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Introduction
Let k be a perfect field, and C be a smooth projective and geometrically irreducible curve over k. We
write K := k(C) for the function field of C, and fix an algebraic closure K of K.

It is well-known that two elliptic curves defined over K become isomorphic over K if and only if they
have the same j-invariant. One may wonder, more generally, about the effect of an isogeny of arbitrary
degree between two elliptic curves on their j-invariants. There is no a priori reason why their j-invariants
should be related. Denoting the Weil height on K by h(.), we nonetheless prove that:

Theorem A. Let E1, E2 be two non-isotrivial elliptic curves defined over K with respective j-invariants
j(E1), j(E2). Let ϕ : E1 → E2 be a K-isogeny and ϕ̂ : E2 → E1 be its dual. We have

h(j(E2)) = degins(ϕ)
degins(ϕ̂) · h(j(E1)). (1)

Here degins(ϕ) and degins(ϕ̂) denote the inseparability degrees of ϕ and ϕ̂ (see §4.1 for the definition); if K
has characteristic 0, they should be interpreted as 1.

In the particular case where the field K has characteristic 0, the above result states that isogenies
preserve the height of the j-invariant! This statement should be compared to its analogue for elliptic
curves over number fields: Theorem 1.1 in [Paz19] asserts that the j-invariants of two elliptic curves
E1, E2 defined over Q which are linked by an isogeny ϕ satisfy:

|ht(j(E1))− ht(j(E2))| ≤ 9.204 + 12 log degϕ, (2)

where ht(.) is the logarithmic Weil height on Q. Results of Szpiro–Ullmo [SU99] imply that the displayed
upper bound is almost optimal – in the sense that the Weil heights of j-invariants of elliptic curves related
by isogeny can actually differ by a quantity of the same order of magnitude as a multiple of log degϕ. This
latter statement in turn implies that, given an elliptic curve E/Q without CM, the set

E (E,B) :=
{
j(E′) ∈ Q : E′/Q is isogenous to E, and ht(j(E′)) ≤ B

}
is finite for all B ≥ 1.

In the function field setting, Theorem A provides a much tighter control on the variation of the Weil
height of the j-invariant in isogeny classes of elliptic curves than what can be proved in the number field
setting (compare (2) with Theorem A). It leads to the surprising consequence that the sets which are
natural analogues for E (E,B) are infinite in the function field setting (see Proposition 5.9)! We prove
Theorem A in section 5.

We refer to the recent [BPR20] for a version of Theorem A for isogenous Drinfeld modules.
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Let us now turn to the second main theorem of this article, which is an isogeny estimate for elliptic
curves over function fields. The result (Theorem 6.1) may be stated as follows:

Theorem B. Let E1 and E2 be two elliptic curves defined over a function field K of genus g, with
respective j-invariants j(E1), j(E2). Assume that E1 and E2 are isogenous. Then there exists a K-isogeny
ϕ0 : E1 → E2 with

degϕ0 ≤ 49 max{1, g} ·max
{

deginsj(E1)
deginsj(E2) ,

deginsj(E2)
deginsj(E1)

}
,

where deginsj(E1),deginsj(E2) are the inseparability degrees of j(E1), j(E2) (see §1.4 for the definition);
if K has characteristic 0, they should be interpreted as 1.

This result has the same flavour as theorems of Masser and Wüstholz [MW90, MW93], Pellarin [Pel01],
and Gaudron and Rémond [GR14] concerning Abelian varieties over number fields (typically called “isogeny
estimate”). These authors indeed prove the existence of a “small” isogeny between a pair of isogenous
elliptic curves. Here “small” means that the degree of the isogeny is bounded (at worst) in terms of the
height of the elliptic curves and simple invariants of the base field.

The proofs in [MW90, MW93, Pel01, GR14] heavily rely on transcendence methods, and uniformisation
at an Archimedean place. In the context of function fields, all places are non-Archimedean and, as far as
the authors know, only few transcendence results are available in positive characteristic. Therefore, our
proof follows a different strategy as the above mentioned works. We also note that David and Denis have
proved an analogous statement for isogenies between Drinfeld modules (see [DD99, Théorème 1.3]).

In Theorem B too, the case where K has characteristic 0 offers the most striking result: in this situation,
the degree of ϕ0 can be bounded independently of E1, E2. In other words, Theorem B provides a uniform
isogeny estimate. In positive characteristic p, one can easily see that such an isogeny estimate cannot be
uniform: the smallest isogeny between a non-isotrivial elliptic curve E and its p-th Frobenius twist E(p)

is indeed the p-th power Frobenius isogeny Frp : E → E(p), which has degree p. In positive characteristic,
the dependency of Theorem B on the elliptic curves E1, E2 is optimal. Theorem B is proved in Section 6
of the paper, where we also establish a few corollaries of this isogeny estimate.

1. Preliminaries about function fields
Let k be a perfect field of characteristic p ≥ 0, and let C be a smooth projective and geometrically
irreducible curve over k. We let K := k(C) denote the function field of C over k. The field k is then
algebraically closed in K, and we call it the constant field of K. It is well-known that the (isomorphism
class of the) field K characterises C up to birational equivalence over k (see [Sil09] Chapter II, Remark 2.5
for instance). Any smooth projective curve over k whose function field is K will be called a model for K.

Any finite extension L of K is also a function field in the above sense. Precisely, there is a finite
extension k′/k and a smooth projective and geometrically irreducible curve C ′/k′ such that L = k′(C ′).
The inclusion K ⊂ L induces a morphism C ′ → C between the underlying curves.

We refer to [Ros02] for more details about function fields, in particular, Chapter V there.

1.1. Absolute values on K. – Let K be the function field of a curve C/k as above. We let MK denote
the set of places of K i.e., equivalence classes of discrete valuations on K. Once a model C of K has been
chosen, there is a bijection between MK and the set of closed points on C. Given a place v ∈ MK , the
residue field kv of K at v is a finite extension of k: the degree deg v := [kv : k] of this extension will be
called the degree of v.

If k is finite, we put c := |k|−1; if not, we let c := e−1. To each place v ∈ MK , one associates an
absolute value |.|v on K, defined by |x|v := cdeg v·v(x) for all x ∈ K, where v(x) is the order of x at v. It is
classical that we then have a product formula:

∀x ∈ K∗,
∏

v∈MK

|x|v = 1, i.e.,
∑
v∈MK

v(x) · deg v = 0;

(see [Lan83, Chap. I, §1]). In terms of a model C for K, this identity is a reformulation of the fact that a
rational function on C has as many poles as zeros (counted with multiplicities).

1.2. Absolute values on finite extensions of K. – Let K be as in the previous subsection, and let
L/K be a finite field extension. The constant field k′ of L is then a finite extension of k. We let ML denote
the set of equivalence classes of discrete valuations on L. Consider a place w ∈ ML, and write v for the
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place of K lying under w (i.e., v is the restriction of w to K ⊂ L). The residue field k′w of L at w is then
a finite extension of k′, itself a finite extension of k; and we let degw := [k′w : k]. (This choice might not
be the most common one, but will avoid some notational complications later on).

We associate to w ∈ML a normalised absolute value |.|w on L: the normalisation is the one such that
|x|w = |x|v for all x ∈ K. The image of L under |.|w is then a subgroup of R>0 which contains as a
subgroup of finite index the image of K under |.|v. That index is the ramification index of w, we denote it
by ew :=

(
|L|w : |K|v

)
. We denote by fw := [k′w : kv] the residual degree at w. With our normalisations,

note that degw = [k′w : k] = [k′w : kv] · [kv : k] = fw · deg v. Finally, write Lw and Kv for the completions
of L at w and of K and v, respectively, and let nw := [Lw : Kv] denote the local index.

By [Lan83, Chap. I, Prop. 2.4], we have nw = ew · fw. With these definitions at hand, one shows that

∀x ∈ L∗, nw · logc |x|w = degw · w(x),

where logc denotes the logarithm to the base c.

Thus endowed with these absolute values, one can prove that L satisfies a product formula:

∀x ∈ L∗,
∏

w∈ML

|x|nw
w = 1, i.e.,

∑
w∈ML

w(x) · degw = 0.

The key part of the proof is to show that, for any x ∈ L and any v ∈MK , we have |NL/K(x)|v =
∏
w|v |x|w.

The latter identity is usually proved under the assumption that L/K be separable but, as noted in [Lan83],
it remains true without this assumption, provided that v is “well-behaved” in the terminology of Lang. A
general proof may be found in [DGS94, Chap. I, Thm. 5.3].

1.3. Weil height on K. – We use the notation introduced above. Let P = [x0 : x1] ∈ P1(K) be a point,
and pick a finite extension L/K over which P is rational. We define the relative height of P by

hL(P ) =
∑
w∈ML

nw · logc max{|x0|w, |x1|w},

and the absolute logarithmic Weil height of P by the formula:

h(P ) := hL(P )
[L : K] = 1

[L : K]
∑
w∈ML

nw · logc max{|x0|w, |x1|w}. (1.1)

One may check that this last definition does not depend on the choice of an extension L containing P ,
nor on the choice of homogeneous coordinates for P (see [Lan83, Chap. III, §1]). This construction thus
defines a height function on P1(K), which takes values in Q≥0.

For any f ∈ K, we write h(f) = h([1 : f ]) for the absolute logarithmic Weil height of the point
[f : 1] ∈ P1(K). Explicitly, for any f ∈ K, we have

h(f) = 1
[L : K]

∑
w∈ML

nw ·max{0, logc |f |w} = 1
[L : K]

∑
w∈ML

degw ·max{0,−w(f)},

where L is any finite extension of K containing f . Choosing a model C ′ for L, one may view an element
f ∈ L∗ as a rational map f : C ′ → P1. Write div∞(f) ∈ Div(C ′) for the divisor of poles of that function.
By the right-most expression of the previous display, we have

h(f) = 1
[L : K]deg

(
div∞(f)

)
,

which means that hL([f : 1]) = [L : K]h(f) equals the degree of f , viewed as a rational map C ′ → P1.
For a given f ∈ K, note that h(f) = 0 if and only if f is constant (i.e., f belongs to an algebraic

extension of the constant field of K). Indeed, a non-constant rational map C ′ → P1 is surjective. In
particular, its divisor of poles is a non-zero effective divisor. Hence the height of this map must be
positive. In particular, note that the height h : K → Q≥0 does not necessarily satisfy the Northcott
property: when the constant field k is infinite, the set {f ∈ K : h(f) = 0} (which equals k) is not finite.
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1.4. Inseparability degree. – Let K be a function field with constant field k. We assume in this
subsection that K has positive characteristic p. Recall that the inseparability degree of an element f ∈ K∗
is defined by

degins(f) :=
{

1 if f ∈ k,[
K : k(f)

]
i

if f /∈ k,

where
[
K : k(f)

]
i

denotes the inseparability degree of the extension K/k(f) (which is finite under the
assumption that f be non-constant). The inseparability degree of f is a non-negative power of p. If f is
non-constant, one can prove that degins(f) = pe where e ≥ 0 is the maximal integer such that f ∈ Kpe .

Fixing a model C of K, we view f as a rational map f : C → P1. We can then factor f as the
composition fs ◦ Fq of a (purely inseparable) Frobenius map Fq : C → C(q) for some power q of p, with a
separable map fs : C(q) → P1. The inseparability degree of f then equals q = degFq. We refer to [Sil09,
Chap. II, Cor. 2.12] for a proof.

For completeness, we also note the following easily proved fact. Given a finite extension K ′/K with
inseparability degree [K ′ : K]i, the inseparability degree of an element f ∈ K viewed as an element of K ′
is equal to

degins(f ∈ K ′) = degins(f ∈ K) · [K ′ : K]i.

2. Preliminaries on reduction of elliptic curves
Let K be a function field (in the sense of section 1) with constant field k. An elliptic curve over K is called
isotrivial if its j-invariant is constant (i.e. is an element of k). After a finite extension of K, an isotrivial
elliptic curve becomes isomorphic to (the base change of) an elliptic curve defined over a finite extension
of k. We will be mostly interested in elliptic curves which are not isotrivial.

For a more complete overview of the arithmetic of elliptic curves over function fields, the reader is
referred to [Ulm11] and [Sil94, Chap. III].

2.1. Minimal discriminant and conductor. – Let E be an elliptic curve over K. Let v ∈ MK be a
place of K. After a suitable change of coordinates, the curve E admits Weierstrass models

y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6, (2.1)

where the coefficients a1, . . . , a6 ∈ K are integral at v i.e., models for which v(ai) ≥ 0 for i ∈ {1, 2, 3, 4, 6}.
Each of these models has a discriminant ∆(a1, . . . , a6) ∈ K which, being a polynomial in the ai’s, is also
integral at v. We write δv ∈ Z≥0 for the minimal value of v(∆(a1, . . . , a6)) among all models of E which
are integral at v. A Weierstrass model (2.1) of E is called minimal integral at v if the valuation at v of its
discriminant equals δv.

Given this collection of local data, we define a global invariant of E: the minimal discriminant of E/K
is the divisor on K defined by ∆min(E/K) =

∑
v∈MK

δv · v.

We also recall that the conductor of E/K is the divisor given by N (E/K) =
∑
v∈MK

fv ·v, where fv ∈ Z≥0

is the local conductor of E at v. We refer the reader to [Sil94, Chap. IV, §10] for a detailed definition of fv.

2.2. Good and semi-stable primes. – Let E/K be an elliptic curve and v ∈ MK be a place of K.
We say that E has good reduction at v if and only if the reduction modulo v of one/any integral minimal
model of E at v is a smooth curve over the residue field kv.

More generally, we say that E has semi-stable reduction at v if there exists a model of the type (2.1)
whose reduction modulo v has at most one double point. This is equivalent to requiring that the reduction
of E at v is either good or multiplicative. An elliptic curve over K is said to be semi-stable if it has
semi-stable reduction at every place of K.

For any elliptic curve E over K, there exists a finite extension K ′/K such that E ×K K ′/K ′ is semi-
stable. This statement is the famous Semi-stable Reduction Theorem (see [MB85, Chap. XI]).

The theorem of Kodaira-Néron (see for instance [Sil09, Thm. 6.1, p. 200]) implies that for any semi-
stable elliptic curve E/K and any place v ∈MK , one has v(∆v) = −v(j), where j denotes the j-invariant
of E, and ∆v the discriminant of a minimal integral model of E at v.
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2.3. Tate’s uniformisation of elliptic curves with non-integral j-invariants. – In this subsection,
we work in the following setting. Consider a field F which is complete for a non-trivial non-Archimedean
valuation | · |. We review some aspects of Tate’s uniformisation of elliptic curves over F : the reader is
referred to Tate’s beautiful survey [Tat93] for a more in-depth presentation, or to [Sil94, Chap. V, §3-§5]
for an overview in the case where F is a finite extension of Qp.

Let t ∈ F be such that |t| < 1. Consider the curve defined over F by

Et : Y 2 +XY = X3 + c4(t) ·X + c6(t),

where c4, c6 : F× → F are certain power series which converge on the disc {z ∈ F : |z| < 1}. Tate proved
that Et is an elliptic curve, whose j-invariant j(Et) ∈ F is given by a convergent power series in t and
satisfies |j(Et)| = |t|−1 > 1. Furthermore, he has shown that there is an analytic group isomorphism
Et → Gm/tZ (the uniformisation map) which is Galois equivariant. In other words, for any algebraic
extension F ′ of F , there is a group isomorphism Et(F ′) ' (F ′)×/tZ. Note that Et has split multiplicative
reduction at the maximal ideal of | · |.

Conversely, let E be an elliptic curve over F whose j-invariant satisfies |j(E)| > 1. Then, there exists
a unique t ∈ F with |t| < 1 such that E is isomorphic to Et, the isomorphism being defined over an at
most quadratic extension of F . See [Sil94, Chap. V, Thm. 5.3].

For t1, t2 ∈ F such that |t1| < 1 and |t2| < 1, let HomF (Et1 ,Et2) denote the Z-module consisting of
isogenies Et1 → Et2 (defined over F ) together with the constant morphism equal to 0Et2

. The theorem
p. 16 of [Tat93] states that HomF (Et1 ,Et2) is in bijection with the set

{
(n1, n2) ∈ Z2 : tn1

1 = tn2
2
}

.
In particular, for any t ∈ F with |t| < 1, the ring of F -endomorphisms of Et viewed as an elliptic curve

over F is isomorphic to Z. Indeed, the above paragraph implies that we have

HomF (Et,Et) '
{

(n, n), n ∈ Z
}
, (2.2)

where the correspondence associates the multiplication-by-n map Et → Et to the pair (n, n) ∈ Z2.

2.4. CM and isotriviality. – Over a number field, it is well known that an elliptic curve with non-
integral j-invariant does not have CM (see [Sil94, Chap. 5, §6, Thm. 6.3]).

By the work of Serre–Tate, we know that an elliptic curve defined over a local field and with complex
multiplication has integral j-invariant, hence has potentially good reduction. From this we infer that
an elliptic curve defined over a function field K, with complex multiplication and with potentially good
reduction everywhere must have integral j-invariant at all places of K. In particular its j-invariant,
having no poles, must be a constant rational map, which means that the curve E is isotrivial. In positive
characteristic, the isotriviality is also implied by Deuring’s Theorem (see [Hus04, Thm. 6.4, p. 268]).

Lemma 2.1. Let K be a function field as above, and let E be an elliptic curve over K whose j-invariant
is not constant. Then, the ring End(E) of K-endomorphisms of E is isomorphic to Z. In other words, the
curve E has “no complex multiplication”.

Let us give an ad hoc proof of this lemma, which is independent of the characteristic of K.

Proof. Because End(E) contains all the multiplication-by-n maps [n] : E → E, this ring always contains
an isomorphic copy of Z. Conversely, let ψ : E → E be an endomorphism of E. The j-invariant j(E)
being non-constant, there exists a place v of K at which j(E) has a pole (i.e., for which v(j(E)) < 0).

Let Kv denote the completion of K at v; the field Kv is of the type considered in subsection §2.3.
Now, since v(j(E)) < 0, we know from the results recalled there that there exists an element t ∈ Kv with
v(t) > 0 such that E/Kv becomes isomorphic to the Tate curve Et over a finite extension of Kv. Through
this isomorphism, the endomorphism ψ becomes an endomorphism Ψ : Et → Et. By (2.2), there exists an
integer n such that Ψ is the multiplication-by-n map of Et. The original endomorphism ψ : E → E is thus
nothing else but the multiplication map [n] : E → E. Hence the result.

3. Heights of elliptic curves
Let k be a perfect field and C be a smooth projective and geometrically irreducible curve over k. We let
K := k(C) be its function field. We let p ≥ 0 denote the characteristic of K (p is then either 0 or a prime).
We also fix an algebraic closure K of K. Algebraic extension of K will be viewed as sub-extensions of K.
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3.1. Differential and stable heights. – Let L be a finite field extension of K; we choose a model C ′
of L and write k′ for the field of constants of L.

Let E be an elliptic curve over L. The minimal regular model E of E is the unique (up to isomorphism)
smooth projective and geometrically irreducible surface over k′, equipped with a minimal surjective mor-
phism π : E → C ′ whose generic fiber is E. We denote by π : E → C ′ the minimal regular model of E and
s0 : C ′ → E its zero section. We refer to [Ulm11, Lecture 3, §1-§2] for more details about the construction
of this model. Let Ω1

E/C′ be the sheaf of relative differential 1-forms on E . Pulling-back Ω1
E/C′ along the

zero section s0 results in a line bundle on C ′, which will be denoted by ωE/L := s∗0Ω1
E/C′ . One can then

define the differential height of E/L by:

hdiff(E/L) := 1
[L : K] degωE/L,

where deg here means degree of a line bundle. The following identity is well-known:

Lemma 3.1. In the above setting, denote by ∆min(E/L) ∈ Div(C ′) the minimal discriminant divisor
of E. Then one has

12 · hdiff(E/L) = deg ∆min(E/L)
[L : K] .

See [Sil86, Prop. 1.1] for a proof: the main point is that ∆min(E/L) provides a section of ω⊗12
E/L. In

contrast to the number field setting (treated in [Sil86]), no “Archimedean terms” come into play in the
computation of the degree of the line bundle ωE/L. This Lemma provides a simple way to compute and
estimate the differential height.

One checks that the differential height does not increase in finite extensions, by which we mean that,
if L′/L is a further finite extension, one has hdiff(E × L′/L′) ≤ hdiff(E/L). We refer the reader to [MB85,
Prop. 2.3, p. 228] for a proof of this fact for general Abelian varieties.

Given an elliptic curve E over a finite extension L of K, pick an extension L′/L such that the base-
changed curve EL′/L′ is semi-stable (as was recalled above, such an extension exists). We then define the
stable height of E to be

hst(E/L) := hdiff(EL′/L′)
[L′ : L] =

deg(ωEL′/L
′)

[L′ : L] .

This definition makes sense: it is indeed shown in [MB85, Prop. 2.3, p. 228] that the quantity hst(E/L)
does not depend on the choice of a particular extension L′/L over which E attains semi-stable reduction.

3.2. Modular height. – Let E be an elliptic curve defined over K. Its j-invariant j(E) lies in K: we
can then define the modular height of E to be

hmod(E) := h
(
j(E)

)
∈ Q≥0,

where h is the Weil height on K defined in §1.3. This modular height is closely related to the height called
hauteur modulaire numérique defined by Moret-Bailly in [MB85, p. 226].

If we fix a finite extension L of K containing j(E), and write L = k′(C ′) (where k′/k is a finite extension
and C ′ is a smooth projective geometrically integral curve over k′), we may view j(E) as a rational map
j : C ′ → P1. Denoting by div∞(j) ∈ Div(C ′) the divisor of poles of this map, we then have

hmod(E) = 1
[L : K] deg(div∞(j)).

(See the discussion in §1.3). It follows that the modular height hmod(E) vanishes if and only if j(E) is a
constant element of K, i.e., if and only if E is isotrivial.

3.3. Comparison of heights. – We now compare the various notions of heights of an elliptic curve
over K that were just introduced. Let L/K be a finite extension, and let E be an elliptic curve over L.

Proposition 3.2. With the above notation, one has

0 ≤ hdiff(E/L)− 1
12hmod(E) ≤ 1

[L : K] ·
∑

w not s.s.
degw, (3.1)

where the sum is over the (finite) set of places of L where E does not have semi-stable reduction.

6



The reader might want to compare this estimate with the one in [Sil86, Prop. 2.1] where a similar
comparison is carried out between differential and modular heights of an elliptic curve over a number field.
The proof in our setting is simplified by the absence of Archimedean places.

Proof. For any place w of L, we let δw denote the valuation at w of the discriminant of a minimal integral
model of E at w, and we let θw = w(j(E)) denote the order of the pole/zero of j(E) at w.

By construction of the modular and differential heights, we have

[L : K] · hdiff(E/L) = deg ∆min(E/L)
12 = 1

12
∑
w∈ML

δw · degw,

[L : K] · hmod(E) =
∑
w∈ML

nw ·max{0, logc |j(E)|w} =
∑
w∈ML

max{0,−θw} · degw,

where the sums are supported on the places of bad reduction of E. Note indeed that the j-invariant has
no poles outside places of bad reduction. (Actually, as the table p. 365 of [Sil94] shows, poles of j only
occur at places of potentially multiplicative reduction.) Hence we have

12[L : K] · hdiff(E/L)− [L : K] · hmod(E) =
∑
w∈ML

(δw −max{0,−θw}) · degw.

For any place w ∈ ML, by the discussion in [Sil94, Chap. IV, §9], the minimality of δw implies that,
either 0 ≤ δw < 12 or 0 ≤ δw + θw ≤ 12. Therefore, for any place w of bad reduction, the integer
δw −max{0,−θw} = min{δw, θw + δw} lies in [0, 12]. If, moreover, w is a place of multiplicative reduction
for E, the above mentioned table in [Sil94] yields that δw + ιw = 0. We have thus proved that

0 ≤ 12[L : K] · hdiff(E/L)− [L : K] · hmod(E) =
∑

w add. red.
min{δw, ιw + δw} · degw

≤ 12 ·
∑

w not s.s.
degw.

This entails the desired bounds.

It is clear that an elliptic curve E/L is semi-stable if and only if the sum on the right-hand side of (3.1)
vanishes. Hence, the above proposition directly implies:

Corollary 3.3. Let E be an elliptic curve defined over a finite extension L of K. Then E/L is semi-stable
if and only if hmod(E) = 12 · hdiff(E/L). In particular, we have hmod(E) = 12 · hst(E/L).

3.4. Heights and conductor. – Let L/K be a finite field extension. We fix a model C ′ of L. The genus
of C ′ will be denoted by g(L).

For any elliptic curve E over L, Ogg’s formula (see formula (11.1) in [Sil94, Chap. IV, §11]), implies
that v(N (E/L)) ≤ v(∆min(E/L)) for all places v ∈ MK . Hence we have degN (E/L) ≤ deg ∆min(E/L),
and it follows that

degN (E/L)
[L : K] ≤ 12 · hdiff(E/L).

Obtaining an inequality in the other direction is much harder. The result is as follows:

Theorem 3.4 (Szpiro’s inequality). Let E be an elliptic curve defined over L. We have

deg ∆min(E/L) ≤ 6 · deginsj(E) ·
(
2g(L)− 2 + degN (E/L)

)
. (3.2)

where N (E/L) denotes the conductor of E, and deginsj(E) the inseparability degree of its j-invariant.

The proof in the semi-stable case can be found in [Szp90], and the general case is treated in [PS00].
Rewriting this inequality in terms of hdiff yields that, for any elliptic curve over K, we have

1
12 · degN (E/K) ≤ hdiff(E/K) ≤ deginsj(E) · (g(K)− 1 + degN (E/K)) .

In particular, for an elliptic curve E/K whose j-invariant is separable, Szpiro’s inequality reads:

1
12 · degN (E/K) ≤ hdiff(E/K) ≤ (g(K)− 1) + degN (E/K).

Hence, for these elliptic curves, the conductor degN (E/K) and the differential height hdiff(E/K) have the
same order of magnitude (up to constants depending at most on the genus of K).
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4. Isogenies between elliptic curves
In this section, we work in the same setting as before. Precisely, we let k be a perfect field, C be a smooth
projective and geometrically irreducible curve over k, and K be the function field k(C). We denote the
characteristic of K by p (which is either a prime or 0).

The goal of this section is to recall a few standard facts about isogenies between elliptic curves, as well
as prove a decomposition result for them. The reader is referred to [Sil09, Chap. III, §4] for further details
about isogenies.

4.1. Preliminaries on isogenies. – Let E1 and E2 be two elliptic curves defined over K. We denote
by 0E1 ∈ E1(K) and 0E2 ∈ E2(K) the respective neutral elements of the groups E1 and E2.

An isogeny ϕ : E1 → E2 is a surjective morphism of varieties satisfying ϕ(0E1) = 0E2 . It can then be
shown that ϕ is a group morphism E1 → E2. Unless otherwise specified, we do not assume that isogenies
are defined over K.

As a morphism between algebraic varieties, ϕ induces a finite embedding of function fields

ϕ∗ : K(E2) ↪→ K(E1).

The degree of ϕ, denoted by degϕ, is defined to be the degree of the finite field extensionK(E1)/ϕ∗(K(E2)).
If the characteristic of K is positive, the extension K(E1)/ϕ∗K(E2) may be split into two subexten-

sions, as follows. We let Lϕ be the maximal subextension of K(E1)/ϕ∗(K(E2)) which is separable on
ϕ∗(K(E2)) (i.e., Lϕ is the separable closure of ϕ∗K(E2) in K(E1)). Then Lϕ/ϕ

∗K(E2) is a finite sepa-
rable extension, whose degree is denoted by degsepϕ and called the separable degree of ϕ. The degree of
the extension K(E1)/Lϕ is denoted by deginsϕ and is called the inseparable degree of ϕ. It is clear that
deginsϕ is a power of the characteristic of K, and that we have degϕ = degsepϕ · deginsϕ.

Coming back to the general case, and viewing ϕ : E1 → E2 as a homomorphism of group varieties,
we may define its kernel kerϕ = ϕ−1({0}) ⊂ E1 as a a finite group variety over K. (If ϕ is separable,
its kernel is a reduced group scheme; hence we do not lose much by identifying the kernel with its set of
closed points). In general, one can check that the finite Abelian group (kerϕ)(K) has order degsepϕ. A
separable isogeny is called cyclic if its kernel is a cyclic Abelian group.

If ϕ : E1 → E2 is an isogeny, recall that there is a dual isogeny E2 → E1, which we denote by ϕ̂. The
compositions ϕ ◦ ϕ̂ and ϕ̂ ◦ ϕ are equal to the multiplication by degϕ on E2, resp. E1. The degrees of ϕ
and ϕ̂ are equal.

Let us now assume that K has positive characteristic p, and let E be an elliptic curve over K. For any
power q of p, we we write E(q) for the q-th power Frobenius twist of E (if E is defined by a Weierstrass
model with coefficients a1, . . . , a6 ∈ K, then E(q) is the elliptic curve given by the Weierstrass model with
coefficients aq1, . . . , a

q
6). Recall that there is a q-th power Frobenius morphism Frq : E → E(q) which is

defined over K, and that this morphism is an isogeny of degree q. As such, it admits a dual isogeny
Vq : E(q) → E which is called the q-th power Verschiebung isogeny, and is also defined over K. The
multiplication-by-q map [q] : E → E then decomposes as [q] = Vq ◦ Frq. If E is non-isotrivial, it is known
that Frq : E → E(q) is purely inseparable of degree q (that is, we have degsepFrq = 1 and deginsFrq = q)
and that its dual Vq : E(q) → E is separable of degree q. These facts follow from [Sil09, Chap. V, §3].

Finally, we recall three results concerning isogenies between elliptic curves.

Proposition 4.1. Let E1, E2 be two elliptic curves defined over a field K, whose characteristic is p, and
let ϕ : E1 → E2 be an isogeny between them. The isogeny ϕ factors as ϕ = ψ◦Frpe where Frpe : E1 → E

(pe)
1

is the pe-th power Frobenius isogeny and ψ : E(pe)
1 → E2 is a separable isogeny. (Note that pe = deginsϕ).

Proposition 4.2. Let E1, E2, E3 be elliptic curves defined over a field K. Let ϕ : E1 → E2 be a separable
isogeny, and ψ : E1 → E3 be an isogeny. If kerϕ ⊆ kerψ, then ψ factors uniquely through ϕ i.e., there is
a unique isogeny λ : E2 → E3 such that ψ = λ ◦ ϕ.

Proposition 4.3. Let E be an elliptic curve defined over a field K, and let G be a finite subgroup of E.
Then there exist a unique elliptic curve E′ defined over K and a separable isogeny π : E → E′ such that
kerπ = G. The curve E′ is usually denoted by E/G.

These three statements and their proofs can be found in [Sil09]: see Corollary 2.12 in Chapter II,
Corollary 4.11 in Chapter III, and Proposition 4.12 in Chapter III, respectively.
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4.2. A useful decomposition of isogenies. – Let K be a function field in the above sense. In this
subsection, we assume that the characteristic p of K is positive.

Let E1, E2 be two non-isotrivial elliptic curves defined over K, and let ϕ : E1 → E2 be an isogeny
between them. By Proposition 4.1, one can decompose ϕ as

E1
Frpe

−−−→ E
(pe)
1

ψ−→ E2,

where Frpe denotes the pe-th power Frobenius isogeny, and ψ is a separable isogeny. Since ψ is separable,
we see that deginsϕ = deginsFrpe = pe. Let us now consider the dual isogeny ψ̂ : E2 → E

(pe)
1 to ψ. Using

the same Proposition 4.1 as in the previous paragraph, we obtain that ψ̂ factors as

E2
Fr

pf

−−−→ E
(pf )
2

ψ′−→ E
(pe)
1 ,

where ψ′ is a separable isogeny, and where pf = deginsϕ̂. We thus have ψ̂ = ψ′ ◦ Frpf . By contravariance
of taking duals, we deduce that ψ = ̂̂

ψ = F̂rpf ◦ ψ̂′. By definition, the dual of Frpf is the Verschiebung
isogeny Vpf : E(pf )

2 → E2. Since E2 is non-isotrivial, Vpf is a separable isogeny of degree pf . The isogeny
ϕs := ψ̂′ is separable, because both ψ = Vpf ◦ ϕs and Vpf are (by multiplicativity of the inseparability
degree in compositions). In particular, ϕs is a separable isogeny whose dual ϕ̂s = ψ′ is also separable.

We have therefore decomposed our original isogeny ϕ : E1 → E2 as a composition

E1
Frpe

−−−→ E
(pe)
1

ϕs−→ E
(pf )
2

V
pf

−−→ E2,

where ϕs is separable with separable dual. We also know that pe = deginsϕ and pf = deginsϕ̂. This should
motivate the following definition:

Definition 4.4. Let ϕ : E → E′ be an isogeny between two elliptic curves E, E′ over K. If both ϕ and
its dual ϕ̂ are separable, we will say that ϕ is biseparable.

Such isogenies may be characterised as follows:

Lemma 4.5. Let E and E′ be two elliptic curves over K and let ϕ : E → E′ be an isogeny. Then ϕ is
biseparable if and only if degϕ is coprime to the characteristic of K.

Proof. Let p > 0 denote the characteristic of K. We factor the degree d := degϕ as d = pr · d′, with r ≥ 0
and d′ ∈ Z is coprime to p. By construction of the dual isogeny, we have ϕ̂ ◦ ϕ = [d] = [d′] ◦ [pr], where
[n] : E → E denotes the multiplication-by-n map on E. Now, the multiplication-by-pr map [pr] on E is
inseparable of degree p2r (with inseparability degree with pr ≤ degins[pr] ≤ p2r); and, since d′ is coprime
to p, the map [d′] : E → E is separable. All in all, the inseparability degree of the map ϕ̂◦ϕ = [d] : E → E
satisfies pr ≤ degins[d] ≤ p2r.

Now assume that ϕ is biseparable of degree d = d′pr. Since both ϕ and ϕ̂ are separable, their
composition is separable. Hence the multiplication-by-d map on E is separable. By the previous paragraph,
we must have r = 0. Therefore, the degree of ϕ is coprime to p.

Converserly, assume that the degree d of ϕ is coprime to p. Then ϕ must be separable because the
map [d] : E → E is separable and factors through ϕ. Since the dual of ϕ has degree deg ϕ̂ = d, the very
same argument shows that ϕ̂ is also separable.

The discussion preceding Definition 4.4 proves the following decomposition result:

Proposition 4.6. Let E1, E2 be two non-isotrivial elliptic curves over K, and let ϕ : E1 → E2 be an
isogeny between them. The isogeny ϕ factors as

E1
Frpe

−−−−→ E
(pe)
1

ψ−−→ E
(pf )
2

V
pf

−−−−→ E2,

where ψ is a biseparable isogeny. We have pe = deginsϕ and pf = deginsϕ̂.

This decomposition will be used repeatedly in the remainder of the article. We conclude this section
by the following lemma:

Lemma 4.7. Let K be a function field as above. Let ϕ : E1 → E2 be a biseparable isogeny between
non-isotrivial elliptic curves over K. Then the kernel H = kerϕ of ϕ is defined over a finite separable
extension of K, that is, the extension K(H)/K is separable.
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Proof. Let d be the degree of ϕ, [d] : E1 → E1 denote the multiplication-by-[d] map on E1, and E1[d] be
the d-torsion subgroup of E1. We have H = kerϕ ⊂ ker[d] = E1[d], so that K(H) is a subfield of K(E1[d]).
It therefore suffices to prove that the extension K(E1[d])/K is separable. We know by Lemma 4.5 that d
is coprime to the characteristic of K. Then it is well-known (see [ST68, §1] for instance) that E1[d] is
contained in E1(Ksep), where Ksep denotes the separable closure of K. The extension K(E1[d])/K is
therefore separable, and the Lemma is proved.

5. Isogenies and heights
Let k be a perfect field of characteristic p ≥ 0. Let C be a smooth projective geometrically irreducible
curve over k, and K = k(C) denote its function field. The goal of this section is to describe the effect of
an isogeny between elliptic curves over K on the height of their j-invariants: we prove Theorem A, as well
as state a few consequences thereof.

The general idea is that “biseparable isogenies preserve the height”. If K has characteristic 0, this will
directly lead to the desired result. In positive characteristic p, more work is required.

5.1. Biseparable isogenies preserve the differential height. – We begin by recalling the following
result (see [Par70, Par73] for instance) and its proof. The reader is referred to [BLR90] (especially §7.3
there) and [Ray85] for more details about Néron models and isogenies.

Theorem 5.1. Let E1, E2 be non-isotrivial elliptic curves over K. Assume that there exists a biseparable
isogeny ϕ : E1 → E2. Then, we have

hdiff(E1/K) = hdiff(E2/K).

Proof. For i = 1, 2, we denote the Néron model of Ei/K by πi : Ei → C, and we write si : C → Ei for its
zero-section. The surface Ei is smooth over C: let Ω1

Ei/C
denote the sheaf of relative differential 1-forms on

Ei/C, and consider the line bundle ωi := s∗iΩ1
Ei/C

on C. Recall from §3.1 that the differential height of Ei
equals degωi. To prove the Theorem, it is (more than) sufficient to show that ω1 ' ω2 as line bundles on
C. The given isogeny ϕ : E1 → E2 extends into a group morphism Φ : E1 → E2 which is still an isogeny,
which means that Φ is, fiber by fiber, finite and surjective on the identity components. The morphism
Φ induces a map Φ∗Ω1

E2/C
→ Ω1

E1/C
, which we may restrict to the zero-section. Using that Φ satisfies

Φ ◦ s1 = s2, we obtain a map of OC-modules

F : ω2 = s∗2Ω1
E2/C

' s∗1Φ∗Ω1
E2/C

−→ s∗1Ω1
E1/C

= ω1.

Is suffices to show that F is an isomorphism: to so so, we may argue locally on C. We thus set out to
show that, for any closed point v of C, the restriction of F to the fibers ω1,v and ω2,v of ω1 and ω2 above
v is an isomorphism.

Let v be a closed point of C. Write Ov for the local ring of C at v and S := SpecOv. We also let kv
denote the residue field at v (note that kv is a finite extension of k, and thus has the same characteristic
as k). Denoting the fiber of Ei at v by Ei,v := Ei ×C SpecOv, the restriction ϕv : E1,v → E2,v of Φ is an
isogeny. It is then known (see [BLR90, §7.3, Lem. 5]) that there exists a dual isogeny ϕ̂v : E2,v → E1,v,
such that ϕ̂v ◦ ϕv = [d] with d = degϕ. Since d is coprime to the characteristic of kv, all three of ϕv, ϕ̂v
and [d] are étale by [Ray85, 1.1.2], or [BLR90, §7.3, Lem. 2].

The isogeny ϕv induces a canonical map ϕ∗vΩ1
E2,v/S

→ Ω1
E1,v/S

which, since ϕv is étale on E1,v/S , is
actually an isomorphism (see [BLR90, §2.2, Coro. 10]). Moreover, ϕv being a group morphism, we have
ϕv ◦ s1|E1,v = s2|E2,v . Pulling back the above isomorphism along (the restriction of) s1, we obtain an
isomorphism of Ov-modules

ω2,v = s∗2Ω1
E2,v/S

' s∗1ϕ∗vΩ1
E2,v/S

−→ s∗1Ω1
E1,v/S

= ω1,v,

which is the restriction of F to the fibers above v. This concludes the proof.

5.2. Biseparable isogenies preserve the inseparability degree of the j-invariants. – In this
subsection, we assume that the function field K has positive characteristic p. We describe the effect of a
biseparable isogeny on the inseparability degree of the j-invariants.

Proposition 5.2. Let E1, E2 be two non-isotrivial elliptic curves over K. Assume that there exists a
biseparable isogeny E1 → E2. Then, the inseparability degrees of j(E1) and j(E2) are equal.
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The proof below is adapted from [BLV09, 2.2] where it is proven that, if E1 → E2 is a biseparable
isogeny and if j(E1) ∈ K is separable, then j(E2) is separable too.

Proof. We write j1, j2 to denote the j-invariants of E1 and E2 respectively. Let ϕ : E1 → E2 be a
biseparable isogeny, whose degree is denoted by d (by assumption, d is thus coprime to p). Choose an
elliptic curve E′2 defined over k(j2) whose j-invariant is j2: by construction, E2 and E′2 are isomorphic
over K. Actually, E2 and E′2 become isomorphic over a finite separable extension K ′/K of degree ≤ 24,
see [Sil09, Chap. III, Prop. 1.4]. Moreover one can assume that the field of constants of K ′ is k. We may
and do base change the situation to K ′, so that E2 ' E′2 over K ′ = K.

For the convenience of the reader, here are diagrams of the field extensions we are going to consider:
all these extensions are finite, we have indicated some of the inseparability degrees, and the thicker lines
denote extensions which are separable (see below).

K

k(j1, j2)

k(j1) k(j2) = K2

di=degins(j1)

di≤degins(j1)

di=degins(j2)

?

K

k(j2, H)

k(j1, j2)

k(j2)

di≤degins(j1)

?

Let K2 = k(j2) ⊂ K. Since d is coprime to p, the extension K2(E′2[d])/K2, obtained by adjoining
to K2 the coordinates of points of d-torsion on E′2, is finite and separable (see [BLV09, Prop. 3.8] for a
proof). We view ϕ as an isogeny ϕ : E1 → E2 ' E′2. Let ϕ̂ : E′2 → E1 be its dual isogeny: the kernel
H := (ker ϕ̂)(K) of ϕ̂ is then a subgroup of E′2[d]. Therefore the finite extension K2(H)/K2 obtained by
adjoining to K2 the coordinates of points of H, being a subextension of K2(E′2[d])/K2 is separable.

The curves E1 and E′2 are linked by the isogeny ϕ̂, and thus E1 ' E′2/H. In particular, E1 is isomorphic
to an elliptic curve defined over K2(H), so that j1 ∈ K2(H). This implies that K2(j1) = k(j1, j2) is a
finite separable extension of K2 = k(j2). Indeed, k(j1, j2)/K2 is a sub-extension of K2(H)/K2, which is
finite separable (see Lemma 4.7). Hence the extension K/K2 has the same inseparability degree as the
finite extension K/k(j1, j2):

degins(j2) = [K : K2]i = [K : k(j1, j2)]i.

On the other hand, we have a chain of finite extensions k(j1) ⊂ k(j1, j2) ⊂ K. Therefore, we have the
divisibility relation:

[K : k(j1, j2)]i divides [K : k(j1)]i = degins(j1).

We thus conclude that [K : k(j2)]i = degins(j2) divides degins(j1).
Applying the same argument to the dual isogeny ϕ̂ : E2 → E1 (which is also biseparable), we conclude

that degins(j1) divides degins(j2). These two quantities are therefore equal.

Making use of Proposition 4.6, we now describe the effect of an arbitrary isogeny on the inseparability
degrees of the j-invariants.

Corollary 5.3. Let E1, E2 be two non-isotrivial elliptic curves over K. Assume that there exists an
isogeny ϕ : E1 → E2. Then we have

degins(ϕ̂) · deginsj(E2) = degins(ϕ) · deginsj(E1).

Proof. By Proposition 4.6, one may decompose ϕ : E1 → E2 as a composition

E1
Frpe

−−−−→ E
(pe)
1

ψ−−→ E
(pf )
2

V
pf

−−−→ E2,

where ψ is biseparable, pe = degins(ϕ), and pf = degins(ϕ̂). By the previous proposition, the inseparability
degrees of j(E(pe)

1 ) and j(E(pf )
2 ) are equal. For i ∈ {1, 2} and any k ∈ Z≥0, since j(E(pk)

i ) = j(Ei)p
k , we

have deginsj(E
(pk)
i ) = pkdegins(j(Ei)). The claimed identity is then clear.
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5.3. Isogenies and modular heights. – We can now conclude our study of the effect of isogenies
between elliptic curves on their modular height. We fix a function field K as above. In case K has
characteristic 0, all the inseparability degrees should be interpreted as being 1. The following result was
announced in the introduction as Theorem A:

Theorem 5.4. Let E1 and E2 be two non-isotrivial elliptic curves over K. Assume that there is an isogeny
ϕ : E1 → E2 between them. Then one has

hmod(E2) = degins(ϕ)
degins(ϕ̂) · hmod(E1).

In particular, biseparable isogenies preserve the modular height.

Proof. Fix a finite extension L/K over which both E1, E2 are defined. We may and will also assume that
L is chosen so that E1 and E2 are semi-stable over L. As above (see Proposition 4.6), we decompose the
isogeny ϕ : E1 → E2 as a composition of Frpe : E1 → E

(pe)
1 , ψ : E(pe)

1 → E
(pf )
2 and Vpf : E(pf )

2 → E2

where ψ is biseparable and pe = degins(ϕ), pf = degins(ϕ̂). We denote E(pe)
1 by E′1 and E

(pf )
2 by E′2, for

simplicity. We write that
hmod(E2)
hmod(E1) = hmod(E2)

hmod(E′2) ·
hmod(E′2)
hmod(E′1) ·

hmod(E′1)
hmod(E1) .

By definition, we have j(E′1) = j(E(pe)
1 ) = j(E1)pe , so that hmod(E′1) = pe · hmod(E1) and, similarly, we

have hmod(E′2) = pf · hmod(E2).
We now make use of the “semi-stable case” of Proposition 3.2 and obtain that

hmod(E′2)− hmod(E′1) (i)= 12 · (hdiff(E′2/L)− hdiff(E′1/L)) + 0 (ii)= 0.

Here, equality (i) follows from Proposition 3.2: the ‘error term’ in the comparison of heights vanishes
because the curves are semi-stable over L (hence hdiff(E′i/L) is really hst(E′i)). Equality (ii) comes from
the fact that ψ : E′1 → E′2, being biseparable, preserves the differential height (see Theorem 5.1).

Therefore hmod(E′1) = hmod(E′2), and the result is proved.

5.4. Isogenies and differential heights. – As we saw in §5.1, biseparable isogenies preserve the dif-
ferential height (Theorem 5.1). If K has characteristic 0, all isogenies are biseparable so that Theorem
5.4 completely solves the problem of describing the effect of isogenies on the differential height. In this
subsection, we thus assume that the function field K has positive characteristic p and attempt to describe
this effect. In view of the decomposition given by Proposition 4.6, it is enough to focus on the effect of the
Frobenius isogeny on hdiff : this is what we elucidate now.

Lemma 5.5. Let K be a function field of characteristic p > 0. For any non-isotrivial elliptic curve E
over K, there exists α(E/K) ≥ 1 such that, for any power q of p, we have

α(E/K)−1 · q · hdiff(E/K) ≤ hdiff(E(q)/K) ≤ q · hdiff(E/K). (5.1)

If, moreover, E is semi-stable over K, we have α(E/K) = 1 and hdiff(E(q)) = q · hdiff(E/K).

Proof. To lighten notation, we write E′ := E(q). For any place v of K, denote the ring of integers at v by
Ov ⊂ K. We may pick a minimal v-integral Weierstrass model for E of the form:

E : y2 + a1,vxy + a3,vy = x3 + a2,vx
2 + a4,vx+ a6,v,

with a1,v, . . . , a6,v ∈ Ov. By definition, the discriminant ∆E,v = ∆(a1,v, . . . , a6,v) ∈ Ov of this model has
minimal valuation v(∆E,v) among all choices of Weierstrass coefficients a1,v, . . . , a6,v ∈ Ov for E.

A Weierstrass model for the Frobenius twist E′ = E(q) is then given by:

E′ : y2 + aq1,vxy + aq3,vy = x3 + aq2,vx
2 + aq4,vx+ aq6,v. (5.2)

We note that aq1,v, . . . , a
q
6,v all lie in Ov, so that (5.2) is a v-integral model for E′. The discriminant ∆′v of

this model is clearly equal to ∆q
E,v. Let ∆E′,v be the discriminant of a minimal v-integral Weierstrass model

of E′. Since ∆′v and ∆E′,v differ by the 12-th power of an element of Ov, the difference v(∆′v)− v(∆E′,v)
is a non-negative integral multiple of 12. In particular, we obtain that q · v(∆E,v) ≥ v(∆E′,v). Multiplying
this inequality by deg v, and summing over all places v of K yields that

q · deg ∆min(E/K) ≥ deg ∆min(E′/K).
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The right-most inequality in (5.1) ensues immediately. To prove the other inequality in (5.1), we argue as
follows. The proof of Proposition 3.2 implies the bounds:

0 ≤ deg ∆min(E/K)− deg div∞(j(E)) ≤ 12 degA(E/K), (5.3)

where A(E/K) =
∑
v not s.s. v is the divisor whose support consists in the places v of K where E does not

have semi-stable reduction. In particular, we have

deg ∆min(E′/K) ≥ deg div∞(j(E′)) and deg ∆min(E/K) ≤ deg div∞(j(E)) + 12 degA(E/K).

Therefore, since j(E′) = j(E)q, we deduce that

q · deg ∆min(E/K)
deg ∆min(E′/K) ≤

q · deg ∆min(E/K)
deg div∞(j(E′)) = q · deg ∆min(E/K)

q · deg div∞(j(E))

≤ deg div∞(j(E)) + 12 degA(E/K)
deg div∞(j(E)) = α(E/K),

where we have set α(E/K) := 1 + 12 degA(E/K)/(deg div∞ j(E)). From which we obtain that

q · hdiff(E/K) ≤ α(E/K) · hdiff(E′/K).

It is clear that α(E/K) ≥ 1, and that α(E/K) = 1 if and only if E/K is semi-stable. The above proves
both the left-most inequality in (5.1) and the last assertion of the Lemma.

Remark 5.6. We assume here that K has characteristic p 6= 2, 3. Let E be a non-isotrivial elliptic curve
over K, and E′ := E(q) be its q-th power Frobenius twist. Since E and E′ are K-isogenous, they have the
same reduction behaviour at all places of K.

If v is a place where E has multiplicative reduction of type In, for some n ≥ 1, then E′ also has
multiplicative reduction at v, and its fiber at v is of type In·q. Therefore we have v(∆min(E/K)) ≤
qv(∆min(E/K)) = v(∆min(E′/K)). If v is a place where E has additive reduction, then by inspection of
the possible Kodaira–Néron reduction types of E′ at v (see the table p. 365 of [Sil94], which is only valid
in characteristic p 6= 2, 3), we find that v(∆min(E/K)) ≤ 12v(∆min(E′/K)). Therefore, for any place v
where either of E and E′ have bad reduction, we have

v(∆min(E/K)) ≤ 12v(∆min(E′/K)).

Multiplying this inequality by deg v and summing over all places v of K, we obtain that
1
12 · hdiff(E/K) ≤ hdiff(E(q)/K).

This may be viewed as a weak (but uniform) version of the lower bound in (5.1).

We can now give the final estimate of this subsection.

Proposition 5.7. Let E1, E2 be a pair of non-isotrivial elliptic curves over a function field K. Assume
that there exists an isogeny ϕ : E1 → E2. If both E1 and E2 are semi-stable over K, we have

hdiff(E2/K) = deginsϕ

deginsϕ̂
· hdiff(E1/K).

In general, we have
α(E2/K)−1 ≤ deginsϕ · hdiff(E1/K)

deginsϕ̂ · hdiff(E2/K) ≤ α(E1/K),

where α(E1/K), α(E2/K) ≥ 1 are the same as in Lemma 5.5.

Proof. The semi-stable case is a direct consequence of Theorem 5.4 and Corollary 3.3. In the general case,
by Proposition 4.1, the isogeny ϕ : E1 → E2 decomposes as

ϕ : E1
Frpe

−−−−→ E
(pe)
1

ψ−−→ E
(pf )
2

V
pf

−−−→ E2,

where ψ is a biseparable isogeny, pe = degins(ϕ), and pf = degins(ϕ̂). We then write that

hdiff(E1)
hdiff(E2) = hdiff(E1)

hdiff(E(pe)
1 )

· hdiff(E(pe)
1 )

hdiff(E(pf )
2 )

· hdiff(E(pf )
2 )

hdiff(E2) .

Since the isogeny ψ : E(pe)
1 → E

(pf )
2 is biseparable, Theorem 5.1 yields that the ratio hdiff(E(pe)

1 )/hdiff(E(pf )
2 )

is 1. To conclude, one then applies inequality (5.1) in Lemma 5.5 to the other two ratios.
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Remark 5.8. If K has characteristic p 6= 2, 3, we may carry out the same argument using the bound in
Remark 5.6 instead of inequality (5.1). We would then obtain the following bound. If ϕ : E1 → E2 is an
isogeny between two non-isotrivial elliptic curves over K, we have

(12 degins(ϕ))−1 ≤ hdiff(E1/K)
hdiff(E2/K) ≤ 12 degins(ϕ̂).

5.5. A surprising consequence on isogeny classes. – Let E be a non CM elliptic curve over Q. For
any B ≥ 0, consider the set

EQ(E,B) =
{
E′/Q : E′ is isogenous to E and ht(j(E′)) ≤ B

}/
Q-isomorphism,

where ht : Q→ R is the standard logarithmic absolute Weil height on Q. It is known that EQ(B) is a finite
set (see Lemma 5.9 in [Hab13]). The main input in the proof is an estimate from [SU99] (see Théorème 1.1
there) which states that

ht(j(E′)) ≥ ht(j(E)) + 1
2 log degϕ− o(log degϕ)

if there is a cyclic isogeny ϕ : E → E′ (where the implicit constants in the error term depend on E). Using
our results in §5.3, we study a set analogous to EQ(E,B) in the context of function fields.

Let K be a function field as in section 1, with characteristic p ≥ 0. Let E be a fixed non-isotrivial
elliptic curve over K, and write Ebs(E) for the set of elliptic curves over K which are biseparably isogenous
to E (i.e. such that there is a biseparable isogeny E → E′). For any real number B ≥ 1, consider the set

EK(E,B) =
{
E′ ∈ Ebs(E) : hmod(E′) ≤ B

}/
K-isomorphism.

When the characteristic of K is 0, all isogenies are biseparable, so that Ebs(E) is the whole isogeny class
of E. The biseparable condition was added in order to avoid trivial situations in positive characteristic:
without this condition, if K has characteristic p, we would indeed directly obtain infinitely many (isomor-
phism classes of) elliptic curves over K which are isogenous to E and have bounded modular height by
considering the sequence

. . .
Vp−−−→ E(1/pn) Vp−−−→ E(1/pn−1) Vp−−−→ . . .

Vp−−−→ E(1/p2) Vp−−−→ E(1/p) Vp−−−→ E.

In stark contrast to the above mentioned result of Habegger, we prove:

Proposition 5.9. If B ≥ hmod(E), the set EK(E,B) is infinite.

Proof. Given an integer n ≥ 1 which is coprime to the characteristic p of K, we may pick a point Pn ∈ E(K)
of exact order n. We then let πn denote the quotient isogeny πn : E → E/〈Pn〉 from E to its quotient En
by the subgroup generated by Pn. The isogeny πn has degree n (see Proposition 4.3), and is therefore
biseparable (see Lemma 4.5).

This construction provides a sequence (En)n of elliptic curves over K indexed by prime-to-p integers.
Let us prove that (the isomorphism class of) En lies in EK(E,B) if the requirement on B is met. It is clear
that the curve En/K is biseparably isogenous to E. Applying Theorem 5.4 to the isogeny πn : E → En
yields that hmod(En) = hmod(E). Therefore, the isomorphism class of En does belong to EK(E,B), thanks
to our assumption that hmod(E) ≤ B.

In order to conclude the proof, it now suffices to show that the above-constructed sequence (En)n
provides infinitely many isomorphism classes. Let `1, `2 be two prime numbers, both coprime to p, and
assume that E`1 ' E`2 . Let us denote the isomorphism by ι : E`1 → E`2 . The composition λ := ι ◦ π`1 is
an isogeny E → E`2 of degree `1. Hence, the isogeny ψ : E → E defined by ψ = π̂`2 ◦ λ is a biseparable
endomorphism of E of degree `1`2. Since E is non-isotrivial, its endomorphism ring is trivial; hence, there
is an integer d such that ψ = [d]. Taking degrees, we obtain in particular that d2 = `1`2. Since `1 and `2
are primes, we deduce that `1 = `2 = d. Thereby we conclude that the sequence (E`)` indexed by prime
numbers ` 6= p provides infinitely many elements in EK(E,B).

The main difference between the number field and the function field cases lies in how much the modular
height varies along an isogeny class. Over number fields, the above-mentioned Théorème 1.1 in [SU99]
shows that ht(j(E′)) does vary as E′/Q runs through the isogeny class of E/Q, provided that E has no
CM. Therefore, bounding ht(j(E′)) sufficiently constrains the degree of possible isogenies E → E′ that
the set EQ(E,B) is finite. Over a function field K, on the contrary, our Theorem 5.4 shows that hmod(E′)
remains constant as E′ runs through Ebs(E), provided that E is non-isotrivial. The absence of constraints
on the degree of isogenies E → E′ other than coprimality with the characteristic, allows the set EK(E,B)
to be infinite.
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6. An isogeny estimate
The goal in this last section is to prove the second main result of the paper (Theorem B), which is the
following isogeny estimate:
Theorem 6.1. Let K be a function field of genus g. For any pair of non-isotrivial isogenous elliptic
curves E1, E2 defined over K, there exists an isogeny ϕ0 : E1 → E2 with

degϕ0 ≤ 49 max{1, g} ·max
{

deginsj(E1)
deginsj(E2) ,

deginsj(E2)
deginsj(E1)

}
,

where deginsj(E1),deginsj(E2) are the inseparability degrees of j(E1), j(E2).
If K has characteristic 0, the inseparability degrees appearing on the right-hand side of the inequality

should be interpreted as 1. Specifically, in that situation, the statement above yields that there is an
effective constant c1 > 0 (depending only on the genus of K) such that: for all pairs E1, E2 of non-
isotrivial K-isogenous elliptic curves, there exists a (K-)isogeny ϕ0 : E1 → E2 with degϕ0 ≤ c1. This
isogeny estimate is thus uniform for a fixed K. This should be compared to the number field case (treated
in [MW90, Pel01, GR14]) where the right-hand side of such isogeny estimates depend on the heights of
the involved elliptic curves.

Let us remark that, in positive characteristic p, the appearance of the inseparability degrees on the
right-hand side is unavoidable, because of Theorem 5.4 and the existence of the Frobenius isogeny. Given
a non-isotrivial elliptic curve E/K, the smallest isogeny between E and its Frobenius twist E(p) is indeed
the p-th power Frobenius, which has degree p. Similar considerations with the Verschiebung show, more
generally, that the dependency in deginsj(E1) and deginsj(E2) on the right-hand side of the bound in
Theorem 6.1 is optimal.
Remark 6.2. If one assumes that E1, E2 are linked by an isogeny ϕ which is defined over K, then the
isogeny ϕ0 : E1 → E2 whose existence is asserted in Theorem 6.1 is also defined over K. More generally,
all isogenies E1 → E2 are then defined over K. See Lemma 6.10 below.

6.1. Preliminaries about modular curves. – Let us briefly recall some facts about modular curves.
Given an integer N ≥ 1, there is a smooth scheme Y0(N) of relative dimension 1 over SpecZ[1/N ] which is
a coarse moduli scheme for elliptic curves endowed with a cyclic subgroup of order N . In other words, the
curve Y0(N) enjoys the following property: For any field F whose characteristic is coprime to N , there is
a bijection (which is functorial in F ) between the set Y0(N)(F ) and the set of equivalence classes of pairs
(E,H) where E is an elliptic curve over F , and H is a cyclic subgroup of E of order N which is stable under
the action of the absolute Galois group of F . Two such pairs are called equivalent if they are isomorphic
over the algebraic closure F of F . These properties of Y0(N) are explained in more details in [DI95, §8],
and the construction is carried out comprehensively in [KM85] (in particular, Chapters III, VI and VIII
there). Adding a finite number of points (called cusps) to Y0(N), one obtains the usual compactification,
denoted by X0(N), of Y0(N). The smooth projective curve X0(N) is also defined over SpecZ[1/N ] (and,
further, has an interpretation as a moduli space, in terms of generalized elliptic curves, see [DI95, §9]).

In particular, the curve X0(1) is nothing but the “j-line” over SpecZ i.e., X0(1) ' P1
/Z, where the

isomorphism is given on isomorphism classes of elliptic curves by E 7→ j(E).
For any divisor n of N , there is a “degeneration” morphism X0(N) → X0(n), which extends the map

on pairs (E,H) as above, defined by (E,H) 7→ (E, NnH). In the special case n = 1, we obtain a map
fN : X0(N)→ X0(1) = P1, which extends the map (E,H) 7→ E 7→ j(E).

Let Γ0(N) ⊂ SL2(Z) be the subgroup formed by 2 × 2 integral matrices of determinant 1 whose
reduction modulo N is upper triangular. The fiber X0(N) := X0(N) × C is isomorphic (as a Riemann
surface) to the compactification of the quotient {τ ∈ C : Im τ > 0}/Γ0(N). One can show (see [Shi94,
Chap. I] for instance) that the degree of the degeneration morphism fN : X0(N)→ X0(1) = P1

/C is equal
to the index [SL2(Z) : Γ0(N)]. Propositions 1.40 and 1.43 in [Shi94] then show that

deg fN = [SL2(Z) : Γ0(N)] = N ·
∏
`|N

(
1 + 1

`

)
:= ψ(N). (6.1)

A detailed study of the ramification behaviour of fN , combined with the Riemann–Hurwitz formula then
allows to compute the genus of X0(N). Specifically, Propositions 1.40 and 1.43 in [Shi94] yield that the
modular curve X0(N) has genus

g(X0(N)) = 1 + ψ(N)
12 − ν2(N)

4 − ν3(N)
3 − ν∞(N)

2 , (6.2)
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where ψ(N) is as above, ν∞(N) =
∑
d|N ϕ(gcd(d,N/d)), and

ν2(N) =
{

0 if 4 | N,∏
`|N
(
1 +

(−1
`

))
if 4 - N,

and ν3(N) =
{

0 if 9 | N,∏
`|N
(
1 +

(−3
`

))
if 9 - N.

Here ϕ denotes Euler’s totient function, and (·/`) is the Legendre symbol.
We end this brief summary by estimating the growth of the genus g(X0(N)) of X0(N) as N grows. We

thank Gaël Rémond for the following argument, which yields better bounds than our original proof.

Lemma 6.3. For any integer N ≥ 300, we have g(X0(N)) ≥ N/49. Moreover, for all N ≥ 1, we have

N ≤ 49 max{1, g(X0(N))}.

Proof. We estimate separately the terms on the right-hand side of equation (6.2). We start by noticing
that ν∞, ν2 and ν3 are all multiplicative functions. For any prime `, and any integer e ≥ 1, one has

ν∞(`e) =
{√

`e
(
1 + `−1) if 2 | e,√

`e · 2`−1/2 if 2 - e.

Since, for all `, we have 1 + `−1 ≥ 2`−1/2, the multiplicativity of ν∞ implies that, for all N ≥ 1,

ν∞(N)√
N
≤
∏
`|N

(
1 + 1

`

)
= ψ(N)

N
.

Hence we deduce that ν∞(N) ≤ ψ(N)/
√
N .

Similarly, we notice that max{ν2(`e), ν3(`e)} ≤ ν∞(`e) for all primes ` and integers e ≥ 1. We directly
infer that, for any integer N ≥ 1, one has max{ν2(N), ν3(N)} ≤ ν∞(N).

Plugging these bounds into equation (6.2) yields that

g(X0(N)) ≥ 1 + ψ(N)
12 − 7

12 max{ν2(N), ν3(N)} − 1
2ν∞(N)

≥ 1 + ψ(N)
12 − 13

12ν∞(N) ≥ 1 + ψ(N)
12

(
1− 13√

N

)
.

By definition of ψ, we have ψ(N) ≥ N . Therefore, g(X0(N)) > N
12

(
1− 13√

N

)
for N ≥ 132. Furthermore,

as a quick computation shows, for any N ≥ 297, we have

g(X0(N)) > N

12

(
1− 13√

N

)
≥ N

49 .

This proves the first assertion of the lemma.
Direct calculations with formula (6.2) using a computer show that the bound N ≤ 49 max{1, g(X0(N))}

also holds for all N ∈ {1, . . . , 299}. (The worst case is N = 49 for which g(X0(N)) = 1.)

Remark 6.4. Depending on the situation at hand, the bounds of Lemma 6.3 can be somewhat optimized.
For instance, one can deduce from 12g(X0(N)) >

√
N(
√
N − 13) that N ≤ 25g(X0(N)) for all N ≥ 625.

Explicit computations for N ∈ {1, . . . , 624} then show that

N ≤ max{49, 25g(X0(N))} ≤ 49 max {1, 0.5 · g(X0(N))} ,

for all N ≥ 1. In a similar vein, one can show that N ≤ 13g(X0(N)) for all N ≥ 28561, and check with
the help of a computer that, for all N ≥ 1,

N ≤ max{3721, 13g(X0(N))} ≤ 3721 max {1, 0.004 · g(X0(N))} .

The worst case happens for N = 3721 when g(X0(N)) = 284. These inequalities are more precise than
Lemma 6.3 for larger genera.

In the other direction, explicit computation using formula (6.2) show that the modular curve X0(N)
has genus zero if and only if N ∈ {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 13, 16, 18, 25}.
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6.2. Bounding biseparable isogenies. – Let K be a function field with field of constants k, and fix a
model C of K (see §1). We write g(C) for the genus of C (which we also call the genus of K), and we let
GK denote the absolute Galois group of K.

Let d ≥ 1 be an integer which is coprime to the characteristic of K. Assume that we are given a
non-isotrivial elliptic curve E over K, equipped with a cyclic, GK-stable subgroup H ⊂ E of order d.
Consider the modular curve X0(d), defined over SpecZ[1/d], and write X0(d)/F for its base change to a
field F whose characteristic is prime to d. By the coarse moduli space interpretation of X0(d), there is a
canonical map sending the K-isomorphism class of the pair (E,H) to a non-cuspidal K-rational point P
on X0(d). From the given data, we thus deduce a non-cuspidal K-rational point P ∈ X0(d).

By definition, the point P is given by a morphism SpecK → X0(d) over SpecZ[1/d], which factors as
a morphism SpecK → X0(d)/k over Spec k. Since SpecK is the generic point of C, the latter induces a
rational map C 99K X0(d)/k. Since both C and X0(d)/k are smooth projective curves over k, this rational
map extends to a morphism sP : C → X0(d)/k over k.

Let fd : X0(d)/k → X0(1)/k = P1
/k denote the degeneration morphism, which extends the map sending

a pair (E′, H ′) to j(E′). By construction, the morphism jE : C → P1
/k deduced from the j-invariant of E

factors through sP and fd. In other words, the diagram

C X0(d)/k

P1
/k

jE

sP

fd

(6.3)

is commutative. We may now prove the following:

Proposition 6.5. Let E be a non-isotrivial elliptic curve over K. Let H ⊂ E be a cyclic, GK-stable
subgroup of order d. If d is coprime to the characteristic of K, we have

d ≤ 49 max{1, g(C)}.

Proof. By the discussion above, the data (E,H) of the proposition yields a morphism sP : C → X0(d)/k
such that the diagram (6.3) commutes. The fact that E is non-isotrivial implies that jE : C → P1

/k is not
constant which, in particular, ensures that the morphism sP : C → X0(d)/k is non-constant.

A weak version of the Riemann–Hurwitz formula then entails that the genus of X0(d)/k is no greater
than that of C. Since X0(d) is a smooth curve other SpecZ[1/d], the genus of X0(d)/k is equal to the
genus of the complex Riemann surface X0(d)/C. This means that g(C) ≥ g(X0(d)/C). We then appeal to
the lower bound of Lemma 6.3, which shows that d ≤ 49 max{1, g(X0(d)/C)}.

We obtain that d ≤ 49 max{1, g(X0(d)/C)} ≤ 49 max{1, g(C)}.

We now state and prove a variant of the previous proposition, which is significantly weaker (it is not
uniform in the elliptic curve) but which might prove more flexible. This version may indeed be of interest
for applications where one studies elliptic curves defined over a varying field L whose degree over K is
bounded (in which case a bound depending on the genus of L may be too crude). We provide an instance
of such an application in §6.5.

Proposition 6.6. Let K be a function field and let L/K be a finite extension. Let E be a non-isotrivial
elliptic curve over L, and H ⊂ E be a cyclic, GL-stable subgroup of order d. Assuming that d is coprime
to the characteristic of K, we have

d ≤ [L : K] · hmod(E).

Proof. We fix a model C ′ of L, and denote the constant field of L by k′. Carrying out the argument
preceding the previous proposition with L instead of K, we deduce from the input (E,H) an L-rational
point Q on the modular curve X0(d), and a morphism sQ : C ′ → X0(d)/k′ . As in (6.3), the j-invariant
jE : C ′ → P1

/k′ factors through sQ; we thus have jE = fd ◦ sQ, where fd : X0(d)/k′ → P1
/k′ is the

degeneration map. Since jE = fd ◦ sQ, it is clear that deg(jE) ≥ deg(fd).
As was recalled in the previous subsection, the degree of fd is nothing but [SL2(Z) : Γ0(d)] = ψ(d). It

is clear that ψ(d) ≥ d, so that

deg(jE) ≥ deg(fd) = [SL2(Z) : Γ0(d)] = ψ(d) ≥ d.

Now, the degree of jE : C ′ → P1 is the degree of its divisor of poles div∞(jE) ∈ Div(C ′). As was remarked
in §3.2, the modular height of E satisfies hmod(E) = [L : K]−1 · deg(div∞(jE)). Rearranging the terms in
the inequality above then yields that d ≤ [L : K] · hmod(E), which concludes the proof.
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We now have enough tools to treat a special case of Theorem 6.1:

Proposition 6.7. Let E1, E2 be two non-isotrivial elliptic curves over K. Assume that there exists a
biseparable isogeny ϕ : E1 → E2. Then there exists a biseparable isogeny ϕ0 : E1 → E2 with

degϕ0 ≤ 49 max{1, g(K)}.

Note that, when K has characteristic 0, the proof of this statement will conclude that of Theorem 6.1.
SinceK is then perfect, all isogenies are indeed biseparable in that case. The following proof uses arguments
inspired by the ones of [Ulm11, Lect. I, Prop. 7.1], which proves a uniform upper bound for the order of
the prime-to-p K-rational torsion on an elliptic curve over K.

Proof. Fix a biseparable isogeny ϕ : E1 → E2, and consider the set of positive integers:

D := {deg φ, φ : E1 → E2 biseparable isogeny} ⊂ Z≥1.

By assumption, D contains degϕ and is thus not empty. Hence D contains a minimal element d0, and
there exists a biseparable isogeny ϕ0 : E1 → E2 with degϕ0 = d0. Note that the degree d0 of ϕ0 is coprime
to p, for ϕ0 is biseparable (see Lemma 4.5).

Let us now prove that ϕ0 is cyclic i.e., that the group H0 := (kerϕ0)(K) is cyclic. By the structure
theorem for finite Abelian groups, and by the description of finite subgroups of E1, we know that H0
is isomorphic to Z/mZ × Z/nZ for some integers m,n ≥ 1 with m | n and mn = degsep(ϕ0) = d0.
In particular, the kernel of the multiplication-by-m map [m] : E1 → E1 is a subgroup of H0 which is
isomorphic to (Z/mZ)2. Proposition 4.2 then implies that the isogeny ϕ0 can be factored as ϕ0 = ϕ1 ◦ [m]
for a unique isogeny ϕ1 : E1 → E2. Taking degrees yields that degϕ0 = d0 = degϕ1 ·m2. This shows
that ϕ1 is biseparable: indeed, being a divisor of d0, degϕ1 must be coprime to p (Lemma 4.5). On the
other hand, the degree of ϕ0 is minimal among all degrees of biseparable isogenies E1 → E2. We thus have
m = 1, and the kernel of ϕ0 is isomorphic to Z/nZ. Hence H0 is cyclic, as claimed.

Since the degree of ϕ0 is coprime to the characteristic of K, Lemma 4.7 shows that the kernel H0 of ϕ0
is defined over a separable extension of K, i.e. that the extension K(H0)/K is separable. Let GK denote
the absolute Galois group of K. We now prove that H0 is stable under the action of GK on E1 (in other
words, we show that H0 is “defined over K”).

To do so, we first prove that σϕ0 = ±ϕ0 for all σ ∈ GK . Let σ ∈ GK be an arbitrary automorphism.
Since both E1 and E2 are defined over K, we get an isogeny σϕ0 : E1 → E2 of degree d0. The composition
of the dual ϕ̂0 : E2 → E1 with σϕ0 : E1 → E2 yields an endomorphism ϕ̂0 ◦ σϕ0 of E1. The curve
E1 being non-isotrivial, it has no non-trivial endomorphisms (see §2.4), so that there exists an integer n
such that ϕ̂0 ◦ σϕ0 = [n] is the multiplication-by-n. Comparing degrees, we get that n = ±d0, whence
ϕ̂0 ◦ σϕ0 = [±d0] = [±1] ◦ ϕ̂0 ◦ ϕ0. Therefore ϕ̂0 ◦ (σϕ0 − [±1] ◦ ϕ0) = 0, and we deduce that the image of
σϕ0− [±1] ◦ϕ0 is contained in the kernel of ϕ̂0. Since the latter is finite, σϕ0− [±1] ◦ϕ0 must be constant
equal to 0. Thus σϕ0 = ±ϕ0, as claimed.

It then formally follows from the previous paragraph that H0 is stable under the action of GK . We may
now apply Proposition 6.5 to the pair (E1, H0), and we infer that d0 = degϕ0 ≤ 49 max{1, g(K)}.

6.3. Proof of Theorem 6.1. – We can now conclude the proof of the main theorem of this section. Let
E1 and E2 be non-isotrivial isogenous elliptic curves over K: we fix a K-isogeny ϕ : E1 → E2 between
them. If ϕ is biseparable, Proposition 6.7 in the previous subsection already allows us to conclude. To
treat the general case, we require the following lemma:

Lemma 6.8. Let E1, E2 be two non-isotrivial elliptic curves over K. We assume that j(E1) and j(E2)
have the same inseparability degree, and that there exists an isogeny ϕ : E1 → E2. Then there exists a
biseparable isogeny ψ : E1 → E2 with degψ | degϕ.

Since E1, E2 are non-isotrivial isogenous elliptic curves, it can be shown that the Z-module Hom(E1, E2),
consisting of isogenies E1 → E2 together with the constant trivial morphism, is free of rank 1. We may
thus fix an isogeny ϕ0 : E1 → E2 which generates Hom(E1, E2). This generator ϕ0 has minimal degree
among all non-zero elements in Hom(E1, E2). Assuming that deginsj(E1) = deginsj(E2), the above result
shows that ϕ0 must be biseparable.

Proof. We begin by decomposing ϕ as in Proposition 4.6: there is a biseparable isogeny φs : E(pa)
1 → E

(pb)
2

such that
ϕ = Vpb ◦ φs ◦ Frpa ,
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where deginsϕ = pa and deginsϕ̂ = pb. Moreover the degree m of φs is coprime to p. By assumption we
have deginsj(E2) = deginsj(E1), hence Theorem 5.4 implies that pa = deginsϕ = deginsϕ̂ = pb, so that
a = b. In particular, we have degϕ = pampb = p2am and degsepϕ = mpa. If a = 0 there is nothing to
prove, for ϕ is then already biseparable. We thus assume that a ≥ 1 in the rest of the proof.

The set of K-rational points in the kernel G := (kerϕ)(K) of ϕ is a finite Abelian group of order
degsepϕ = mpa. (Even if the kernel is not reduced, we identify it with its set of closed points.) Since
pa divides |G| and since m is coprime to p, G contains a unique subgroup H of order pa (consisting of
elements of order a power of p). By Proposition 4.3, there exist a unique elliptic curve E′1 over K and a
separable isogeny π : E1 → E′1 with kernel H. The isogeny π is separable of degree deg π = degsepπ = pa.

By construction, H = (kerπ)(K) is a subgroup of G and, π being separable, we deduce from Proposi-
tion 4.2 that ϕ : E1 → E2 factors through π: there exists an isogeny λ : E′1 → E2 such that ϕ = λ ◦ π. It
follows from the multiplicativity of degrees that

deg λ = degϕ/deg π = mpa, degsepλ = degsepϕ/degsepπ = m, deginsλ = deginsϕ/deginsπ = pa.

Again, we make use of the decomposition provided by Proposition 4.6 to factor π. Since π is separable of
degree a power of p, we obtain that the diagram

E1 E′1

(E′1)(pa)

π

ι
Vpa

is commutative, where ι is a biseparable isogeny. Comparing degrees, we observe that ι has degree 1 and
therefore must be an isomorphism E1 ' (E′1)(pa).

Let us apply Proposition 4.6 once more, this time to factor λ. Since the separability degree of λ is
coprime to p, we deduce that λ̂ is separable. Therefore, there is a biseparable isogeny γ : (E′1)(pa) → E2
such that λ = γ ◦ Frpa . Here is a diagram summarising the various isogenies considered in this proof:

E1 E2

(E′1)(pa) E′1 E2

(E′1)(pa) E2

E1

ϕ

πι
'

Vpa

λ

Frpa

γ

' ι
ψ

We now set ψ := γ ◦ ι. The composition ψ : E1 → E2 is an isogeny between E1 and E2 of degree m, which
is coprime to p. Hence ψ is biseparable by Lemma 4.5, and it is clear that degψ divides degϕ.

End of the proof of Theorem 6.1. If K has characteristic 0, Proposition 6.7 proves an assertion which is
equivalent to Theorem 6.1. We may therefore assume that the characteristic p of K is positive. Let
ϕ : E1 → E2 be a K-isogeny. We distinguish several cases:

• If deginsj(E1) = deginsj(E2), Lemma 6.8 implies the existence of a biseparable isogeny ψ : E1 → E2.
We can now use Proposition 6.7 and conclude that there exists an isogeny ϕ0 : E1 → E2 with
degϕ0 ≤ 49 max{1, g(K)}.

• If deginsj(E1) > deginsj(E2), we let pf := deginsj(E1)/deginsj(E2). Composing ϕ : E1 → E2 with
Frpf : E2 → E

(pf )
2 , we obtain an isogeny E1 → E

(pf )
2 . By construction, deginsj(E1) = deginsj(E

(pf )
2 ).

Lemma 6.8 then ensures that there exists a biseparable isogeny ψ : E1 → E
(pf )
2 . By Proposition 6.7,

there exists an isogeny ψ0 : E1 → E
(pf )
2 with degψ0 ≤ 49 max{1, g(K)}.

Composing ψ0 : E1 → E
(pf )
2 with Vpf : E(pf )

2 → E2, we obtain an isogeny ϕ0 : E1 → E2 of degree

degϕ0 = pf · degψ0 ≤ 49 max{1, g(K)} · deginsj(E1)
deginsj(E2) .
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• If deginsj(E1) < deginsj(E2), we let pe := deginsj(E1)/deginsj(E2). Composing ϕ : E1 → E2 with
Vpe : E(pe)

1 → E2, we get an isogeny E
(pe)
1 → E2. Since deginsj(E2) = deginsj(E

(pe)
1 ), Lemma 6.8

entails the existence of a biseparable isogeny ψ : E(pe)
1 → E2. Applying Proposition 6.7 then yields

an isogeny ψ0 : E(pe)
1 → E2 with degψ0 ≤ 49 max{1, g(K)}.

The composition of ψ0 : E(pe)
1 → E2 with Frpe : E1 → E

(pe)
1 provides an isogeny ϕ0 : E1 → E2 of

degree
degϕ0 = pe · degψ0 ≤ 49 max{1, g(K)} · deginsj(E2)

deginsj(E1) .

In all cases, we have found an isogeny ϕ0 : E1 → E2 with

degϕ0 ≤ 49 max{1, g(K)} ·max
{

deginsj(E1)
deginsj(E2) ,

deginsj(E2)
deginsj(E1)

}
,

which concludes the proof of Theorem 6.1.

6.4. Number of K-isomorphism classes in a K-isogeny class. – Let K be a function field as above,
and E be a non-isotrivial elliptic curve over K. For any M ≥ 1, let us introduce the set

IK(E,M) := {E′/K : E′ is K-isogenous to E, and degins(j(E′)) ≤M}
/
K-isomorphism.

(As before, if K has characteristic 0, one may ignore the condition on deginsj(E′).)
By construction, the elliptic curves E′/K (whose isomorphism classes are) in IK(E,M) have the same

conductor as E. In particular, they all have good reduction outside the set S of places of K where E has
bad reduction. By a version of Shafarevich’s theorem, there are finitely many K-isomorphism classes of
elliptic curves over K with good reduction outside S, and with bounded inseparability degree of j-invariant.
The set IK(E,M) is thus finite. The goal of this section is to prove an effective form of that statement:

Proposition 6.9. In the above setting, we have∣∣IK(E,M)
∣∣ ≤ CE,M 2,

where CE,M = 49 max{1, g(K)} ·max
{

deginsj(E),M · (deginsj(E))−1}.

If K has characteristic 0, the above yields the uniform (i.e. independent of the chosen E/K) bound∣∣{E′/K : E′ is K-isogenous to E}
/
K-isomorphism

∣∣ ≤ C2
K ,

on the number of K-isomorphism classes of elliptic curves within the K-isogeny class of E, with CK =
49 max{1, g(K)}. To prove the proposition, we take inspiration from section 2 of [MW89], which proves
the analogue of Proposition 6.9 for elliptic curves over number fields. We also need the following:

Lemma 6.10. Let E1, E2 be two non-isotrivial elliptic curves over K. We assume that there exists an
isogeny ϕ : E1 → E2 which is defined over K. Then all isogenies E1 → E2 are defined over K.

Proof. Let Hom(E1, E2) denote the Z-module of K-isogenies E1 → E2 together with the constant trivial
morphism. Since E1 is non-isotrivial, Hom(E1, E2) is free of rank 1; we choose an isogeny ψ0 : E1 → E2
such that Hom(E1, E2) = Z ·ψ0. We may then write ϕ as ϕ = [m] ◦ψ0 = ψ0 ◦ [m] for some integer m 6= 0.

Let us first treat the case where ϕ is biseparable (i.e. the case where E1 and E2 are linked by a bisepa-
rable isogeny defined over K). Since ϕ is biseparable, both degϕ and m are coprime to the characteristic
of K (Lemma 4.5). Then the kernel kerϕ of ϕ contains ker[m]. Hence, by Proposition 4.2, ϕ factors
uniquely through [m] : E1 → E1 as ϕ = ψ′ ◦ [m], where ψ′ : E1 → E2 must be defined over K since
both [m] and ϕ are. By uniqueness, we have ψ0 = ψ′, which is thus defined over K. Since ψ0 generates
Hom(E1, E2), all isogenies E1 → E2 are defined over K.

For general ϕ, we argue in essentially the same way, working with group schemes over K instead. Since
ϕ = ψ0 ◦ [m], the schematic kernel H := kerϕ contains the subgroup scheme E1,m := ker[m]. Here, we
view, as we may, both H and E1,m as (non-necessarily reduced) group schemes over K. We then use
Theorem 1 in [Mum08, §12], which is a group-scheme theoretic version of Proposition 4.2, and deduce that
the isogeny ϕ factors uniquely (up to K-isomorphism) through [m] as ϕ = ψ′ ◦ [m], where ψ′ : E1 → E2 is
a K-isogeny. As above, the uniqueness of ψ′ implies that ψ0 is defined over K.
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Proof of Proposition 6.9. Let E′ be an elliptic curve over K which is K-isogenous to E and whose j-
invariant satisfies deginsj(E′) ≤ M . By the isogeny estimate (Theorem 6.1) combined with Lemma 6.10,
there exists an isogeny ϕ0 : E → E′ which is defined over K, with

degϕ0 ≤ 49 max{1, g(K)} ·max
{

deginsj(E)
deginsj(E′)

,
deginsj(E′)
deginsj(E)

}
.

Hence, we have degϕ0 ≤ CE,M , where

CE,M := 49 max{1, g(K)} ·max
{

deginsj(E),M · (deginsj(E))−1} .
By the proof of Theorem 6.1, we may assume that ϕ0 is cyclic. In this situation, E′ is then K-isomorphic
to the quotient E/ kerϕ0. This entails that the cardinality of IK(E,M) is no greater than the number of
cyclic subgroups of E with order at most CE,M .

Given the structure of the n-torsion subgroup of E, for any integer n ≥ 1, the number of cyclic
subgroups of E of order n is ψ(n) (see §6.1 for the definition of ψ(n)). An elementary computation shows
that ψ(n) ≤ σ(n), where σ(n) denotes the sum of divisors of n (both functions are multiplicative, and the
inequality holds for prime powers). On the other hand, one easily sees that, for all C ≥ 1,∑

1≤n≤C
σ(n) ≤

∑
1≤n≤C

∑
d|n

d ≤
∑

1≤d≤C

∑
1≤n≤C

s.t. nd≤C

d =
∑

1≤d≤C
d ·
⌊
C

d

⌋
≤ C2.

We therefore obtain the desired upped bound on |IK(E,M)|:∣∣IK(E,M)
∣∣ ≤ ∑

1≤n≤CE,M

ψ(n) ≤
∑

1≤n≤CE,M

σ(n) ≤ CE,M 2.

6.5. Back to isogeny classes. – We close this paper by going back to the situation studied in §5.5, and
recover a finiteness result. Let K be a function field as above, and fix a non-isotrivial elliptic curve E
over K. Recall that Ebs(E) denotes the set of elliptic curves E′/K which are biseparably isogenous to E.
For any B ≥ 1 and D ≥ 1, consider the set

E ′K(E,B,D) =
{
E′ ∈ Ebs(E) : hmod(E′) ≤ B and [K(j(E′)) : K] ≤ D

}/
K-isomorphism.

Note that the set EK(E,B) studied in §5.5 is the union
⋃
D≥1 E ′K(E,B,D) and, further, that

∀B ≥ hmod(E), E ′K(E,B,D) =
{
E′ ∈ Ebs(E) : [K(j(E′)) : K] ≤ D

}/
K-isomorphism.

Indeed, all elliptic curves E′ ∈ Ebs(E) satisfy hmod(E′) = hmod(E) ≤ B (see Theorem 5.4).
We prove the following bound:

Proposition 6.11. In this setting, for any B ≥ hmod(E), and any D ≥ 1, the set E ′K(E,B,D) is finite.
Moreover, we have

|E ′K(E,B,D)| ≤ D2 · hmod(E)2.

Proof. Let E′ ∈ Ebs(E) be an elliptic curve which is biseparably isogenous to E. Let j(E′) ∈ K denote its
j-invariant and K ′ := K(j(E′)). If necessary, we replace E′ by a K-isomorphic elliptic curve E2 defined
over K ′. We write E1 for the base-change E1 := E ×K K ′.

By assumption, there exists a biseparable isogeny ϕ : E1 → E2. We may assume (see the proof of
Proposition 6.7) that ϕ = ϕ0 has minimal degree among all biseparable isogenies E1 → E2. By the same
arguments as in the proof of Proposition 6.7, the kernel H0 := kerϕ0 is then cyclic and stable under the
action of GK′ . Proposition 6.6 then yields the bound

|H0| = degϕ0 ≤ [K ′ : K] · hmod(E1) ≤ D · hmod(E) =: C ′(E1, D).

It is also clear that E2 is then K-isomorphic to the quotient E1/H0.
Therefore, the cardinality |E ′K(E,B,D)| does not exceed the number of cyclic subgroups of E1 with

order at most C ′(E1, D). By the computation carried out in the proof of Proposition 6.9, we have

|E ′K(E,B,D)| ≤ C ′(E1, D)2 = D2 · hmod(E)2.

This proves the finiteness of E ′K(E,B,D) and the asserted upper bound on its cardinality.
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[Par70] Aleksei N. Paršin. Isogenies and torsion of elliptic curves. Izv. Akad. Nauk SSSR Ser. Mat., 34:409–424,
1970. ↑ 10
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