to get a proper regular model,
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the exceptional fibers all map to ∞ ∈ P1
t . After further blow-ups at the singularities on fibers,

one gets a proper regular SNC model S ′ of Ca,b equipped with a blow-up map Ca,b → Sq. The
exceptional fibers of the blow-ups are components of the singular fibers (above Fq and ∞). By
the minimality of S and since S,S ′, and Sq are all isomorphic away from the singular fibers, the
birational isomorphism S ′ → S defined away from the singular fibers extends to a morphism which
is defined by iteratively contracting certain −1 curves which are contained in singular fibers of the
composition S ′ → Sq → P1

t .

5.3 Cohomology of S in degree 1

Our next goal is to show that the H1 of the minimal proper regular SNC model S of C is trivial
by comparing it with the cohomology of the product of Artin–Schreier curves Pq,q constructed in
Section 5.2.

First, we relate the cohomology of Rq to the cohomology of the curves Xa,q and Yb,q. Since we
construct Rq from Pq by repeatedly blowing up at a point and the exceptional divisor (as a union
of P1s) has trivial H1, the blow-up formula (see [Mil80]) gives

H1(Rq) ∼= H1(Pq) . (5.3)

Since Pq = (Xa,q × Yb,q)/Fq, we have

H1(Pq) ∼= H1(Xa,q × Yb,q)
Fq . (5.4)

The Kunneth formula gives

H1(Xa,q × Yb,q) ∼= (H1(Xa,q)⊗H0(Yb,q)⊕H0(Xa,q)⊗H1(Yb,q))
Fq . (5.5)

Now, Fq acts trivially on H0(Xa,q) and H0(Yb,q), and we saw in Section 5.1 that the subspaces of
H1(Xa,q) and H1(Yb,q) fixed by Fq are both trivial. So, combining (5.3), (5.4), and (5.5), we find
H1(Rq) = {0} . Since Rq → Sq is a dominant morphism, the induced map H1(Rq) → H1(Sq) is
surjective, whence H1(Sq) is trivial. Using the blow-up formula as in the justification of (5.3) gives
H1(Sq) ∼= H1(S). We conclude that H1(S) = {0} .

5.4 Cohomological interpretation of the L-function

Our goal in this subsection is to relate L(J, T ) to the characteristic polynomial of Frobenius acting
on a certain quotient of H2(S).

As before, let K = Fr(t). We choose an algebraic closure K of K and a separable closure
Ksep within K. Denote by G the absolute Galois group of K. Fix a pair (a, b) of positive coprime
integers which are both coprime to p as well as a power q of p. Write C = Ca,b,q and J = Ja,b,q.

For any place v of K, we let Frv denote the geometric Frobenius at v. (The geometric Frobenius
Frv is a well-defined up to conjugacy in G.) Recall from §4.1 that the L-function of J is defined by

L(J, T ) :=
+

v

det
&
1− Frv T

BBH1(Jv)
Iv
'−1

. (5.6)

If v is a place of bad reduction of J , we know from Proposition 2.3 that J has unipotent reduction
at v. Hence, by [ST68, pg. 504, Remark 2], the action of inertia group at v on H1(Jv) only fixes
the trivial subspace, so that H1(Jv)

Iv = {0}. On the other hand, if v is a place of good reduction
of J , we have H1(Jv)

Iv = H1(Jv) since Iv acts trivially. Furthermore, at such a place v, the space
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H1(Jv) is canonically isomorphic to H1(Sv) by (for instance) [Poo06, 5.3.5], compatibly with the
action of Frv. The Euler product in (5.6) thus simplifies to

L(J, T ) =
+

v good

det
&
1− Frv T

BBH1(Sv)
'−1

, (5.7)

where the product is restricted to places of good reduction of J . In order to shorten notation, we
set Pv(T ) := det

&
1− Frv T

BBH1(Sv)
'
for any place v of K.

For a variety X over Fr, recall (e.g. from [Poo06, Def. 3.4.1]) that its zeta function is defined
by

Z(X,T ) =
+

P∈|X|

>
1− T degP

?−1
,

where the product runs over the set of closed points of X. If X is smooth and projective, by
Grothendieck–Lefschetz trace formula (see [Del77, Corollary 3.7]), we have

Z(X,T ) =

2 dimX+

i=0

(−1)i+1 det
&
1− Frr T

BBH i(X)
'
.

In particular, we have Z(P1
Fr
, T ) =

&
(1− T )(1− rT )

'−1
.

We showed in Section 5.3 that H1(S) = {0}. It follows from Poincaré duality (see [Har77,
Appendix C.3]) that H3(S) = {0} as well. These remarks show that

Z(S, T ) = 1

(1− T ) det (1− Frr T |H2(S)) (1− r2T )
. (5.8)

Similarly, for any place v of good reduction, we have

Z(Sv, T ) =
Pv(T )

(1− T deg v)(1− (rT )deg v)
.

Since S is a disjoint union of the fibers of the map S → P1, we can also express Z(S, T ) in terms
of the zeta functions of the fibers:

Z(S, T ) =
+

v

Z(Sv, T ) =
+

v good

Z(Sv, T )
+

v bad

Z(Sv, T ) .

Combining the last two displayed formulas and (5.7), we find that

+

v good

Z(Sv, T ) =
+

v good

Pv(T )

(1− T deg v)(1− (rT )deg v)
=

+

v good

1

Pv(T )−1

1

(1− T deg v)(1− (rT )deg v)

=

8

:
+

v good

1

Pv(T )−1

;

=
@
+

v

1

(1− T deg v)(1− (rT )deg v)

A@
+

v bad

(1− T deg v)(1− (rT )deg v)

A

=
Z(P1

Fr
, T )Z(P1

Fr
, rT )

L(J, T )

@
+

v bad

(1− T deg v)(1− (rT )deg v)

A

This gives us another expression for Z(S, T ):

Z(S, T ) = 1

(1− T )(1− rT )2(1− r2T )L(J, T )

+

v bad

Z(Sv, T )(1− T deg v)(1− (rT )deg v) . (5.9)
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In fact, we can simplify this further since we know (from Section 2.1) that the fiber Sv at a
place v of bad reduction is a tree of P1s. For any such place v, let mv be the number of irreducible
components of Sv. Then, a straightforward computation shows that

Z(Sv, T ) =
Z(P1

Fv
, T )mv

Z(SpecFv, T )mv−1
=

1

(1− T deg v)(1− (rT )deg v)mv
.

Plugging this into (5.9) yields that

Z(S, T ) = 1

(1− T )(1− rT )2(1− r2T )L(J, T )

+

v bad

(1− (rT )deg v)1−mv . (5.10)

Comparing formulas (5.8) and (5.10) for Z(S, T ) and rearranging terms, we find

L(J, T ) =
P2(T )

(1− rT )2

+

v bad

Z(Sv, T )(1− T deg v)(1− (rT )deg v)

=
P2(T )

(1− rT )2

+

v bad

(1− (rT )deg v)1−mv . (5.11)

Let s∞ : P1 → S be the ‘infinity section’ s∞ which maps each point t ∈ P1 to the unique ‘point
at infinity’ on the fiber St. Let Λ ⊂ H2(S) be the trivial lattice, that is the subspace spanned by
the images under the cycle class map of (the image of) s∞ and all components of fibers of S → P1.

Let D be an irreducible (over Fr) component of a fiber of S → P1. After base change to Fr,
we can decompose D as DFr

=
)

j∈Z/nZDj with indices chosen so that Frr Dj = Dj+1. Let Wj be

the subspace of H2(S) spanned by the image of 1Dj under i∗ : H0(Dj)(−1) → H2(S). We have
Frr Wj ⊂ Wj+1, and Frrn acts on each Wj by multiplication by rn. Since Wj is one-dimensional,
we find det(1−Frnr T

n|W0) = 1− rnTn. Hence, by Lemma 5.1, the characteristic polynomial of Frr
acting on the subspace of H2(S) spanned by the classes of the components of DFr

is (1− (rT )n).
Now, the trivial lattice Λ has a basis consisting of the image of s∞ (which is defined over Fr),

the fiber over any Fr-rational point of P1 (which is again defined over Fr) and the components of
the singular fibers which do not meet s∞. We conclude that

det (1− Frr T |Λ) = (1− rT )2
+

v bad

(1− (rT )deg v)mv−1 .

Combining (5.11) with the above finally yields the following:

Proposition 5.2. We have

L(J, T ) = det
&
1− Frr T

BBH2(S)/Λ
'
.

With our computation of the degree of the conductor of J/K (see Proposition 2.6), the Néron–
Ogg–Shafarevich formula (see Appendix A) yields that degL(J, T ) = (a−1)(b−1)(q−1). It follows
from the above that

dimH2(S)/Λ = (a− 1)(b− 1)(q − 1). (5.12)

5.5 Cohomology of S in degree 2

Our next goal is to relate theH2 of the minimal proper regular SNC model S of C to the cohomology
of the product of Artin–Schreier curves Pq,q constructed in Section 5.2. Our strategy will mirror
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that of Section 5.3. The main differences are that the blow-up divisor has nontrivial H2, which we
will need to track more carefully, and that we will need to use (5.12) to show that the surjection
we construct is actually an isomorphism.

First, we relate the cohomology of Rq to the cohomology of the curves Xa,q and Yb,q. Let B be
the subspace of H2(Rq) spanned by the pullbacks of the blow-up divisor from R → P (see Section
5.2). Successively applying the blow-up formula, taking invariants, and applying the Künneth
formula, we find

H2(Rq) ∼= H2(Pq)⊕B ∼= H2((Xa,q × Yb,q)/Fq)⊕B ∼= H2(Xa,q × Yb,q)
Fq ⊕B

∼= (H1(Xa,q)⊗H1(Yb,q))
Fq ⊕ (H0(Xa,q)⊗H2(Yb,q))

Fq ⊕ (H2(Xa,q)⊗H0(Yb,q))
Fq ⊕B.

Now let Λq be the subspace of H2(Sq) which is spanned by components of fibers of Sq → P1

together with the class of the ‘infinity section’ s∞,q : P1 → Sq which takes t ∈ A1 ⊂ P1 to the
unique ‘point at infinity’ on that fiber. Recall that S is the minimal proper regular SNC model
of C and that we have defined Λ ⊂ H2(S) to be the trivial lattice. Since S and Sq are related
by a series of blow-ups and blow-downs where the exceptional fibers lie in the fibers over P1, we
automatically have H2(Sq)/Λq

∼= H2(S)/Λ.
The blow-up divisor in Rq maps to the union of (the image of) the infinity section s∞,0 and

the fiber at infinity of S0. Similarly, the blow-up divisor in Rq maps to the union of the infinity
section s∞,q and the fiber at infinity of Sq. Moreover, the classes in H0(Xa,q) ⊗ H2(Yb,q) and
H2(Xa,q)⊗H0(Yb,q) are generated by the strict transforms of the images of Xa,q×∞b and ∞a×Yb,q,
which also map to the fiber above ∞ ∈ P1 in Sq.

All told, we find that the image of (H0(Xa,q)⊗H2(Yb,q))⊕ (H2(Xa,q)⊗H0(Yb,q))⊕B under the
induced map H2(Rq) → H2(Sq) is contained in Λq. Since Rq → Sq is a dominant morphism, the
induced map H2(Rq) → H2(Sq) is surjective and induces a Galois-equivariant canonical surjection

ϖ : (H1(Xa,q)⊗H1(Yb,q))
Fq → H2(Sq)/Λq

∼= H2(S)/Λ .

From the description of (H1(Xa,q)⊗H1(Yb,q))
Fq obtained in Section 5.6 below (see (5.14)), we see

that that space has dimension (a−1)(b−1)(q−1). Formula (5.12) in the previous subsection yields
that H2(S)/Λ has the same dimension. We deduce that ϖ is a Galois-equivariant isomorphism.
Therefore,

det
&
1− Frr T

BBH2(S)/Λ
'
= det

>
1− Frr T

BBB(H1(Xa,q)⊗H1(Yb,q))
Fq

?
. (5.13)

5.6 Computation of the L-function

Combining Proposition 5.2 with (5.13), we find that

L(J, T ) = det
>
1− Frr T

BBB(H1(Xa,q)⊗H1(Yb,q))
Fq

?
.

Finally, we use the facts about the cohomology of Artin–Schreier curves from Section 5.1 to give a
more explicit expression for L(J, T ). Recall from Section 5.1 that we have

H1(Xa,q) =
4

(i,α)∈S′
a

H1(Xa,q)
(i,α) and H1(Yb,q) =

4

(i,α)∈S′
b

H1(Yb,q)
(i,α) .

In each of these direct sums indexed by elements of S′
a = (Z/aZ!{0})×Fq or S

′
b respectively, each

summand H1(Xa,q)
(i,α) and H1(Yb,q)

(i,α) is one-dimensional. This means that

H1(Xa,q)⊗H1(Yb,q) =
4

(i1,α1)∈S′
a

4

(i2,α2)∈S′
b

H1(Xa,q)
(i1,α1) ⊗H1(Yb,q)

(i2,α2)
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decomposes as a direct sum of lines. Tracing through the definitions, one sees that, among the lines
H1(Xa,q)

(i1,α1) ⊗ H1(Yb,q)
(i2,α2), the Fq-invariant lines are those indexed by pairs (i1,α1), (i2,α2)

with α1 = α2. So,

(H1(Xa,q)⊗H1(Yb,q))
Fq =

4

(i1,i2,α)∈S
H1(Xa,q)

(i1,α) ⊗H1(Yb,q)
(i2,α) . (5.14)

We now compute the characteristic polynomial of Frobenius on this space in the same way that
we computed the characteristic polynomial of Frobenius acting on H1(Xd,q) in Section 5.1. For
any orbit o ∈ O = Or,a,b,q (as defined in Section 3.3) the |o|th iterate of Frr stabilizes the line
H1(Xa,q)

(i1,α) ⊗ H1(Yb,q)
(i2,α) for any representative (i1, i2,α) ∈ o′. For any (i1, i2,α) ∈ o, we

deduce from the computation following (5.1) in Section 5.1 that the eigenvalue of (Frr)
|o| acting on

the line H1(Xa,q)
(i1,α) ⊗ H1(Yb,q)

(i2,α) is ω(o) = G (πa(o))
νa(o)G (πb(o))

νb(o). In other words, for
any (i1, i2,α) ∈ o, we have

det
>
1− (Frr)

|o| T
BBBH1(Xa,q)

(i1,α) ⊗H1(Yb,q)
(i2,α)

?
= 1− ω(o)T.

Since Frr cyclically permutes the lines H1(Xa,q)
(i1,α) ⊗H1(Yb,q)

(i2,α) for (i1, i2,α) ∈ o, Lemma 5.1
yields

det

8

:1− Frr T

BBBBBB

4

(i1,i2,α)∈o
H1(Xa,q)

(i1,α) ⊗H1(Yb,q)
(i2,α)

;

= = 1− ω(o)T |o| .

Taking the product over all orbits o ∈ O, we finally obtain

L(J, T ) =
+

o∈O

>
1− ω(o)T |o|

?
.

This confirms our result in Theorem 4.2.

6 Rank and p-adic valuation of Gauss sums

By the BSD conjecture (Theorem 1.1), we have

rank J(K) = ordT=r−1 L(J, T ) . (6.1)

In this section, we use our explicit expression for L(J, T ) from Theorem 4.2 to study rank J(K) in
terms of the parameters a, b, and q.

Lemma 6.1. In the previously introduced notation, the rank of J(K) is given by

rank J(K) =
BBB
-
o ∈ O : ω(o) = r|o|

.BBB . (6.2)

Proof. Using (6.1) for the first equality and Theorem 4.2 for the second, we have

rank J(K) = ordT=r−1 L(J, T ) = ordT=r−1

+

o∈O
(1− ω(o)T |o|) =

,

o∈O
ordT=r−1(1− ω(o)T |o|) .

The result follows immediately from the observation that

ordT=r−1(1− ω(o)T |o|) =

0
1 if ω(o) = r|o| ,

0 otherwise.
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Theorem 6.2. We have

0 ≤ rank J(K) ≤ (a− 1)(b− 1)(q − 1) = 2g(q − 1).

Proof. From (6.2), we see that rank J(K) ≤ |O|. Since O is a set of orbits on a set of cardinality
(a− 1)(b− 1)(q − 1), we have |O| ≤ (a− 1)(b− 1)(q − 1).

In the remainder of this section, we estimate the rank of J(K) more precisely than in Theo-
rem 6.2 under various assumptions on a, b, and q . In §6.4, we provide conditions on a, b, q so that
rank J(K) = 0. In §6.5, we provide conditions so that rank J(K) is “large,” that is, such that the
upper bound in Theorem 6.2 is tight.

In order to refine our bounds on rank J(K), we estimate the right-hand side of (6.2) using
explicit results about the Gauss sums appearing in ω(o). We gather the necessary results in
subsections 6.1 and 6.2.

6.1 Explicit Gauss sums

Let n ≥ 2 be a prime-to-p integer. As in §3.3, we consider the set S′
n := (Z/nZ ! {0}) × F×

q

equipped with its action of 〈r〉. We write O′
n for the set of orbits of this action. In this subsection,

we describe situations where the values of the Gauss sums G (o′) (for o′ ∈ O′
n) may be explicitly

determined. We refer to §3.4 for the definition of G (o′).

Recall that for any prime-to-p integer n ≥ 1, we denote by op(n) the multiplicative order of p
modulo n i.e., op(n) is the least integer e ≥ 1 such that pe ≡ 1 mod n.

Definition 6.3 (Supersingular Integer). A positive prime-to-p integer n is called supersingular
(for p) if there exists a positive integer ν ≥ 1 such that pν ≡ −1 (mod n) .

Lemma 6.4. Suppose that n is supersingular for p and that [Fr : Fp] is odd. Let o′ ∈ O′
n be an

orbit with representative (i,α) ∈ S′
n. If 2i ∕= n, then the cardinality of o′ is even.

Proof. Note that if pν ≡ −1 (mod n) then pν ≡ −1 (mod d) for any divisor d dividing n. Thus, if
n is supersingular for p, so is any divisor of n.

If d > 2 is a divisor of n and ν0 is the least positive integer such that pν0 ≡ −1 (mod d), we have
op(d) = 2ν0. In particular, the order op(d) is even. Since r is an odd power of p, the multiplicative
order of r modulo d is also even.

Given o′ ∈ O′
n, choose a representative (i,α) ∈ S′

n. Since 2i ∕= n, we have n/ gcd(n, i) > 2.
In particular, the previous paragraph implies that or(n/ gcd(n, i)) is even. On the other hand, we
know from equation (3.5) that

|o′| = lcm

#
or

#
n

gcd(n, i)

$
, [Fr(α) : Fr]

$
,

whence we conclude that |o′| is even.

We now describe situations where one can compute G (o′) explicitly.

Lemma 6.5. Let p ∕= 2 be an odd prime. Let n ≥ 2 be an even integer and let o′ ∈ O′
n be an orbit

with representative (n/2,α) ∈ S′
n. Then,

G
&
o′
'2

= (−1)(p−1)|o′| [Fr:Fp] r|o
′| .
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If [Fr : Fp] is a multiple of 4, then

G
&
o′
'
= λ(n/2,α)(α)

−1r|o
′|/2 . (6.3)

If [Fr : Fp] is a multiple of 4 and α is an square in (F′)×, then

G
&
o′
'
= r|o

′|/2 . (6.4)

Proof. By Definition 3.5, we have G (o′) = GF′
&
λ(n/2,α),Ψ(n/2,α)

'
, where F′ denotes the extension

of Fr of degree |o′|. Here λ(n/2,α) = χ(r|o
′|−1)/2 is a quadratic character on (F′)×. The first claim

then directly follows from the computation of Gauss sums associated to quadratic characters, dating
back to Gauss. We refer to [Was97, Lemma 6.1] for a proof.

For the second claim, we note that if [Fr : Fp] is a multiple of 4, then so is [F′ : Fp]. Let F
denote the subextension of F′/Fp with [F′ : F] = 4 . We deduce from equation (3.2) in §3.2 that

G
&
o′
'
= λ(n/2,α)(α)

−1GF′
&
λ(n/2,α),ψF′,1

'
.

Then, the Hasse–Davenport relation (3.3) for Gauss sums implies that

GF′
&
λ(n/2,α),ψF′,1

'
= GF′

>
χ|F(|F|−1)/2 ◦NF′/F,ψF,1 ◦ TrF′/F

?
= GF

>
χn(|F|−1)/2,ψF,1

?4
.

Since χn(|F|−1)/2 is a quadratic character on F, the same computation as above yields that

GF

>
χn(|F|−1)/2,ψF,1

?4
= |F|2 = |F′|1/2 .

The second claim follows by combining the previous three equations.
The third claim is immediate from the fact that λ(n/2,α) is a quadratic character on F′ .

Let us recall the following result of Shafarevich and Tate, as stated in [Ulm02, Lemma 8.3].

Lemma 6.6 (Shafarevich–Tate). Let F0 be a finite field extension of Fp, and F/F0 be a quadratic
extension. Let ψ = ψF,1 be the standard nontrivial additive character on F. Let χ be a nontrivial
multiplicative character on F which is trivial upon restriction to F0. For any element x ∈ (F)× with
TrF/F0

(x) = 0, we have
GF(χ,ψ) = −χ(x) |F0| .

We use Lemma 6.6 to prove the following:

Lemma 6.7. Let p ∕= 2 be an odd prime. Let n ≥ 2 be a supersingular integer, and let o′ ∈ O′
n

be an orbit with representative (i,α) ∈ S′
n such that 2i ∕= n. Let νi be the smallest positive integer

such that pνi ≡ −1 mod n/ gcd(n, i). Then,

G
&
o′
'
= (−1)

$
1+

i(pνi+1)
n

% |o′| [Fr :Fp]
2νi λ(i,α)(α)

−1r|o
′|/2 . (6.5)

In particular, if [Fr : Fp] is a multiple of 4νi, then

G
&
o′
'
= λ(i,α)(α)

−1r|o
′|/2 . (6.6)

If [Fr : Fp] is a multiple of 4νi and α is a nth power in (F′)×, then

G
&
o′
'
= r|o

′|/2 . (6.7)
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We remark that by construction, the exponent of −1 in (6.5) is an integer.

Proof. Let F′ denote the extension of Fr of degree |o′|. As in the previous proof, combining Defi-
nition 3.5 with equation (3.2) in §3.2 yields

G
&
o′
'
= λ(i,α)(α)

−1GF′
&
λ(i,α),ψF′,1

'
. (6.8)

Set n′ = n/ gcd(n, i). Recall that the character λ(i,α) = χi(r|o
′|−1)/n has exact order n′. We now

focus on providing an explicit expression for the Gauss sum GF′
&
λ(i,α),ψF′,1

'
.

Since n′ divides n and n is supersingular for p, n′ is also supersingular for p. As in the statement
of Lemma 6.7, let νi denote the smallest positive integer such that pνi ≡ −1 mod n′. Since 2i ∕= n,
we have n′ > 2. Hence, the order of p modulo n′ is op(n

′) = 2νi.
Let F0 denote the extension of Fp of degree νi and let F denote its quadratic extension. We claim

that F is a subextension of F′/Fp. Indeed, [F′ : Fp] = [Fr : Fp]|o′| is a multiple of [Fr : Fp]or(n
′) and

[Fr : Fp]or(n
′) =

[Fr : Fp]

gcd([Fr : Fp], op(n′))
op(n

′) =
[Fr : Fp]

gcd([Fr : Fp], op(n′))
[F : Fp]

is in turn an integer multiple of [F : Fp].
By construction, n′ divides |F|− 1. So, n divides i(|F|− 1). In particular, we deduce that

λ(i,α) = χ|F′
i(|F′|−1)/n = (χ|F ◦NF′/F)

i(|F|−1)/n.

By the Hasse–Davenport relation (3.3) for Gauss sums (see §3.2), we have

GF′
&
λ(i,α),ψF′,1

'
= GF′

>
χ|Fi(|F|−1)/n ◦NF′/F,ψF,1 ◦ TrF′/F

?
= GF

>
χi(|F|−1)/n,ψF,1

?[F′:F]
. (6.9)

Consider the multiplicative character χ = χi(|F|−1)/n on F. The character χ has exact order n′.
In particular, the order of χ is greater than 2. Since n′ divides pνi + 1, the restriction of χ to the
quadratic subextension F0 of F is trivial.

Now, let g be a generator of the cyclic group F×. Set x = g(p
νi+1)/2. Since |F×|/|F×

0 | = pνi + 1,
we have x ∈ F× ! F×

0 and x2 ∈ F×
0 . So, TrF/F0

(x) = 0 .

With this choice of x, Lemma 6.6 gives GF(χ,ψF,1) = −χ(x)|F|1/2 . Moreover,

χ(x) = χ
>
g

pνi+1
2

?i(|F|−1))/n

= χ
>
g

|F|−1
2

?i(pνi+1)/n
= χ (−1)i(p

νi+1)/n = (−1)i(p
νi+1)/n.

It follows that
GF(χ,ψF,1) = (−1)1+i(pνi+1)/n|F|1/2. (6.10)

We now put (6.8), (6.9), and (6.10) together to deduce that

G
&
o′
'
= λ(i,α)(α)

−1(−1)[F
′:F] (1+i(pνi+1)/n) |F′|1/2 .

Finally, we note that

[F′ : F] =
[F′ : Fr][Fr : Fp]

[F : Fp]
=

|o′| [Fr : Fp]

2νi
.

This completes the proof of (6.5).
If [Fr : Fp] is a multiple of 4νi, then

|o′| [Fr : Fp]

2νi

#
1 +

i(pνi + 1)

n

$

is even and G (o′) = λ(i,α)(α)
−1|F′|1/2. Finally, if α ∈ F×

q is a nth power in (F′)×, we have
λ(i,α)(α) = 1 because the order of λ(i,α) divides n.
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6.2 Denominators of p-adic valuation of Gauss sums

We work with the same notation as in the previous subsection. Recall that we have fixed a prime
ideal p of Q above p. This choice allowed us to define the Teichmüller character χ : Fp

× → Q×
,

in §3.1. Recall also that νp denotes the valuation on Q associated to p, normalised so that νp(r) = 1.
Throughout this section, given x ∈ R, we let {x} denote the fractional part of x.

Let n ≥ 2 be an integer coprime to p. For any orbit o′ ∈ O′
n, the p-adic valuation of the Gauss

sum G (o′) is a nonnegative rational number.
For any orbit o′ ∈ O′

n, we write νp(G (o′))/|o′| as a reduced fraction:

νp(G (o′))

|o′| =
N(o′)

D(o′)
,

for integers N(o′) ≥ 0, D(o′) ≥ 1 such that gcd(N(o′),D(o′)) = 1.
Our goal in this section is to control D(o′) under various hypotheses on p, r, and n. We begin

with an immediate consequence of Lemmas 6.5 and 6.7.

Lemma 6.8. Suppose n ≥ 2 is supersingular for p. Then, for all o′ ∈ O′
n, N(o′)/D(o′) = 1/2.

When n is not supersingular for p, we need to do more work to control D(o′). Our main tool is
the following lemma, which gives an explicit formula for νp(G (o′))/|o′|.
Lemma 6.9. Let n ≥ 2 be an integer coprime to p. Let o′ ∈ O′

n be an orbit and pick a representative
(i,α) ∈ S′

n of o′. Let µ = [Fr : Fp] |o′|. Write i ∈ Z for any lift of i ∈ Z/nZ to Z. Then,

νp(G (o′))

|o′| =
1

µ

µ−1,

k=0

F
−ipk

n

G
, (6.11)

where {x} denote the fractional part of x ∈ R.

The proof of Lemma 6.9 relies on a version of Stickelberger’s Theorem. We use Lemma 6.14
from [Was97], which we restate here in our notation for the reader’s convenience. (The extra factor
‘[Fr : Fp]’ appearing in our statement comes from our different choice of normalization for νp.)

Theorem 6.10 (Stickelberger’s Theorem). Let F be a finite extension of Fp with degree µ = [F : Fp].
Fix an integer s such that 0 < s < pµ − 1. For any nontrivial additive character ψ on F, we have

νp
&
GF

&
(χ|F×)−s,ψ

''
=

1

[Fr : Fp]

µ−1,

k=0

F
spk

pµ − 1

G
,

where {x} denote the fractional part of x ∈ R. Here, as above, χ denotes the Teichmüller character.

Proof of Lemma 6.9. Let (i,α) ∈ S′
n be a representative of the orbit o′ ∈ O′

n. Let F′ denote the
finite field extension of Fr of degree |o′|. By Definition 3.5 in §3.4,

G
&
o′
'
= GF′

&
λ(i,α),Ψ(i,α)

'
= GF′

#&
χ|(F′)×

'i(r|o′|−1)/n
,Ψ(i,α)

$
.

Since α ∕= 0, the additive character Ψ(i,α) on F′ is nontrivial.

Note that [F′ : Fp] = |o′| · [Fr : Fp] = µ and r|o
′| = pµ. Moreover, r|o

′| acts trivially on (Z/nZ)× ,
so i(r|o

′| − 1)/n is an integer. Applying Stickelberger’s Theorem (Theorem 6.10) gives

νp(G (o′))

|o′| =
1

[Fr : Fp] |o′|

µ−1,

k=0

0
−i(r|o

′| − 1)

n

pk

pµ − 1

H
=

1

µ

µ−1,

k=0

F
−ipk

n

G
.
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Corollary 6.11. Let n ≥ 1 be a prime-to-p integer. For any orbit o′ ∈ O′
n, we have

1

n
≤ νp(G (o′))

|o′| =
N(o′)

D(o′)
≤ 1− 1

n
.

In particular, 1 ≤ N(o′) < D(o′) .

Proof. Let (i,α) ∈ S′
n be a representative of o′. We lift i ∈ Z/nZ! {0} to i ∈ Z.

In the notation of Lemma 6.9, for any k ∈ {0, . . . , µ−1}, we have 1/n ≤
-
−ipk/n

.
≤ (n−1)/n

because i is not a multiple of n, and p is relatively prime to n. To conclude, sum these inequalities
over all k from 0 to µ− 1 and apply (6.11) from Lemma 6.9.

We now prove a more precise estimate on the denominator of νp(G (o′))/|o′|. The following may
be viewed as a bound on the denominators of slopes of the p-adic Newton polygon of the L-function
of the projective curve defined over Fr by yn = tq − t.

Proposition 6.12. Let n ≥ 2 be an integer coprime to p. Let o′ ∈ O′
n be an orbit with representative

(i,α) ∈ S′
n. Then,

D(o′) divides
n

gcd(n, i)
op

#
n

gcd(n, i)

$

In particular, D(o′) divides n op(n).

Proof. In this proof, we use the same notation as in that of Lemma 6.9. With µ = |o′|[Fr : Fp], we
know from Lemma 6.9 that

N(o′)

D(o′)
=

νp(G (o′))

|o′| =
1

µ

µ−1,

k=0

F
−ipk

n

G
. (6.12)

To lighten notation, set κ = op(n/ gcd(n, i)). We remark that κ divides op(n), which divides
or(n)[Fr : Fp], which in turn divides |o′|[Fr : Fp] . In particular, κ divides µ.

In the sum on the right-hand side of (6.12), write the Euclidean division of any index k ∈
{0, . . . , µ − 1} by κ as k = xκ + y with y ∈ {0, . . . ,κ − 1} and x ∈ {0, . . . , µ/κ}. One may then
rewrite the sum in the form

1

µ

µ−1,

k=0

F
−ipk

n

G
=

1

µ

κ−1,

y=0

µ/κ−1,

x=0

F
−ipypxκ

n

G
.

Since κ = op(n/ gcd(n, i)), we have ipκ ≡ i (mod n), so the inner sums (over x) are all equal as y
varies. More precisely, we have

µ/κ−1,

x=0

F
−ipypxκ

n

G
=

µ/κ−1,

x=0

F
−ipy

n

G
=

µ

κ

F
−ipy

n

G
.

Summing this equality over all y ∈ {0, . . . ,κ− 1}, we deduce that

N(o′)

D(o′)
=

1

µ

κ−1,

y=0

µ

κ

F
−ipy

n

G
=

1

κ

κ−1,

y=0

F
−ipy

n

G
. (6.13)

Each term {−ipy/n} in the right-most sum in (6.13) is a rational number with denominator
n/ gcd(n, ipy) = n/ gcd(n, i). So, the right-most sum in (6.13) is a rational number with de-
nominator dividing n/ gcd(n, i). After division by κ = op(n/ gcd(n, i)), we conclude that D(o′)
divides op(n/ gcd(n, i)) · n/ gcd(n, i).

The order of p modulo any divisor of n divides the order of p modulo n, so op(n/ gcd(n, i))
divides op(n). This proves the second assertion of the proposition.
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6.3 Explicit p-adic valuations of ω(o)

We now come back to the general setting of this paper. We fix a finite extension Fr of Fp. For any
pair (a, b) of relatively prime integers which are both coprime to p, and for any power q of p, we
consider the Jacobian J of the curve C over K = Fr(t).

As was shown in Section 4.2, the L-function of J involves certain character sums ω(o), indexed
by orbits o ∈ O = Oa,b,q,r. By Definition 3.6, we have

∀o ∈ O, ω(o) = G (πa(o))
|o|/|πa(o)|G (πb(o))

|o|/|πb(o)| ,

where πa : O → O′
a and πb : O → O′

b are the maps introduced in §3.3. For any orbit o ∈ O, in the
notation introduced in §6.2, we thus have

νp(ω(o))

|o| =
N(πa(o))

D(πa(o))
+

N(πb(o))

D(πb(o))
. (6.14)

In the upcoming subsection, it will be useful to know of situations in which νp(ω(o)) ∕= |o|.
From the previous subsection, we deduce the following:

Lemma 6.13. Let a, b, q, r be as above. Assume that one of the following holds:

(1) aop(a) and bop(b) are relatively prime;

(2) aop(a) is odd, and b is supersingular for p; or

(3) a is supersingular for p, and bop(b) is odd.

Then, for any orbit o ∈ O = Oa,b,q,r, we have νp(ω(o)) ∕= |o|.

Proof. Let o ∈ O be an orbit. If condition (1) is satisfied, then gcd(D(πa(o)),D(πb(o)) = 1 by
Proposition 6.12. Hence, D(πa(o)) ∕= D(πb(o)) unless both D(πa(o)) = 1 and D(πb(o)) = 1. This
situation does not occur, by Corollary 6.11.

If a is supersingular for p, then D(πa(o)) = 2 by Lemma 6.8. By Proposition 6.12, D(πb(o))
divides bor(b). Hence, if bor(b) is odd, so is D(πb(o)). In particular, if (3) is satisfied, then
D(πa(o)) ∕= D(πb(o)).

The case where (2) holds is treated in a similar way, by switching the roles of a and b.
In all three situations, we have shown that D(πa(o)) ∕= D(πb(o)). Since two reduced fractions

with different denominators cannot sum to 1, the result now immediately follows from (6.14).

Let us now show that there are infinitely many choices for a and b satisfying each of the
hypotheses of Lemma 6.13.

Lemma 6.14. For any fixed p, each of the following conditions:

(1) aop(a) and bop(b) are relatively prime;

(2) aop(a) is odd, and b is supersingular for p;

(3) a is supersingular for p, and bop(b) is odd.

is satisfied for infinitely many coprime integers a and b which are both relatively prime to p.
Moreover, each condition is satisfied for infinitely many primes a and b.
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Proof. We first focus on condition (2). If k is an odd positive integer and a is any odd divisor of
pk − 1, then op(a) divides k. So, aop(a) is odd too. We claim that there are infinitely many such
integers a. Indeed, for any odd integer k, the integer a = (pk − 1)/(p − 1) is odd. On the other
hand, there are infinitely many supersingular prime numbers b, all but finitely many of which are
coprime to any particular choice of a. Condition (3) can be satisfied by exchanging the role of a
and b.

We now consider condition (1). Choose any odd prime k ≥ 3 so that p ∕≡ 1 (mod k) and set
a = (pk − 1)/(p− 1). Choose any odd prime ℓ which is relatively prime to both k and a and which
does not divide op(k). There are infinitely many such ℓ. If we set b = (pℓ − 1)/(p− 1), then b ∕≡ 0
(mod k). We have aop(a) = ak and bop(b) = bℓ. By construction, gcd(a, ℓ) = gcd(k, ℓ) = 1, and
gcd(b, k) = 1. Finally,

gcd(a, b) =
gcd(pk − 1, pℓ − 1)

p− 1
=

pgcd(k,ℓ) − 1

p− 1
=

p− 1

p− 1
= 1 .

Modifying these constructions slightly and still keeping p fixed, we may arrange that a and b
are both primes, as we now explain.

Let T be the set of primes k so that pk − 1 is a product of primes dividing p− 1. We first show
that T is finite. By work of Siegel, given any set S of primes, the set of solutions to x − y = 1 in
S-units x and y is finite. Let S be the set of primes dividing p(p − 1). Then, for each k ∈ T , the
pair x = pk, y = pk − 1, is a solution to the S-unit equation. Hence, by Siegel’s Theorem, T is
finite. In particular, if we choose distinct odd primes k, ℓ /∈ T in the preceding constructions, we
may choose a and b to be odd prime factors of pk − 1 and pℓ − 1 respectively, and which do not
divide p− 1. We conclude that aop(a) and bop(b) will still be relatively prime odd integers.

A similar argument shows that there are infinitely many supersingular primes b for p. So,
conditions (2) and (3) are also satisfied for infinitely many primes a and b.

6.4 Rank 0

It follows from (6.2) that

rank J(K) = ordT=r−1 L(J, T ) ≤
BB-o ∈ O : νp(ω(o)) = |o|

.BB .

Hence, to show that the rank is “small” it suffices to give conditions on a, b, q that ensure that
“many” orbits o ∈ O satisfy νp(ω(o)) ∕= |o|. We prove:

Theorem 1.2. Suppose that the pair (a, b) satisfies one of the following:

(1) aop(a) and bop(b) are relatively prime;

(2) aop(a) is odd, and b is supersingular for p; or

(3) a is supersingular for p, and bop(b) is odd.

Then, for any power q of p, we have ordT=r−1 L(J, T ) = rank J(K) = 0.

Proof. The conditions here are the same as in Lemma 6.13. That Lemma asserts that, for all orbits
o ∈ O = Or,a,b,q, the p-adic valuation of ω(o) does not match that of r|o| (which equals |o|).

The assertion is then immediate from (6.2).

Example 6.15. Let Fr = F67n for some n ≥ 1. For p = 67, the pair a = 5 and b = 7 satis-
fies condition (3) of Theorem 1.2. So, if q is any power of 67, the Jacobian J = Ja,b,q satisfies
rank J(Fr(t)) = 0.
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For a fixed odd prime p, the set of parameters a, b for which the conditions of Theorem 1.2 hold
is infinite, as shown in Lemma 6.14.

Remark 6.16. One can provide a second proof of the BSD conjecture (Theorem 1.1) in the case
that L(J, r−1) ∕= 0, as follows. By a theorem of Tate [Tat65], one has

0 ≤ rank J(K) ≤ ordT=r−1 L(J, T ).

(This essentially follows from injectivity of the cycle class map.) If the parameters a, b, q are
such that L(J, T ) does not vanish at T = r−1, we deduce from the above that rank J(K) =
ordT=r−1 L(J, T ) = 0. In other words, the “weak BSD conjecture” holds for J .

6.5 Large ranks

We now provide a sufficient condition on a, b and q for the rank of J(K) to be “large”. We actually
prove a more precise result, estimating the rank of J(K) under certain assumptions. First, we
prove a lemma to calculate ω(o) for o ∈ O.

Lemma 6.17. Assume that p ∕= 2 is an odd prime. Let a and b be relatively prime positive integers
which are both supersingular for p. Let νa, νb ≥ 1 be the least positive integers such that pνa ≡ −1
(mod a) and pνb ≡ −1 (mod b). Suppose also that [Fr : Fp] is a multiple of both 4νa and 4νb.

If (i, j,α) is any representative of the orbit o ∈ O, then

ω(o) = λ(i,α)(α)
−1λ(j,α)(α)

−1r|o| . (6.15)

In particular, ω(o) = r|o| if and only if α ∈ Fq is an (ab)th power in Fr(α) for any representative
(i, j,α) of o (equivalently for all representatives (i, j,α) of o).

Proof. Since 4νa divides [Fr : Fp] and pνa ≡ −1 (mod a), we see that r ≡ 1 (mod a). Hence 〈r〉
acts trivially by multiplication on Z/aZ ! {0}. Similarly, r ≡ 1 (mod b), so 〈r〉 acts trivially by
multiplication on Z/bZ ! {0}. Hence, the orbit o is of the form {(i, j,α(o)1/rt) : t ∈ Z} for some
(i, j,α) ∈ S. We then have |o| = |πa(o)| = |πb(o)|. In particular,

ω(o) = G (πa(o)) G (πb(o)) .

We may now apply Lemma 6.5 (resp. Lemma 6.7) to compute G (πa(o)) when 2i = n (resp.
2i ∕= n). Since 4νa divides [Fr : Fp] and the νi’s appearing in Lemmas 6.5 and 6.7 applied to
G (πa(o)) are divisors of νa, we have 4νi|[Fr : Fp]. So, equations (6.3) and (6.6) hold. We find that
G (πa(o)) = λ(i,α)(α)

−1r|o
′|/2. Computing G (πb(o)) in the same way yields that

ω(o) = G (πa(o))G (πb(o)) = λ(i,α)(α)
−1λ(j,α)(α)

−1r|o| .

Now, λ(i,α) and λ(j,α) are characters of relatively prime orders a and b, so λ(i,α)(α)
−1λ(j,α)(α)

−1 = 1
if and only if both λ(i,α)(α) = 1 and λ(j,α)(α) = 1.

Since |πa(o)| and |πb(o)| are both equal to the size of the orbit of r acting on F×
q , the extensions

of Fr with degrees |πa(o)| and |πb(o)| coincide: they are both equal to Fr(α). This extension
Fr(α) is the one over which both λ(i,α) and λ(j,α) are defined. To conclude, we observe that

λ(i,α)(α) = λ(j,α)(α) = 1 if and only if α is an (ab)th power in Fr(α).
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Theorem 1.3. Let p ∕= 2 be an odd prime. Let a and b be relatively prime positive integers which
are both supersingular for p. Let νa, νb ≥ 1 be the least positive integers such that pνa ≡ −1 (mod a)
and pνb ≡ −1 (mod b). Suppose also that [Fr : Fp] is a multiple of both 4νa and 4νb.

Then, we have

(a− 1)(b− 1)

"
1

logp(q)

#
q − 1

ab
−

p
√
q − 1

p− 1

$%
≤ rank J(K) .

Proof of Theorem 1.3. Combining Lemmas 6.1 and 6.17 yields that rank J(K) is equal to the num-
ber of orbits o ∈ O such that a representative (i, j,α) satisfies the property that α is an (ab)th

power in Fr(α).
We first bound the number of α ∈ F×

q such that α is an (ab)th power in Fp(α). We remark

that F×
q contains at least (q − 1)/ab distinct values which are (ab)th powers. Indeed the image of

the map x ∈ F×
q 3→ xab ∈ F×

q has order |F×
q |/ gcd(ab, |F×

q |) = (q − 1)/ gcd(ab, q − 1). Note that

gcd(ab, q − 1) ≤ ab. Now, at most q1/2 + q1/2p−1 + · · ·+ 1 = (p
√
q − 1)(p− 1) elements of Fq lie in

a proper subfield, since each proper subfield has order a distinct power of p which is at most
√
q.

Hence, there are at least
q − 1

ab
−

p
√
q − 1

p− 1

distinct values α ∈ Fq such that Fp(α) = Fq and α is an (ab)th power in Fp(α). Each orbit of 〈r〉
on F×

q contains at most [Fq : Fp] = logp(q) elements and so contains at most logp(q) many such α.
Since 〈r〉 acts trivially on both Z/aZ and Z/bZ under the hypotheses, the number of orbits

o ∈ O such that a representative (i, j,α) satisfies the property that α is an (ab)th power in Fr(α) is
at least

(a− 1)(b− 1)

"
1

logp(q)

#
q − 1

ab
−

p
√
q − 1

p− 1

$%
.

Theorem 6.18. Let p ∕= 2 be an odd prime. Let a and b be relatively prime positive integers which
are both supersingular for p. Let νa, νb ≥ 1 be the least positive integers such that pνa ≡ −1 (mod a)
and pνb ≡ −1 (mod b). Suppose that [Fr : Fp] is a multiple of 4νa, 4νb, and ab(q − 1). Then,

rank J(K) = (a− 1)(b− 1)(q − 1) = 2g(q − 1) .

In other words, the upper bound in Theorem 6.2 is met.

Proof. Under these assumptions, the product ab(q − 1) divides r− 1, hence 〈r〉 acts trivially on S.
Hence each orbit o ∈ O has |o| = 1. Moreover, each α ∈ Fq is an (ab)th power in Fr (and therefore
also in Fr(α).) Then, Lemmas 6.1 and 6.17 together imply the desired equality.

Remark 6.19. [Hypotheses of Theorems 1.3 and 6.18] For any fixed p, there are infinitely many
choices of a, b, r satisfying the hypotheses of Theorem 1.3 and Theorem 6.18, as we now explain.

For any choice of a and b, a positive density of primes p satisfy p ≡ −1 (mod ab). In that case
we may take νa = νb = 1. Let F be the smallest extension of Fp such that 4 divides [F : Fp] . The
hypotheses of Theorem 1.3 hold whenever Fr ⊃ F. Let t be the order of p in Z/ab(q − 1)Z. Let
F′ be the smallest extension of of Fp such that both 4 and t divide [F′ : Fp] . The hypotheses of
Theorem 6.18 are satisfied whenever Fr ⊃ F′ .

In fact, if a and b are prime, a and b are supersingular for p whenever p has even order in
both (Z/aZ)× and (Z/bZ)×. Again, Theorem 1.3 holds whenever Fr contains an appropriate finite
extension of Fp. The same is true for Theorem 6.18.
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Remark 6.20. Theorem 1.3 implies that when both a and b are supersingular for p and [Fr : Fp] is
a fixed multiple of some number depending only on a, b, and p, the analytic rank of J is unbounded
as q → ∞. This means that if we take a and b to be distinct primes, the Jacobians of the curves
yb + xa = tq − t as q varies give a family of simple abelian varieties of dimension (a − 1)(b − 1)/2
which satisfy BSD and which have unbounded algebraic and analytic rank. The dimension can be
made arbitrarily large by increasing a and b.

7 Size of the special value

Recall that the special value L∗(J) is defined as

L∗(J) :=
L(J, T )

(1− rT )v

BBBB
T=r−1

, where v = ordT=r−1 L(J, T ).

As discussed in Section 4.5, the Riemann Hypothesis for L(J, T ) implies that L∗(J) is a positive
rational number. The goal of this section is to prove the following estimate on L∗(J):

Theorem 1.6. For fixed a, b as above, as q → ∞ through powers of p, we have

logL∗(J)

logH(J)
= o(1) ,

where the implicit constants depend only on a, b and p.

Throughout this section, we will use Vinogradov’s asymptotic notation. Namely, for two func-
tions f, g of a variable x on [0,∞), we use f(x) ≪a g(x) to mean that there is a constant C > 0
(depending at most on the mentioned parameter(s) a) such that |f(x)| ≤ Cg(x) for x → ∞.

7.1 Preliminary estimates

The proof of Theorem 1.6 requires two preliminary estimates that we now state.
We choose, once and for all, an algebraic closure Q of Q. We write log : C → C for the branch

of the complex logarithm such that the imaginary part of log z belongs to (−π,π] for all z ∈ C. For
a given θ ∈ 1

2Z≥0, an algebraic integer will be called a Weil integer of size pθ if its absolute value
in any complex embedding of Q is pθ. (These are sometimes called Weil integers of weight 2θ.)

Theorem 7.1. Let p be a prime number, and θ ∈ 1
2Z≥0. Let z ∈ Q be a Weil integer of size pθ,

and ζ ∈ Q be a root of unity. For any integer L ∕= 0, either ζ · (zp−θ)L = 1 or, in any complex
embedding | · | of Q in C, we have

log
BBB1− ζ · (zp−θ)L

BBB ≥ −c0 − c1 log |L|, (7.1)

where c0, c1 > 0 are effective constants depending at most on p, θ, the degree of z over Q, and the
(multipicative) order of ζ.

We refer the reader to [GU20, Thm 11.6] for a proof of Theorem 7.1. The main ingredient in the
proof is a lower bound for linear forms in logarithms of algebraic numbers due to Baker–Wüstholz
in [BW93].

We also need some estimates on the orbits in O. As before, p is a prime number and r is a fixed
power of p. For any relatively prime integers a, b which are coprime to p, and for any power q of p,
we let S := (Z/aZ) ! {0} × (Z/bZ) ! {0} × F×

q . As in §3.3, let O denote the set of orbits for the
action of 〈r〉 on S.
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Lemma 7.2. For fixed a, b as above, the following bounds hold as q → ∞ through powers of p.

(1)
*

o∈O |o| = |S| = (a− 1)(b− 1)(q − 1) ≪ q,

(2)
*

o∈O 1 = |O| ≪ q/ log q,

(3)
*

o∈O log |o| ≪ q log log q/ log q.

The implied constants depend at most on the product ab.

Proof. As defined in Section 3.3, the set S is a subset of S′
ab = (Z/abZ)! {0}× F×

q . Hence O may
be viewed as a subset of the set O′

ab of orbits for the action of 〈r〉 on S′
ab. Lemma 11.4.1 of [GU20]

directly gives the required bounds.

7.2 Size of the special value

For any a, b, q as above, for any orbit o ∈ O, recall that we have defined

ω(o) = G (πa(o))
νa(o)G (πb(o))

νb(o) .

Let O0 denote the set of orbits o ∈ O such that ω(o) = r|o|, and O∗ := O!O0 denote its complement.
We require the following special case of Theorem 7.1:

Proposition 7.3. There exist constants c2, c3 > 0 depending only on a, b, p and r such that for
any orbit o ∈ O, either ω(o) = r|o| or

log

BBBB1−
ω(o)

r|o|

BBBB ≥ −c2 − c3 log |o| .

Proof. It suffices to treat the case when o ∈ O∗, since otherwise ω(o) = r|o|. Recall from §3.4 that
we may write ω(o) = ζo · gLo

o , where ζo is an (ab)th root of unity, go is a Weil integer of size pθa,b ,
and Lo = [Fr : Fp]|o|/θa,b, with θa,b = lcm(op(a), op(b)). We thus have

log

BBBB1−
ω(o)

r|o|

BBBB = log
BBB1− ζo ·

&
gop

−θa,b
'Lo

BBB .

Applying Theorem 7.1 and the definition of L0 yields that

log
BBB1− ζo ·

&
gop

−θa,b
'Lo

BBB ≥ −c0 − c1 log |Lo| ≥ (−c0 − c1 log[Fr : Fp])− c1 log |o|,

for constants c0 and c1 depending on at most p, the integer θa,b, the degree of go over Q and the
order of ζo. These three quantities may in turn be bounded solely in terms of a, b, and p. Indeed,
the root of unity ζo has order at most ab, the Gauss sum go has degree at most [Q(go) : Q] ≤
[Q(ζa, ζb, ζp) : Q] ≤ abp, and θa,b is at most op(a)op(b) ≤ φ(a)φ(b) ≤ ab.

We are now ready to prove Theorem 1.6.

Proof of Theorem 1.6. Combining the definition of L∗(J) with the explicit expression for the L-
function from Theorem 4.2 yields that

L∗(J) =
+

o∈O0

|o|
+

o∈O∗

#
1− ω(o)

r|o|

$
.
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From this, we deduce that

logL∗(J)

q
=

1

q

,

o∈O0

log |o|+ 1

q

,

o∈O∗

log

BBBB1−
ω(o)

r|o|

BBBB . (7.2)

We now estimate the two terms on the right-hand side separately. Lemma 7.2(3) gives

0 ≤ 1

q

,

o∈O0

log |o| ≤ 1

q

,

o∈O∗

log |o| ≪ q

q

log log q

log q
≪ log log q

log q
. (7.3)

As q tends to infinity through powers of p, this term is o(1).
We estimate the second term on the right-hand side of (7.2) in two steps. We begin by proving

a suitable upper bound. Since |ω(o)| = r|o| for all o ∈ O, the triangle inequality implies that

1

q

,

o∈O∗

log

BBBB1−
ω(o)

r|o|

BBBB ≤
|O∗|
q

log 2 ≤ |O|
q

log 2 .

We know from Lemma 7.2(2) that |O|/q ≪ (log q)−1 as q tends to infinity.
We now prove the required lower bound. By Proposition 7.3, we have

−1

q

,

o∈O∗

log

BBBB1−
ω(o)

r|o|

BBBB ≤
1

q

,

o∈O∗

c2 + c3 log |o| ≤ c2
|O|
q

+ c3
1

q

,

o∈O∗

log |o| .

By Lemma 7.2(2), we have |O|/q ≪ (log q)−1. Lemma 7.2(3) implies that
*

o∈O∗
log |o| is o(q) as

q → ∞. Thus, the second terms on the right-hand side of (7.2) satisfies

− log log q

log q
≪ 1

q

,

o∈O∗

log

BBBB1−
ω(o)

r|o|

BBBB ≪
1

log q
(7.4)

as q → ∞ through powers of p. Summing the inequalities (7.3) and (7.4) yields that

− log log q

log q
≪ logL∗(J)

q
≪ 1

log q
,

as q → ∞ through powers of p. We conclude that

| logL∗(J)|
q

= O

#
log log q

log q

$
as q → ∞ .

Our estimate from the height H(J) in Lemma 2.7 shows that the ratio q/ logH(J) remains bounded
(in terms of constants depending only on a and b) as q varies. We conclude that

| logL∗(J)|
logH(J)

=
| logL∗(J)|

q

q

logH(J)
= o(1) .

The implicit constants depend at most on a, b, p, and r. This concludes the proof of Theorem
1.6.
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7.3 Analogue of the Brauer–Siegel theorem

Combining Theorem 1.6 and the Birch and Swinnerton-Dyer conjecture (Theorem 1.1), we arrive
at the following estimate.

Corollary 1.7. For given a, b, and r, as q → ∞ runs through powers of p, we have

log
&
|X(J)|Reg(J)

'
∼ logH(J).

In the interpretation suggested by [HP16], this result provides an analogue of the Brauer–Siegel
theorem for the family (Ja,b,q)q of Jacobians.

Note that, except for a few examples in [Ulm19, §10.4, §11.4], the relationship between the
asymptotic growth rate of the product |X(A)|Reg(A) and the asymptotic growth rate of the height
H(A) has not previously been elucidated in any sequence of abelian varieties A of dimension greater
than 1. We note that there are several sequences of elliptic curves for which similar behaviour has
been described. See [HP16, Gri16, Gri18, Gri19, GU20] for examples.

Proof. By the BSD formula (see (1.2) in Theorem 1.1), we have

log
&
|X(J)|Reg(J)

'

logH(J)
= 1− log rg

logH(J)
+

2 log |J(K)tors|
logH(J)

− log
!

v cv
logH(J)

+
logL∗(J)

logH(J)
.

For a fixed pair (a, b), the genus g of C = Ca,b,q is constant as q varies. Hence the term
log rg/ logH(J) is o(1) as q → ∞. By Theorem 3.8 in [HP16], we have

log |J(K)tors| = o
&
logH(J)

'
,

as q → ∞ for fixed a, b, and r. Furthermore, since the local Tamagawa numbers cv are all equal
to 1 (see Proposition 2.5), we have log

!
v cv = 0.

Now, Theorem 1.6 shows that the term logL∗(J)/logH(J) is also o(1) as q → ∞. All in all,
we obtain

log
&
|X(J)|Reg(J)

'

logH(J)
= 1 + o(1),

ce qu’il fallait démontrer.

8 Large Tate–Shafarevich Groups

In this section we prove Theorem 1.5, which we recall for convenience:

Theorem 1.5. Fix parameters a, b, and r which satisfy the hypotheses of Theorem 1.2. Then, as
q runs through powers of p, we have

|X(J)| = H(J)1+o(1).

Proof. By Corollary 1.7, we have

log
&
|X(J)|Reg(J)

'

logH(J)
= 1 + o(1).

Theorem 1.2 shows that given the hypotheses made on (a, b), the analytic rank of J is 0, so that
Reg(J) = 1. Hence, we have

log |X(J)|
logH(J)

= 1 + o(1),

as q → ∞ through powers of p.
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Corollary 8.1. There are arbitrarily large integers d ≥ 1 such that there exists an infinite sequence
of K-simple Abelian varieties A over K of dimension d satisfying

|X(A)| = H(A)1+o(1) as H(A) → ∞ .

Proof. Let d0 ≥ 1 be any integer. By Lemma 6.14, we may choose a pair of coprime integers (a, b)
such that a and b are both prime, (a− 1)(b− 1) ≥ 2d0, and one of the conditions of Theorem 1.2
is satisfied. For such a pair (a, b), consider the sequence (Ja,b,q)q of Jacobian varieties of dimension
d = (a− 1)(b− 2)/2 indexed by powers q of p. Since both a and b are prime, Theorem 1.4 ensures
that the Jacobian Ja,b,q is K-simple for any power q of p. By Theorem 1.5, the sequence (Ja,b,q)q
satisfies |X(Ja,b,q)| = H(Ja,b,q)

1+o(1) as q grows.
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A Conductor Computations

Recall that NJ ∈ Div(P1) is the conductor divisor of J/K.

Proposition A.1. We prove the statement from Theorem 4.1 regarding the global degree b(J) of
the L-function L(J, T ):

b(J) = deg(NJ)− 4g.

Proof. We begin by defining the conductor divisor NJ as a divisor on the base P1. The action of
inertia Iv on the ℓ-adic Tate module Vℓ is tame1. For any place v of K, define

f(v) := dim(Vℓ)− dim(V Iv
ℓ ),

and let the conductor of J be the divisor NJ :=
*

v f(v)v on P1. By [Ser70], f(v) = 0 whenever v
is a place of good reduction for J . Plugging in dim(Vℓ) = 2g gives

deg(NJ) =
,

v bad reduction

(2g − dim(V Iv
ℓ )) deg v,

where the sum is over places v of K where J has bad reduction. Now, we investigate the L-function
and see how its global degree relates to degNJ . Begin with the definition:

L(J, T ) :=
+

v

det(1− TFr−1
v |V Iv

ℓ )−1.

This product can be split up into products over good and bad places of C:

L(J, T ) :=
+

good v

det(1− TFr−1
v |V Iv

ℓ )−1
+

bad v

det(1− TFr−1
v |V Iv

ℓ )−1.

Let L̃(J, T ) :=
!

good v

det(1− TFr−1
v |V Iv

ℓ )−1. This gives a decomposition of the global degree:

deg(L(J, T )) = deg(L̃(J, T ))−
,

bad v

dim(V Iv
ℓ ).

Since L(J, T ) is rational, and since the sum
*

bad v

dim(V Iv
ℓ ) is finite, the “complement” L̃(J, T ) is

also rational. From here, we need a more precise formula for deg(L̃(J, T )). Let U denote the affine
open subset of P1 above which J has good reduction. Since U is a punctured P1, by the étale-
singular cohomology comparison theorem, we have χ(U,Qℓ) := dimH0(U,Qℓ) − dimH1(U,Qℓ) +
dimH2(U,Qℓ) = 2 − 2g(P1) − r, where g(P1) is the genus of P1 and r is the number of geometric
points over which J has bad reduction. That is, r is the sum of the degrees of places of bad
reduction for J , namely r =

*
bad v

deg v. Therefore χ(U,Qℓ) = 2− r.

The Grothendieck–Ogg–Shafarevich formula (see [Cas16]) yields that

χ(U,F) = χ(U,Qℓ) · rank(F)−
,

x∈P1\U

(rank(F) + Swx(F)),

1[ST68] proves this when p > 2g+1. In our case, we can remove the hypothesis on p as follows. J becomes trivial
after a degree ab field extension. Over this extension, the action of inertia is trivial, so descending back to K gives
that the ramification degree must divide ab. But ab is prime to p, so the ramification must be tame.
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where in our case F = Vℓ, which is a lisse ℓ-adic sheaf of rank dimVℓ = 2g on U . Since the action
of inertia on Vℓ is tame (see [ST68, Corollary 2, p. 497]), this implies that

χ(U,F) = χ(U,Qℓ) · rank(F) = 2g(2− r).

Now, since deg L̃(J, T ) = −χ(U,F), we deduce that det L̃(J, T ) = −2g(2 − r). Putting this back
into the equation for degL(J, T ) gives

deg(L(J, T )) = deg(L̃(J, T ))−
,

bad v

dim(V Iv
ℓ ) = −4g +

,

bad v

2g −
,

bad v

dim(V Iv
ℓ )

=
,

bad v

(2g − dim(V Iv
ℓ ))− 4g = deg(NJ)− 4g.
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