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Introduction

0.1. The size of Tate–Shafarevich groups of elliptic curves. – Fix a finite field Fq of odd charac-
teristic p and let K := Fq(t) denote the rational function field over Fq. Let E be an elliptic curve over K
which, we assume, is non-isotrivial (i.e., its j-invariant j(E) ∈ K does not lie in Fq). One attaches to E
its Tate–Shafarevich group, denoted by X(E). Among other reasons, the arithmetic significance of X(E)
stems from its measuring, in a certain sense, how badly the local–global principle fails for E. The Tate–
Shafarevich group remains a mysterious object; for instance, the finiteness of X(E) is still conjectural in
general, even though it has been proved in a number of cases. Let us assume for now that X(E) is indeed
finite: what can then be said about its size? There are several natural choices of numerical invariants of E
to compare |X(E)| to. Here, we choose the exponential differential height H(E) and the conductor N(E):
these are defined by

H(E) := q
1

12 deg ∆min(E) and N(E) := qdegN (E),

where ∆min(E) and N (E) denote the minimal discriminant and the conductor divisors of E, respectively.
Goldfeld and Szpiro [GS95] have proven upper bounds on the order ofX(E) in terms of these two invariants.
Let us quote a special case of their result:

Theorem 1 (Goldfeld–Szpiro [GS95]). Let E be a non-isotrivial elliptic curve over K. Assume that E has
finite Tate–Shafarevich group.

(i) Then, for all ε > 0, one has |X(E)| �q,ε H(E)1+ε.
(ii) If, moreover, j(E) ∈ K is not a p-th power in K, then,

for all ε > 0, one has |X(E)| �q,ε N(E)1/2+ε.

In this statement, item (ii) follows from item (i) by applying Szpiro’s inequality for elliptic curves with
separable j-invariant. It is then natural to wonder about the optimality of (i) and (ii): apart from the ε’s,
are the exponents of the height (1) and of the conductor (1/2) in these upper bounds best possible? In
other words, as E ranges over all elliptic curves over K, what is the largest power of H(E) – or N(E) –
that does appear in |X(E)|, up to a ±ε for all ε > 0?

In the analogous setting of elliptic curves over Q, the analogue of Theorem 1 is known to follow from the
ABC conjecture (see §1–3 in [GS95]). Moreover, de Weger [dW98] conjectures that the exponents 1 and 1/2
should indeed be optimal in that context (see Conjectures 2 and 4 there). Following the analogy between the
arithmetics of elliptic curves over Q and over K, one can translate the statement of de Weger’s conjecture
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(the quantities H(E) and N(E) here correspond to the 1/12-th power of the minimal discriminant and to
the conductor of an elliptic curve over Q, respectively). This translation results in the following:

Conjecture 2 (de Weger [dW98]). Assuming finiteness of the relevant Tate–Shafarevich groups,

(i) For any ε > 0, there are infinitely many elliptic curves E/K such that |X(E)| �q,ε H(E)1−ε.

(ii) For any ε > 0, there are infinitely many elliptic curves E/K such that |X(E)| �q,ε N(E)1/2−ε.

In the same paper, de Weger proves, conditionally to the Birch and Swinnerton-Dyer (BSD) conjecture, that
(the analogue of) Conjecture 2(i) holds for elliptic curves over Q. Prior to [dW98], Mai and Murty [MM94,
Theorem 2] had shown, again conditionally to the BSD conjecture, a weaker version of Conjecture 2(ii) for
elliptic curves over Q, with the exponent 1/2 replaced by 1/4. Both of these results rely on considering
sequences of well-chosen quadratic twists of a given elliptic curve.

In the context of elliptic curves over K, the above-stated Conjecture 2(i) is not difficult to prove. One
can indeed take advantage of the existence of inseparable isogenies of large degree to construct sequences of
elliptic curves over K with large Tate–Shafarevich groups (see §1.5 where we build one such example). By
construction of these sequences, however, the elliptic curves therein are K-isogenous: one cannot, therefore,
hope to deduce from these any result towards Conjecture 2(ii). In these sequences, one also notices that the
p-primary parts of the Tate–Shafarevich groups are “large”; and that, actually, the order of the p-primary
part already accounts for the observed “large X” phenomenon.

We are therefore led to ask the following questions: For a given ε > 0, are there infinitely many pairwise
non K-isogenous elliptic curves E/K such that |X(E)| �q,ε H(E)1−ε? If so, is the fact that their Tate–
Shafarevich groups are “large” always explained by a “large p-primary part of X” phenomenon?

In this paper, we first give a positive answer to the first question:

Theorem A. For all ε > 0, there are infinitely many pairwise non K-isogenous elliptic curves E/K with
finite Tate–Shafarevich group, such that |X(E)| ≥ H(E)1−ε.

We also prove a result in direction of Conjecture 2(ii), with the same exponent 1/4 as in [MM94]:

Theorem B. For all ε > 0, there are infinitely many pairwise non K-isomorphic elliptic curves E/K with
separable j-invariant and finite Tate–Shafarevich group, such that |X(E)| ≥ N(E)1/4−ε.

In contrast to the aforementioned results concerning elliptic curves over Q, Theorems A and B are un-
conditional, and the involved elliptic curves are not quadratic twists of each other. Our proof is constructive
and effective: we exhibit sequence(s) of elliptic curves over K satisfying these properties and we provide
explicit bounds on the order of their Tate–Sharafarevich groups. We also prove that the p-primary parts
of the involved Tate–Shafarevich groups are trivial, thus answering negatively the second question in italics
raised above.

0.2. Elliptic curves with large Tate–Shafarevich groups. – Theorems A and B both follow from
our main theorem, which we now state. For any parameter γ ∈ F×q and any integer a ≥ 1, we write
℘a(t) := tq

a − t ∈ Fq[t] and consider the elliptic curve Eγ,a defined over K by the Weierstrass model:

Eγ,a : y2 = x ·
(
x2 + ℘a(t) · x+ γ

)
. (1)

The main result of this paper is the following:

Theorem C. In the above setting,

(1) As γ ∈ F×q and a ≥ 1 vary, the curves Eγ,a are pairwise neither K-isomorphic nor K-isogenous.

(2) For any γ ∈ F×q and a ≥ 1, the Tate–Shafarevich group X(Eγ,a) is finite.

(3) Given γ ∈ F×q , as a→∞, we have |X(Eγ,a)| = H(Eγ,a)1+o(1).

(4) For any γ ∈ F×q and a ≥ 1, the p-primary part of X(Eγ,a) is trivial.

One can restate (3) as follows: given ε > 0, for any γ ∈ F×q and any large enough integer a ≥ 1 (depending
on ε), we have

H(Eγ,a)1−ε ≤ |X(Eγ,a)| ≤ H(Eγ,a)1+ε.

It is then clear that, for a given ε > 0, all but finitely many of the Ea,γ ’s satisfy |X(Eγ,a)| ≥ H(Eγ,a)1−ε.
Further, we will see that H(Eγ,a) = N(Eγ,a)1/4, so that |X(Eγ,a)| ≥ N(Eγ,a)1/4−ε holds for all but finitely
many of the Eγ,a’s. In particular, Theorem C does imply Theorems A and B.
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0.3. Organisation of the paper. – We now explain the overall strategy of the proof of Theorem C as
we describe the plan of the paper. The first section briefly recalls the definitions and main properties of
the objects that will be used throughout the paper. In the last subsection §1.5, we show how the Frobenius
isogenies allow one to construct sequences of elliptic curves with large Tate–Shafarevich groups (thus proving
Conjecture 2(i) above). We found it worthwhile to include this construction since the argument in §1.5
illustrates on a simple example the general structure of the proof of Theorem C.

The elliptic curves Eγ,a are introduced in section 2, where we also calculate some of their more easily
accessible invariants: their height and conductor, their Tamagawa number, as well as the torsion subgroup
of Eγ,a(K). Item (1) of Theorem C is proved in Proposition 2.4. The curves Eγ,a were first studied by Pries
and Ulmer in [PU16]: we recall in §2.2 how they were constructed there, and some of the results of [PU16].

A large part of the proof of Theorem C is analytic, in that we rely on a detailed study of the relevant
L-functions. Our first main goal is therefore to obtain an explicit expression for the L-function of Eγ,a. To
that end, we introduce some notation in section 3. We define a certain finite set Pq(a) of places of K and,
to each place v ∈ Pq(a) we attach in §3.3 two character sums over the residue field of K at v: a Gauss
sum g(v) and a Kloosterman sum Klγ(v). We then show (see Theorem 4.1) that, for any integer a ≥ 1 and
any γ ∈ F×q , the L-function L(Eγ,a, T ) of Eγ,a admits the following expression:

L(Eγ,a, T ) =
∏

v∈Pq(a)

(
1− g(v)Klγ(v) · T deg v + g(v)2qdeg v · T 2 deg v) . (2)

This identity is proved in section 4 by an elementary method based on the definition of L(Eγ,a, T ) and
manipulation of character sums. This result, which is instrumental in the proof of our main theorem, may
be of independent interest.

Using (2) and arithmetic properties of Gauss and Kloosterman sums, we elucidate in Theorem 5.2 the
p-adic valuations of the zeros of L(Eγ,a, T ). As a consequence, we will deduce that L(Eγ,a, T ) does not
vanish at the central point T = q−1 for its functional equation (see Theorem 5.3). This non-vanishing
result is enough to ensure that the BSD conjecture holds for Eγ,a (Corollary 5.4) which, in turn, has several
important corollaries for our study. First, the Tate–Shafarevich group X(Eγ,a) is indeed (unconditionally)
finite, as claimed in Theorem C(2). Secondly, we derive from the BSD formula and from our computations
in section 2 that

|X(Eγ,a)| = q−1H(Eγ,a) · L(Eγ,a, q−1). (3)
Lastly – even though this is less central to our point – the Mordell–Weil group Eγ,a(K) is finite and, given
our description of its torsion subgroup, we conclude that Eγ,a(K) =

{
O, (0, 0)

}
.

Given the link (3) between the order of the Tate–Shafarevich group and the central value of L(Eγ,a, T ),
we estimate the size of |X(Eγ,a)| in terms of H(Eγ,a) by proving adequate upper and lower bounds
on L(Eγ,a, q−1). Specifically, in order to show that Theorem C(3) holds we need to prove that

− o(1) ≤ logL(Eγ,a, q−1)
logH(Eγ,a) ≤ o(1) (as a→∞). (4)

The proof of these inequalities is carried out in section 7. Proving the lower bound in (4) is the crucial step.
After evaluating expression (2) for L(Eγ,a, T ) at T = q−1, straightforward analytical considerations yield
that L(Eγ,a, q−1) can be bounded from below by

logL(Eγ,a, q−1) ≥
∑

v∈Pq(a)

w

(
Klγ(v)

2qdeg v/2

)
, where w(x) := log |x2(1− x2)|.

For any place v ∈ Pq(a), the algebraic number Klγ(v)/2qdeg v/2 is known to be totally real; moreover,
its image in any complex embedding of Q lies in the interval [−1, 1] by the Weil bound for Kloosterman
sums. It is apparent that the size of the right-hand side of the previous display depends on how the set
Θγ,a := {Klγ(v)/2qdeg v/2}v∈Pq(a) is distributed in [−1, 1]. We study the relevant aspects of the distribution
of Θγ,a in section 6. Namely, we first recall from [Gri18] an effective version of an asymptotic distribution
statement, the qualitative form of which says that, asymptotically as a→∞, the set Θγ,a becomes equidis-
tributed in [−1, 1] with respect to the measure 2

π

√
1− x2 dx. Next we prove a quantitative version of the

fact that Θγ,a “avoids” the points −1, 0 and 1, which are the poles of x 7→ w(x) on [−1, 1]. We then conclude
the proof of the lower bound in (4) by coupling these two facts about Θγ,a with a suitable approximation
of w on [−1, 1]. The resulting estimates (4) constitute Theorem 7.1. We combine these to (3) in §8.2 to
conclude the proof of Theorem C(3).

Finally, in order to prove Theorem C(4), we show that |X(Eγ,a)| is relatively prime to p (see Theo-
rem 8.1). To do so, we start from the BSD formula (3): instead of estimating the “archimedean size” of
the central value L(Eγ,a, q−1) as we did above, we now estimate its “p-adic size”. The p-adic valuation
of L(Eγ,a, q−1) visibly depends on the p-adic valuations of the zeros of L(Eγ,a, T ). The above mentioned
Theorem 5.2 will allow us to obtain the desired result, in §8.1.
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1. Invariants of elliptic curves over function fields

In this section, we introduce the relevant invariants of elliptic curves over function fields.
Let Fq be a finite field of characteristic p and K := Fq(t) denote the field of rational functions on the

projective line P1
/Fq . We assume throughout that p 6= 2. We do not mention K in the notation used for the

invariants of elliptic curves over K which we consider: unless explicitly noted otherwise, these invariants
are relative to K.

For a more detailed introduction to the arithmetic of elliptic curves over function fields and their invari-
ants, the reader is referred to [Ulm11]. Some of the results quoted in this section are valid more generally
for elliptic curves (or even abelian varieties) over a function field of positive characteristic, but we only state
the special cases that are required for our purpose.

1.1. Conductor and height. – Let E be a non-isotrivial elliptic curve over K (i.e., its j-invariant j(E)
is not a constant rational function). We denote by ∆min(E) its minimal discriminant divisor, which is a
divisor on P1

/Fq . The exponential differential height H(E) is defined by

H(E) := q
1

12 ·deg ∆min(E).

The conductor divisor N (E) of E is also a divisor on P1
/Fq (see [Sil94, Chap. IV, §10] for the definition).

We let
N(E) := qdegN (E).

We will call N(E) the “(numerical) conductor” of E. It follows from an inequality between the conductor
and the minimal discriminant divisors that N(E)1/12 ≤ H(E). In the other direction, Szpiro’s inequality
states that H(E) ≤ N(E)1/2, provided that j(E) ∈ K is not a p-th power in K (see [GS95, Thm. 3] and
references in that article). Two K-isogenous elliptic curves have the same numerical conductor (see §1.3).

1.2. The Tate–Shafarevich group. – Fix a separable closure Ksep of K and consider the Galois coho-
mology group H1(K,E) := H1(Gal(Ksep/K), E(Ksep)). For any place v of K, there is a similarly defined
group H1(Kv, E), where Kv denotes the completion of K at v. Recall that the Tate–Shafarevich group of E
is defined by:

X(E) := ker
(

H1(K,E) −→
∏
v

H1(Kv, E)
)
,

where the product runs over all places v of K and the arrow is the product of the canonical restriction maps
H1(K,E)→ H1(Kv, E).

Perhaps a more illuminating way of thinking about X(E) is to observe that it is in bijection with the set
of K-isomorphism classes of pairs (C, φ), where C/K is a curve of genus 1 which has at least one Kv-rational
point for all places v of K and φ is a K-isomorphism between E and Jac(C) (see [Sil09, Chap. X, §3-4] for
more details). This point of view makes it clearer that X(E) measures a local-global obstruction.

By construction, the Tate–Shafarevich group X(E) is a torsion abelian group. It is conjectured, but
not known in general, that X(E) is finite (in the cases we study, we will show that it is indeed finite).

1.3. The L-function. – For any place v of K, we denote by Fv the residue field of K at v and by
deg v = [Fv : Fq] the degree of v. For such a v, let (Ẽ)v denote the reduction of E at v. This plane cubic
curve over Fv is not necessarily smooth: we say that E has good reduction at v if it is, and that E has bad
reduction at v otherwise. In both cases, it makes sense to count Fv-rational points on (Ẽ)v. For any place v
put av(E) := |Fv|+ 1− |(Ẽ)v(Fv)|, and define the L-function of E by

L(E, T ) :=
∏
v

Lv(E, T )−1, (1.1)

where the product runs over all places of K and where

Lv(E, T ) =
{

1− av(E) · T deg v + qdvT 2 deg v if E has good reduction at v,
1− av(E) · T deg v if E has bad reduction at v.

(1.2)

The Euler product in (1.1) a priori converges on the complex disk
{
T ∈ C : |T | < q−3/2}, by the Hasse

bound. However, deep results of Grothendieck and Deligne (among others) actually prove that L(E, T ) is a
polynomial with integral coefficients in T , with constant coefficient 1. The degree b(E) of that polynomial
is given by the Grothendieck–Ogg–Shafarevich formula, which states that degL(E, T ) = degN (E) − 4.
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Moreover, the L-function satisfies the expected functional equation: L(E, T ) = ±1 · (qT )b(E) ·L(E, 1/q2T ).
Lastly, L(E, T ) satisfies the Riemann Hypothesis i.e., the complex zeros of z 7→ L(E, z) have magnitude q−1.

In particular, the value of L(E, T ) at the central point for its functional equation (viz. T = q−1) is a
rational number, and the Riemann Hypothesis allows one to see that L(E, q−1) is non-negative.

Recall that two K-isogenous elliptic curves E and E′ have the same L-function: see [Gro11, App. C]
for a proof. In particular, their L-functions have the same degree and the Grothendieck–Ogg–Shafarevich
formula implies that degN (E) = degN (E′), so that the numerical conductors N(E) and N(E′) coincide.

By the results recalled in the previous paragraph, the L-function of E can be written as a product of
the form

L(E, T ) =
b(E)∏
k=1

(1− zkT ),

for some algebraic integers zk (which are the inverse zeros of the polynomial L(E, T )). We choose a prime
ideal P of Q above p and denote by ordP : Q× → Q the corresponding discrete valuation, so normalised
that ordP(q) = 1. For any k ∈ {1, . . . , b(E)}, we let λk = ordP(zk) ∈ Q. The functional equation of L(E, T )
implies that both zk and q2/zk are algebraic integers, so that 0 ≤ λk ≤ 2 for all k. Renumbering the zk’s
if necessary, we can assume that λ1 ≤ λ2 ≤ · · · ≤ λb(E). Thus ordered, the sequence {λ1, λ2, . . . , λb(E)}
will be called the p-adic slope sequence of L(E, T ). It then follows from the functional equation satisfied by
L(E, T ) that one has λb(E)−k = 2− λk for any k ∈ {1, . . . , b(E)}.

1.4. The BSD conjecture. – Birch and Swinnerton-Dyer (and Tate, in this context) conjectured that the
analytic behaviour of the L-function z 7→ L(E, z) around z = q−1 encodes arithmetic information about E.
The reader is referred to [Tat66], [GS95, §4] or [Ulm11] for more detailed accounts of the BSD conjecture.

In the case that L(E, T ) does not vanish at T = q−1, which is the most relevant for our purpose, their
conjecture is entirely proved. We state the end result as follows:

Theorem 1.1 (BSD conjecture for elliptic curves of analytic rank 0). Let E be non-isotrivial elliptic curve
over K. Assume that L(E, q−1) 6= 0. Then the following statements hold:

(1) The Mordell–Weil group E(K) is finite (i.e., E(K) is torsion).

(2) The Tate–Shafarevich group X(E) is finite.

(3) Moreover, one has

L(E, q−1) = |X(E)|
H(E) ·

q · τ(E)
|E(K)|2 , (1.3)

where τ(E) denotes the Tamagawa number of E (i.e., the product over all places v of K of the number
of connected components of the fiber over v of the Néron model of E).

We sketch a proof of this theorem. Write ρ = ordT=q−1 L(E, T ) for the analytic rank of E i.e., the
multiplicity of q−1 as a root of L(E, T ). Tate [Tat66] has proved that 0 ≤ rankZE(K) ≤ ρ. By assumption
we have ρ = 0, so that rankZE(K) vanishes too: hence the finiteness of E(K). Moreover, we have ρ =
rankZE(K) (this equality is the so-called the “weak BSD conjecture”). It is further known, by deep results
of Tate and Milne (see [Tat66, Mil75]), that “weak BSD” implies the whole BSD conjecture. Therefore, the
equality ρ = rankZE(K) implies (2) and (3).

1.5. Large X via Frobenius isogenies. – This section is inspired by [Ulm19, §5]: our main purpose
here is to illustrate, on a very simple example, the steps that we will later follow to prove that some elliptic
curves possess a large Tate–Shafarevich group.

Let E be an elliptic curve over K = Fq(t) and, for any integer n ≥ 1, let En denote the base change of
E/K under the pn-th power Frobenius morphism Frpn : K → K. In other words, we put En = E ×K K
where the underlying map K → K is Frpn . The induced map Fpn : E → En is a purely inseparable isogeny
of degree pn (see [Ulm11, p. 225]). We obtain in this manner a sequence (En)n≥1 of elliptic curves over K.
One obviously has j(En) = j(E)pn . Moreover, we have N(En) = N(E) since the curves are K-isogenous
(see §1.1). For the same reason, we have L(En, T ) = L(E, T ) for all n ≥ 1. On the other hand, the proof
of Theorem 5.1 in [Ulm19] shows that the height H(En) tends to infinity as n→∞.

Now let us assume that E is chosen so that L(E, q−1) is non-zero. Clearly, the central value L(En, q−1)
is then also non-zero for any n ≥ 1. This implies that the full BSD conjecture holds for all the elliptic
curves En in the sequence (see Theorem 1.1). In particular, the Tate–Shafarevich group X(En) is finite,
for all n ≥ 1. Furthermore, the BSD formula (1.3) states that

L(En, q−1) = |X(En)|
H(En) ·

τ(En) · q
|En(K)tors|2

.

5



The growth of τ(En) can be estimated in terms of H(En): [HP16, Thm. 1.22] or [Gri16, Thm. 1.5.4]
yield that log τ(En) = o

(
logH(En)

)
as n→∞. Further, there is a uniform bound on torsion subgroups of

elliptic curves over K (see Proposition 7.1 in [Ulm11, Lect. 1] for instance): here, this shows that |En(K)tors|
remains bounded as n→∞. From the last displayed identity and these two bound, we deduce that:

log |X(En)|
logH(En) = 1 + logL(En, q−1)

logH(En) + o(1) (as n→∞).

Since L(En, q−1) = L(E, q−1) = O(1), we therefore obtain that log |X(En)| ∼ logH(En) as n → ∞. In
other words, we have |X(En)| = H(En)1+o(1) as n → ∞, so that the elliptic curves En do have “large
Tate–shafarevich groups”.

Let us denote by vp : Q× → Q the p-adic valuation on Q, normalised so that vp(q) = 1. We now evaluate
the p-adic valuations of both sides of the BSD formula (instead of their logarithm). The above mentioned
upper bound on τ(En) also yields that vp(τ(En)) = O

(
vp(H(En))

)
as n→∞. Hence, we have

vp(|X(En)|)
vp(H(En)) ≥ 1 + vp(L(En, q−1))

vp(H(En)) + o(1) = 1 + o(1).

Besides, the order of X(En)[p∞] equals qvp(|X(En)|). Since vp(H(En)) is none other than logH(En)/ log q,
we deduce from the above that |X(En)[p∞]| ≥ H(En)1+o(1) as n → ∞. Therefore, the “large X” phe-
nomenon for the elliptic curves in the sequence (En)n≥1 is “explained” by a large p-primary part of X.

The set of elliptic curves E to which this construction applies is non-empty. For instance, consider the
Legendre elliptic curve E/K given by y2 = x(x−1)(x−t). This curve is non-isotrivial, and a straighforward
application of Tate’s algorithm shows that the conductor divisor N (E) has degree 4. The Grothendieck–
Ogg–Shafarevich formula then predicts that degL(E, T ) = 0. This forces the L-function to be trivial (i.e.,
L(E, T ) = 1); in particular, L(E, q−1) is non-zero. The previous paragraph shows that we have:

Proposition 1.2. For all n ≥ 1, consider the elliptic curve En defined over K by

En : y2 = x
(
x− 1

)(
x− tp

n)
.

For all n ≥ 1, the Tate–Shafarevich group X(En) is finite and, as n→∞, one has

|X(En)| = H(En)1+o(1).

This proposition proves that Conjecture 2(i) in the introduction is true. To prove Theorem C, we rely on
a somewhat similar strategy: the various steps we follow in the rest of the paper are but more elaborate
versions of the ones in the proof of Proposition 1.2.
Remark 1.3. In case the characteristic p of K is congruent to 1 modulo 6, the authors of [GU19] have very
recently produced a sequence of elliptic curves over K with large Tate–Shafarevich groups, the p-primary
parts of which are trivial. In contrast to the elliptic curves we study here, though, the elliptic curves forming
the sequence of [GU19], being sextic twists of y2 = x3 + 1 over K, are all isotrivial and are all K-isomorphic
(they have j-invariant 0). Theorem C is also independent of the congruence of p modulo 6.

2. The elliptic curves Eγ,a

Let Fq be a finite field of characteristic p ≥ 3 and K = Fq(t). In what follows, we identify, as we may, finite
places of K with monic irreducible polynomials in Fq[t] and/or with closed points of A1

/Fq .
For any integer a ≥ 1, we let ℘a(t) := tq

a − t ∈ Fq[t].

2.1. Definition. – Let γ be a nonzero element of Fq and a ≥ 1 be an integer. We let Eγ,a be the elliptic
curve over K given by the affine Weierstrass model

Eγ,a : y2 = x3 + ℘a(t) · x2 + γx. (2.1)

Its j-invariant is easily computed to be

j(Eγ,a) = 28 · (℘a(t)2 − 3γ)3

γ2(℘a(t)2 − 4γ) , (2.2)

and the discriminant of the model (2.1) is ∆γ,a = 24γ2 · (℘a(t)2 − 4γ). Note that the j-invariant is not
constant, hence the curve Eγ,a is non-isotrivial.
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2.2. Construction of Eγ,a. – The sequences {Eγ,a}a≥1 are essentially some of the titular Artin–Schreier
families of elliptic curves studied in [PU16] (see §6.2 there). We briefly give more details about how the
sequences {Eγ,a}a≥1 were constructed in loc. cit. and “compare” them to some other similar such sequences.

The basic input of the construction in [PU16] is a pair (f, g) of rational functions P1
/Fq → P1

/Fq whose
divisors satisfy mild conditions. The output is a sequence, indexed by powers Q of q, of smooth projective
surfaces XQ over Fq, each equipped with a natural fibration πQ : XQ → P1 and admitting a dominant
rational map Cf,Q × Cg,Q 99K XQ from the product of two curves Cf,Q, Cg,Q defined over Fq. One of the
main results of [PU16] is that the Jacobian variety of the generic fiber of πQ satisfies the BSD conjecture.

Pries and Ulmer further classify (see Proposition 3.1.5 and §4.2 in [PU16]) the various polar behaviours
of f and g for which the resulting sequence (XQ)Q is a sequence of elliptic surfaces (i.e., for which the
generic fiber of πQ is an elliptic curve over K). This classification results in seven “types” of pairs (f, g).

The elliptic curve Eγ,a defined by (2.1) corresponds to the case (2, 1+1) of their construction. Specifically,
one starts with f(u) = u2 (one double pole at ∞ ∈ P1) and g(v) = v + γ/v (one simple pole at 0 and one
simple pole at ∞). For any power Q of q, one obtains a smooth projective surface XQ over Fq which is
birational to the affine surface YQ defined in affine coordinates (u, v, t) by

YQ : f(u)− g(v) = tQ − t.

The surface XQ is equipped with a surjective morphism πQ : XQ → P1, which extends the natural projection
YQ → A1 given by (u, v, t) 7→ t. Writing that Q = qa for some integer a ≥ 1, the elliptic curve Eγ,a over K
then arises as the generic fiber of πQ. The model (2.1) for Eγ,a/K indeed appears naturally by putting the
equation for the generic fiber of πQ into Weierstrass form.

We wish to remark that one other case of the Pries–Ulmer construction is, for a good choice of parameters,
“isogenous” to the case (2, 1 + 1). For any γ ∈ F×q , consider the two rational maps f, g : P1 → P1 given by
f(u) = u2 and g(v) = v2 + γ/v2. In the terminology of [PU16], this input data has type (2, 2 + 2) since f
has a single double pole at ∞, and g has double poles at 0 and at ∞. For any power Q of q, let XQ be
the smooth projective surface over Fq, fibered over P1 via πQ : XQ → P1, which is birational to the affine
surface YQ over Fq given by

YQ : f(u)− g(v) = tQ − t

and such that the morphism πQ : XQ → P1 extending (u, v, t) ∈ YQ 7→ t ∈ A1 is minimal. Writing Q = qa

for some integer a ≥ 1, we denote by E′γ,a/K the generic fiber of πQ. By construction, after clearing
denominators, the curve E′γ,a is given in affine coordinates (u, v) ∈ A2

/K by

E′γ,a : u2v2 = v4 + ℘a(t) · v2 + γ.

The change of coordinates (u, v) 7→ (x, y) =
(
2v(u+ v), 4v

(
uv + v2 + ℘a(t)

))
then provides the following

affine Weierstrass model for E′γ,a over K:

E′γ,a : y2 =
(
x+ ℘a(t)

)(
x2 − 4γ

)
.

Our main observation is:

Proposition 2.1. For any γ ∈ F×q and any integer a ≥ 1, the elliptic curve E′γ,a defined over K by the
affine Weierstrass model

E′γ,a : y2 =
(
x+ ℘a(t)

)(
x2 − 4γ

)
is 2-isogenous to Eγ,a over K.

Proof. Using the formulae in [Sil09, Chap. III, Ex. 4.5], we find that the map

φ : (x, y) ∈ Eγ,a 7→
(
y2/x2 − ℘a(t), y

(
1− γ/x2)) ∈ E′γ,a,

which is clearly defined over K, provides the desired 2-isogeny.

Since they are K-isogenous, the elliptic curves Eγ,a and E′γ,a have the same conductor, they share the
same L-function, and their Mordell-Weil ranks are equal. Therefore, our main results about the elliptic
curves Eγ,a (such as the explicit expression for their L-function, and the fact that they have large Tate-
Shafarevich groups) are also valid for the curves E′γ,a.

Furthermore, we know by [PU16, Coro. 3.1.4] that, for all γ ∈ F×q and a ≥ 1, the elliptic curves Eγ,a
and E′γ,a satisfy the BSD conjecture. The calculations of [PU16, §6.2] further show that the Mordell-Weil
group Eγ,a(K) has rank 0. We will recover these two facts via a different method, as corollaries of our
explicit expression for the L-function of Eγ,a (see Theorem 5.3 and Corollary 5.4).
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2.3. Bad reduction and invariants. – We let Bγ,a denote the set of finite places of K corresponding to
monic irreducible polynomials in Fq[t] which divide ℘a(t)2−4γ. Equivalently, Bγ,a is the set of finite places
of K dividing the discriminant of the Weierstrass model (2.1) for Eγ,a.

Proposition 2.2. For any γ ∈ F×q and any integer a ≥ 1, the elliptic curve Eγ,a has good reduction outside
Bγ,a ∪ {∞}. Moreover, its places of bad reduction are as follows:

Place v Reduction at v δv(Eγ,a) νv(Eγ,a)

v ∈ Bγ,a Multiplicative (fiber of type I1) 1 1

∞ Additive (fiber of type I∗4qa) 4qa + 6 2

where, for any place v of K, we have denoted by δv(Eγ,a) (resp. by νv(Eγ,a)) the order at v of the minimal
discriminant divisor of Eγ,a (resp. of its conductor divisor).

Proof. This follows from a routine application of Tate’s algorithm to compute the type of the fibers of bad
reduction (as explained in [Sil94, §IV.9]).

From the above proposition, we deduce explicit expressions for the exponential differential heightH(Eγ,a)
and the “numerical” conductor N(Eγ,a) of Eγ,a (as defined in §1.1):

H(Eγ,a) = q
1

12 deg ∆min(Eγ,a) = q(qa+1)/2, and N(Eγ,a) = qdegN (Eγ,a) = q2(qa+1). (2.3)

Indeed, the polynomial ℘a(t)2 − 4γ ∈ Fq[t] being squarefree, we see that∑
v∈Bγ,a

deg v =
∑

v|℘a(t)2−4γ

deg v = deg
(
℘a(t)2 − 4γ

)
= 2qa.

It is clear from (2.3) that we have H(Eγ,a) = N(Eγ,a)1/4.
The Tamagawa number τ(Eγ,a) of Eγ,a is the product over all places v of the number of components in

the special fiber of the Néron model of Eγ,a at v. It is also readily calculated from the above proposition:
with the help of the table on p. 365 of [Sil94], one obtains that

τ(Eγ,a) = 4. (2.4)

Remark 2.3. For the computation of the L-function in section 4, it will be useful to have minimal integral
models of Eγ,a at finite places of K at our disposal. For a finite place v of K, by comparing the valuation
at v of the discriminant ∆γ,a of the model (2.1) with the valuation at v of the minimal discriminant in the
above table, we find that the Weierstrass model (2.1) is minimal and integral at v.

As an immediate corollary of this computation of the invariants of Eγ,a, we obtain:

Proposition 2.4. As γ varies in F×q and as a ≥ 1 varies among integers, the elliptic curves Eγ,a are
pairwise non K-isomorphic and pairwise non K-isogenous.

Proof. Two elliptic curves over K are K-isomorphic if and only if they have the same j-invariant. It is
obvious from (2.2) that deg j(Eγ,a) = 4a is strictly increasing when a ≥ 1 grows. Also apparent on (2.2) is
the fact that, for a fixed a, the position of the poles of j(Eγ,a) varies with γ ∈ F×q . Hence the first assertion.

In a similar vein, it follows from (2.3) that degN (Eγ,a) increases with a ≥ 1. Since two K-isogenous
elliptic curves have equal conductor divisors, we conclude that Eγ,a and Eγ,a′ cannot be K-isogenous for
any a 6= a′. For a given a ≥ 1 and distinct γ, γ′ ∈ F×q , the curves Eγ,a and Eγ′,a are not K-isogenous
either, since the sets Bγ,a∪{∞} and Bγ′,a∪{∞} of their places of bad reduction differ (i.e. their conductor
divisors have different supports).

2.4. Torsion subgroup. – We conclude this section by elucidating the structure of the torsion subgroup
of the Mordell-Weill group Eγ,a(K):

Theorem 2.5. For any γ ∈ F×q and any integer a ≥ 1, let P0 ∈ Eγ,a(K) be the point with coordinates (0, 0)
in the Weierstrass model (2.1). Then we have Eγ,a(K)tors =

{
O, P0

}
.

We will show later on (see Corollary 5.4) that the whole group Eγ,a(K) is torsion, so that the above result
actually provides the complete list of K-rational points on Eγ,a.

8



Proof. We see on (2.2) that the j-invariant of Eγ,a is not a p-th power in K, hence Proposition 7.1 in
[Ulm11, Lect. I] ensures that Eγ,a(K)tors contains no point with p-th power order.

We have shown in the previous subsection that Eγ,a has additive reduction of type I∗4qa at∞. By [SS10,
Lem. 7.8], the prime-to-p part of Eγ,a(K)tors embeds into the group G∞ of components of the special fiber
at∞ of the Néron model of Eγ,a. Since the reduction at∞ is of type I∗4qa , the table in §7.2 of [SS10] tells us
that G∞ ' (Z/2Z)2. Hence, Eγ,a(K)tors is isomorphic to a subgroup of (Z/2Z)2. In particular, the torsion
subgroup of Eγ,a(K) consists only of 2-torsion points and we infer that Eγ,a(K)tors = Eγ,a(K)[2].

The (K-rational) 2-torsion subgroup of Eγ,a is readily computed: it consists of 4 points given, in the
homogenised version of (2.1), by

O = [0 : 1 : 0], P0 = [0 : 0 : 1],

P+ =
[
℘a(t) +

√
℘a(t)− 4γ : 0 : −2

]
, P− =

[
℘a(t)−

√
℘a(t)− 4γ : 0 : −2

]
.

Since ℘a(t) − 4γ ∈ Fq[t] is squarefree, only the first two points are K-rational (the latter two are rational
over the quadratic extension K(

√
℘a(t)− 4γ) of K). We deduce that Eγ,a(K)[2] = {O, P0}.

By the previous paragraph, the proof is complete.

3. Preliminaries on character sums

In the next section (see Theorem 4.1), we will compute an explicit expression for the L-function of the
curves Eγ,a introduced above. To carry out this computation, we first need to set up some notation and
conventions. These will be in force for the rest of the paper.

3.1. Gauss sums and Kloosterman sums. – Let F be a finite field of odd characteristic p. Any additive
character ψ on F may and will be assumed to take values in the p-th cyclotomic field Q(ζp). For any finite
extension F′/F, we denote the trace map by TrF′/F : F′ → F. If ψ is an additive character on F, then the
composition ψ ◦ TrF′/F is an additive character on F′.

We denote by λ : F× → Q× (or λF if confusion is likely to arise) the unique nontrivial multiplicative
character of order 2 on F×. We extend λ to the whole of F by setting λ(0) := 0.

Definition 3.1. For any additive character ψ on F, define the quadratic Gauss sum GF(ψ, λ) by

GF(ψ, λ) := −
∑
x∈F

λ(x) · ψ(x).

Note our choice of normalising GF(ψ, λ) by multiplying the sum by −1. By construction, the sum GF(ψ, λ)
is an algebraic integer in the cyclotomic field Q(ζp). Recall the following facts about Gauss sums:

(Ga 1) For any nontrivial additive character ψ on F, any α ∈ F× and any finite extension F′/F, define ψ(α)
F′

by x 7→ ψ ◦TrF′/F(α ·x). The map ψ(α)
F′ is a nontrivial additive character on F′ and, letting α′ := α|F|,

one has
GF′(ψ(α′)

F′ , λF′) = GF′(ψ(α)
F′ , λF′).

(Ga 2) For any nontrivial additive character ψ on F and any finite extension F′/F, one has

GF′(ψ ◦ TrF′/F, λF′) = GF(ψ, λF)[F′:F].

(Ga 3) For any nontrivial additive character ψ on F, one has |GF(ψ, λ)| = |F|1/2 in any complex embedding
of Q(ζp).

(Ga 4) For any nontrivial additive character ψ on F, the quotient GF(ψ, λ)/|F|1/2 is a 4th root of unity
(which can be explicitly determined).

These results are quite classical, and the reader is referred to [LN97, Chap. V, §2] for proofs.

Definition 3.2. For α ∈ F and an additive character ψ on F, define the Kloosterman sum KlF(ψ;α) by

KlF(ψ;α) := −
∑
x∈F×

ψ
(
x+ α

x

)
. (3.1)

Again, we point out our choice of normalising the sum by multiplying it by −1. One can show that the
Kloosterman sum KlF(ψ;α) is a totally real algebraic integer in Q(ζp) i.e., KlF(ψ;α) ∈ Z[ζp + ζ−1

p ]. We
remind the reader of the following facts about Kloosterman sums:
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(Kl 1) For any nontrivial additive character ψ on F and any α ∈ F×, one has the identity:

KlF(ψ;α) = −
∑
y∈F

λ(y2 − 4α) · ψ(y).

(Kl 2) For any nontrivial additive character ψ on F, any α ∈ F and any finite extension F′/F, letting
α′ = α|F|, one has

KlF′(ψ ◦ TrF′/F;α′) = KlF′(ψ ◦ TrF′/F;α).

(Kl 3) For any nontrivial additive character ψ on F and any α ∈ F×, there is a unique pair {klF(ψ;α), kl′F(ψ;α)}
of algebraic integers, whose product is |F| and such that, for any finite extension F′/F, one has

KlF′(ψ ◦ TrF′/F;α) = klF(ψ;α)[F′:F] + kl′F(ψ;α)[F′:F].

(Kl 4) For any nontrivial additive character ψ on F and any α ∈ F×, one has |klF(ψ;α)| = |kl′F(ψ;α)| = |F|1/2
in any complex embedding of Q. In particular, one has |KlF(ψ;α)| ≤ 2 · |F|1/2 in any complex
embedding of Q(ζp).

These results are classical: see [LN97, Chap. V, §5] for proofs thereof. For convenience, we also state here
a fact that will only be proved later on (see Lemma 5.1 and Remark 6.2):

(Kl 5) For any nontrivial additive character ψ on F and any α ∈ F×, KlF(ψ;α) is a p-adic unit in Q(ζp).
In particular, one has 0 < |KlF(ψ;α)| < 2 · |F|1/2 in any complex embedding of Q(ζp).

3.2. Places of degree dividing a. – Let Fq be a finite field of odd characteristic, and let K := Fq(t)
denote the rational function field over Fq.

Definition 3.3. For any integer a ≥ 1, we denote by Pq(a) the set of places v of K such that v 6= 0,∞
and deg v | a. That is to say, Pq(a) is the set of closed points of the multiplicative group Gm = P1 r {0,∞}
over Fq whose degree divides a. In the usual identification between finite places of K and monic irreducible
polynomials in Fq[t], the set Pq(a) corresponds to the set of monic irreducible polynomials B ∈ Fq[t] such
that B 6= t and degB | a.

The latter interpretation allows for an easy estimation of the cardinality |Pq(a)|. Indeed the Prime
Number Theorem for Fq[t] states that, for any integer n ≥ 1, the number πq(n) of monic irreducible
polynomials in Fq[t] of degree n satisfies: qn/n− qn/2 ≤ πq(n) ≤ qn/n (see, for instance, [Ros02, Thm. 2.2]
and its proof). Noting that |Pq(a)| = −1 +

∑
n|a πq(n), we deduce the existence of constants cq, c′q > 0,

depending at most on q, such that

∀a ≥ 1, c′q ·
qa

a
≤ |Pq(a)| ≤ cq ·

qa

a
. (3.2)

3.3. The sums g(v) and Klγ(v). – Fix a finite field Fq of odd characteristic p, and endow Fq with a
nontrivial additive character ψq taking values in the p-th cyclotomic field Q(ζp). For any finite exten-
sion F/Fq we “lift” ψq to a nontrivial character ψF on F by composing ψq with the relative trace; i.e., we
let ψF := ψq ◦ TrF/Fq .

Definition 3.4. Let γ ∈ F×q and a ≥ 1 be an integer. For any place v ∈ Pq(a), we denote by Fv the residue
field of K at v and by dv := [Fv : Fq] the degree of v. Viewing v as the Gal(Fq/Fq)-orbit of an Fq-rational
point of Gm/Fq , we may pick an element βv ∈ F×v ⊂ Fq

× representing that orbit v. The various choices of
representatives of v in Fq

× are then βv, βqv , βq
2

v , . . . , β
qdv−1

v . The map ψ(βv)
Fv : x 7→ ψq ◦TrFv/Fq (βv ·x) defines

a non-trivial additive character on Fv.

• We denote the Gauss sum GFv (ψ(βv)
Fv , λFv ) by g(v). A repeated application of (Ga 1) shows that the

definition of g(v) makes sense, in that the sum GFv (ψ(βv)
Fv , λFv ) does not depend on a particular choice

of representative βv for the orbit v.

• We denote the Kloosterman sum KlFv (ψ(βv)
Fv ; γ) by Klγ(v), and we let {klγ(v), kl′γ(v)} be the pair of

algebraic integers attached to the Kloosterman sum Klγ(v) as in (Kl 3). Again, these definitions make
sense: repeated applications of (Kl 2) imply that the value of KlFv (ψ(βv)

Fv ; γ), and hence the pair of
algebraic integers attached to it by (Kl 3), do not depend on the choice of βv in v.
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4. The L-function of Eγ,a

The main goal of this section is to provide an explicit expression for the L-function of the elliptic curve Eγ,a,
which will be instrumental for the proof of our main result. In the notation set up in the previous section,
the result is as follows:

Theorem 4.1. Let Fq be a finite field of odd characteristic. For any γ ∈ F×q and any a ≥ 1, consider the
elliptic curve Eγ,a over K = Fq(t) defined by (2.1). The L-function L(Eγ,a, T ) ∈ Z[T ] of Eγ,a is given by:

L(Eγ,a, T ) =
∏

v∈Pq(a)

(
1− g(v)klγ(v) · T deg v)(1− g(v)kl′γ(v) · T deg v), (4.1)

where Pq(a) denotes the set defined in §3.2, and g(v), klγ(v), kl′γ(v) denote the algebraic integers attached
to any v ∈ Pq(a) in §3.3.

The proof of this theorem occupies the rest of the section: the next subsection proves a useful identity
between character sums, and the following subsection contains the computation leading to Theorem 4.1.
Remark 4.2. (1) Given the definition of klγ(v), kl′γ(v) and (Kl 3), an equivalent way of formulating (4.1) is:

L(Eγ,a, T ) =
∏

v∈Pq(a)

(
1− g(v)Klγ(v) · T deg v + g(v)2qdeg v · T 2 deg v). (4.2)

(2) To define the sums g(v) and Klγ(v) for a place v ∈ Pq(a), we started by fixing an additive character ψq
on Fq. Note that the expression for the L-function of Eγ,a obtained in Theorem 4.1 is independent of
this choice. Indeed, a different choice of ψq has the sole effect of permuting the factors in (4.1), for the
L-function L(Eγ,a, T ) has integral coefficients.

(3) By definition, we have
∑
v∈Pq(a) deg v = |Gm(Fqa)| = qa−1. Hence, as a polynomial in T , the L-function

of Eγ,a has degree b(Eγ,a) = degL(Eγ,a, T ) = 2(qa − 1). This is compatible with the Grothendieck–
Ogg–Shafarevich formula and the value of degN (Eγ,a) found in (2.3). Note that b(Eγ,a) is even.

4.1. An identity between character sums. – Let F be a finite field of odd characteristic, equipped with
an additive character ψ. Denote by λF = λ : F× → {±1} the unique quadratic character on F×, extended
by λ(0) := 0. For any γ ∈ F×, define the double character sum

S(F, ψ, γ) :=
∑
z∈F

∑
x∈F

λ(x3 + zx2 + γx) · ψ(z).

Note that the terms with x = 0 do not contribute to the sum since λ(0) = 0, so that

S(F, ψ, γ) =
∑
x 6=0

λ(x2)
{∑
z∈F

λ

(
z + x2 + γ

x

)
· ψ(z)

}
.

For any x ∈ F×, we put u = z + (x2 + γ)/x in the sum displayed between brackets: we obtain that

∑
z∈F

λ

(
z + x2 + γ

x

)
· ψ(z) = ψ

(
−x− γ

x

)
·
∑
u∈F

λ(u) · ψ(u) = −ψ
(
−x− γ

x

)
·GF(ψ, λ).

Summing this identity over all x ∈ F× then yields that

S(F, ψ, γ) = −GF(ψ, λ) ·
∑
x∈F×

λ(x)2 · ψ
(
−x− γ

x

)
= −GF(ψ, λ) ·

∑
y∈F×

ψ

(
y + γ

y

)
,

where we have put y = −x (note that λ(x)2 = 1 for all x 6= 0 because λ has order 2). We have thus proved:

Lemma 4.3. In the above setting, one has

S(F, ψ, γ) = GF(ψ, λ) ·KlF(ψ; γ),

where the Gauss and Kloosterman sums are as defined in §3.1.

It is immediate to check that all three sums in the above identity vanish when ψ is trivial.
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4.2. Proof of Theorem 4.1. – Fix a parameter γ ∈ F×q and an integer a ≥ 1 as in the statement of the
theorem. Our starting point for the computation is expression (4.3) below for the L-function of Eγ,a.

For any τ ∈ Fq, we denote by vτ the corresponding finite place of K; we pick a minimal integral
Weierstrass (affine) model of Eγ,a/K at vτ of the form y2 = fτ (x, t) where fτ (x, t) is a monic cubic
polynomial in x with coefficients in Fq[t]. Recall that λFqn : Fqn → {±1} denotes the unique character of
exact order 2 on F×qn , extended by λFqn (0) := 0 to the whole of Fqn . With this notation, one has the equality
of formal power series:

logL(Eγ,a, T ) = −
∞∑
n=1

 ∑
τ∈Fqn

∑
x∈Fqn

λFqn
(
fτ (x, τ)

) · Tn
n
. (4.3)

This expression can be derived from the definition (1.1)-(1.2) of the L-function, just as in [Gri18] (see
Lemma 4.6 and the following paragraph there) or [GU19, §4]. Here, we have implicitly used the fact
that Eγ,a has additive reduction at the place∞ (see Proposition 2.2) to ignore the local terms corresponding
to this place. At a place of additive reduction, the local Euler factor of L(Eγ,a, T ) in (1.2) is indeed trivial.

We next aim at giving a more explicit expression of the inner double sums in (4.3). As was pointed out
in Remark 2.3, one can choose fτ (x, t) = x3 + ℘a(t) · x2 + γx for any τ ∈ Fq. For any integer n ≥ 1, the
inner double sum in (4.3) can thus be rewritten as∑

τ∈Fqn

∑
x∈Fqn

λFqn
(
fτ (x, τ)

)
=
∑
z∈Fqn

∑
x∈Fqn

∣∣{τ ∈ Fqn : ℘a(τ) = z
}∣∣ · λFqn (x3 + z · x2 + γx

)
.

Moreover, we know from [Gri18, Lemma 4.5] that, for any z ∈ Fqn ,∣∣{τ ∈ Fqn : ℘a(τ) = z
}∣∣ =

∑
β∈Fqn∩Fqa

ψq ◦ TrFqn/Fq (β · x),

where, for all β ∈ Fqn , the map z 7→ ψq ◦ TrFqn/Fq (β · z) is an additive character on Fqn , which we denote
by ψ(β)

qn . Hence, for any integer n ≥ 1, we have

∑
τ∈Fqn

∑
x∈Fqn

λFqn
(
fτ (x)

)
=

∑
β∈Fqn∩Fqa

S(Fqn , ψ(β)
qn , γ),

where S(Fqn , ψ(β)
qn , γ) =

∑
z∈Fqn

∑
x∈Fqn

λFqn (x3 + zx2 + γx) · ψ(β)
qn (z).

Lemma 4.3 now yields that S(Fqn , ψ(β)
qn , γ) = GFqn (ψ(β)

qn , λ) ·KlFqn (ψ(β)
qn ; γ) for all β ∈ Fqn , where the Gauss

and Kloosterman sums are as in §3.1. Combining the above equalities, we obtain that

− logL(Eγ,a, T ) =
∞∑
n=1

 ∑
β∈Fqn∩Fqa

GFqn (ψ(β)
qn , λ) ·KlFqn (ψ(β)

qn ; γ)

 · Tn
n
. (4.4)

When β = 0, the character ψ(β)
qn is trivial and the product GFqn (ψ(β)

qn , λ) · KlFqn (ψ(β)
qn ; γ) vanishes. For any

β ∈ (Fqa ∩ Fqn) r {0}, denote by vβ the place of K containing β (equivalently, vβ is the Gal(Fq/Fq)-orbit
of β). The place vβ has degree deg vβ = [Fq(β) : Fq], which divides both a and n. In particular, vβ belongs
to Pq(a).

Lemma 4.4. In the notation of §3.3, one has

GFqn (ψ(β)
qn , λ) = g(vβ)n/ deg vβ and KlFqn (ψ(β)

qn ; γ) = klγ(vβ)n/ deg vβ + kl′γ(vβ)n/ deg vβ .

Proof. For brevity, we write d = deg vβ (recall that d divides n). By multiplicativity of the trace in towers
of extensions and because β ∈ Fqd , we have ψ(β)

Fqn = ψ
(β)
F
qd
◦ TrFqn/Fqd . Moreover, λ = λFqn coincides with

λF
qd
◦NFqn/Fqd . Hence, the Hasse–Davenport relation for Gauss sums (Ga 2) implies that

GFqn (ψ(β)
qn , λ) = GFqn (ψ(β)

qd
◦ TrFqn/Fqd , λFqd ◦NFqn/Fqd ) = GF

qd
(ψ(β)
qd
, λF

qd
)[Fqn :F

qd
].

Since, by definition, we have g(vβ) = GF
qd

(ψ(β)
qd
, λF

qd
), the first identity is proved. The second identity is

proved in a similar fashion, using the Hasse–Davenport relation for Kloosterman sums (Kl 3).
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Plugging the identities of Lemma 4.4 into (4.4) and exchanging the order of summation yields that

− logL(Eγ,a, T ) =
∑

β∈Fqar{0}

∑
n≥1

deg vβ |n

((
g(vβ)klγ(vβ)

)n/ deg vβ +
(
g(vβ)kl′γ(vβ)

)n/ deg vβ
)
· T

n

n
.

Upon reindexing the second sum (by setting m = n/ deg vβ), we then obtain that

− logL(Eγ,a, T ) =
∑
β∈F×

qa

1
deg vβ

{ ∞∑
m=1

(g(vβ)klγ(vβ) · T deg vβ )m

m
+
∞∑
m=1

(g(vβ)kl′γ(vβ) · T deg vβ )m

m

}

= −
∑
β∈F×

qa

1
deg vβ

· log
(
(1− g(vβ)klγ(vβ) · T deg vβ )(1− g(vβ)kl′γ(vβ) · T deg vβ )

)
.

We finally group the indices β ∈ F×qa corresponding to the same place v ∈ Pq(a), and get:

logL(Eγ,a, T ) =
∑

v∈Pq(a)

∑
β∈v

1
deg v · log

(
(1− g(v)klγ(v) · T deg v)(1− g(v)kl′γ(v) · T deg v)

)
.

=
∑

v∈Pq(a)

log
(
(1− g(v)klγ(v) · T deg v)(1− g(v)kl′γ(v) · T deg v)

)
.

To conclude the proof of Theorem 4.1, there only remains to exponentiate this identity. �

5. Non-vanishing of L(Eγ,a, T ) at the central point and consequences

As before, let Fq be a finite field of odd characteristic p and K := Fq(t). For any parameter γ ∈ F×q and
any integer a ≥ 1, we consider the elliptic curve Eγ,a defined over K by (2.1). In this section, we describe
the behaviour of the L-function z 7→ L(Eγ,a, z) around z = 1 (see Theorem 5.3). We first gather some
information about its p-adic slope sequence from Theorem 4.1 and results about Gauss and Kloosterman
sums. We then derive an important corollary of this analytic study, namely the BSD conjecture for the
elliptic curves Eγ,a (see Corollary 5.4).

5.1. p-adic slopes of L(Eγ,a, T ). – We choose, once and for all, a prime ideal P of Q above p. We denote
by ordP : Q× → Q the corresponding discrete valuation, so normalised that ordP(q) = 1. The goal of this
subsection is to compute the p-adic slope sequence of L(Eγ,a, T ) explicitly (see §1.3).

We first prove a probably well-known lemma for which we could not find a proof in the literature:
Lemma 5.1. Let F be a finite extension of Fq, and ψ be a nontrivial additive character on F. For any
α ∈ F×, consider the Kloosterman sum KlF(ψ;α) and the pair {klF(ψ;α), kl′F(ψ;α)} of algebraic integers
associated to it by (Kl 3). Then we have

{ordP klF(ψ;α), ordP kl′F(ψ;α)} =
{

0, [F : Fq]
}
.

Equivalently, one has ordP KlF(ψ;α) = 0.
The last statement is equivalent to the first assertion of (Kl 5). In the same setting, the P-adic valuation
of the Gauss sum GF(ψ, λ) is easily determined: (Ga 4) shows that the sums GF(ψ, λ) has the same P-adic
valuation as |F|1/2, so that

ordP GF(ψ, λ) = [F : Fq]
2 . (5.1)

Proof. By construction, KlF(ψ;α) is an element of Q(ζp). The unique prime ideal of Q(ζp) above p is the
principal ideal I = (ζp − 1), so that p · Z[ζp] = Ip−1. Since ψ(y) is a power of ζp for all y ∈ F, we have
ψ(y) ≡ 1 mod I and we find that

−KlF(ψ;α) ≡
∑
x∈F×

1 ≡ |F| − 1 ≡ −1 mod I,

because |F| is a power of p. In particular, KlF(ψ;α) 6≡ 0 mod p in Q, and we have ordP KlF(ψ;α) = 0.
On the other hand, (Kl 3) implies that the algebraic integers klF(ψ;α) and kl′F(ψ;α) satisfy

klF(ψ;α) · kl′F(ψ;α) = |F| and klF(ψ;α) + kl′F(ψ;α) = KlF(ψ;α).

Hence, the pair {v, v′} formed by their P-adic valuations satisfies: v, v′ ≥ 0, v + v′ = ordP |F| = [F : Fq],
and min{v, v′} ≤ ordP KlF(ψ;α) = 0. The only pair {v, v′} fulfilling these requirements is {0, [F : Fq]}.
Hence the result.
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We can now state and prove the following:

Theorem 5.2. Let γ ∈ F×q and a ≥ 1. Consider the elliptic curve Eγ,a/K defined by (2.1), and write
b = degL(Eγ,a, T ). Recall from Remark 4.2(3) that b = 2(qa − 1) is even. The L-function L(Eγ,a, T ) has
p-adic slope sequence

λ1 = 1
2 , λ2 = 1

2 , . . . , λb/2 = 1
2 , λb/2+1 = 3

2 , λb/2+2 = 3
2 , . . . , λb = 3

2 .

Proof. By definition (see §1.3), the p-adic slope sequence of L(Eγ,a, T ) is the (suitably indexed) multiset of
P-adic valuations of the inverses of zeros of z 7→ L(Eγ,a, z).

Upon staring at the expression for L(Eγ,a, T ) obtained in Theorem 4.1, one immediately sees that an
algebraic number z ∈ Q is the inverse of a zero of L(Eγ,a, T ) if and only if there exists a place v ∈ Pq(a)
with zdeg v ∈ {g(v)klγ(v), g(v)kl′γ(v)}. In particular, if z is the inverse of a zero of L(Eγ,a, T ), there exists
v ∈ Pq(a) such that ordP(zdeg v) equals one of ordP(g(v)klγ(v)) or ordP(g(v)kl′γ(v)).

Applying (5.1) in the case where GF(ψ, λ) = g(v), we see that ordP g(v) = (deg v)/2. Besides, the
previous lemma applied to KlF(ψ;α) = Klγ(v) yields that

{
ordP klγ(v), ordP kl′γ(v)

}
= {0,deg v}. We

therefore have

ordP z = ordP(zdeg v)
deg v ∈

{
ordP g(v) + ordP klγ(v)

deg v ,
ordP g(v) + ordP kl′γ(v)

deg v

}
=
{

1
2 ,

3
2

}
.

As was recalled in §1.3, the p-adic slope sequence {λk}bk=1 of L(Eγ,a, T ) admits the following symmetry:
for a given s ∈ [0, 2], there are as many indices k such that λk = s as there are indices k′ such that
λk′ = 2−s. From this and from the above display, we immediately conclude that, among the b slopes of the
L-function L(Eγ,a, T ), half of them equal 1/2 and the other half equal 3/2. The result now follows upon
choosing a suitable numbering of these slopes.

5.2. Non-vanishing at the central point. – The following follows almost immediately from Theorem 5.2:

Theorem 5.3. For any γ ∈ F×q and any a ≥ 1, the L-function L(Eγ,a, T ) does not vanish at T = q−1. In
other words, one has ordT=q−1 L(Eγ,a, T ) = 0.

Proof. Given the expression for L(Eγ,a, T ) of Theorem 4.1, it suffices to show that, for any v ∈ Pq(a), the
two factors 1− g(v)klγ(v)q− deg v and 1− g(v)kl′γ(v)q− deg v of L(Eγ,a, q−1) are nonzero. As we have seen
in the previous subsection, for all v ∈ Pq(a), we have{

ordP(g(v)klγ(v)), ordP(g(v)kl′γ(v))
}

=
{

deg v
2 ,

3 deg v
2

}
.

Since ordP(qdeg v) = deg v, neither of g(v)klγ(v) or g(v)kl′γ(v) can equal qdeg v, and we are done.

Remark 6.2 outlines an alternative proof of Theorem 5.3: there, we obtain the non-vanishing by relying
on the “angular distribution” of the Gauss and Kloosterman sums.

5.3. The BSD conjecture for Eγ,a. – Given the non-vanishing of L(Eγ,a, T ) at T = q−1, we deduce
from the BSD result (see Theorem 1.1) that the BSD conjecture holds for all the elliptic curves Eγ,a.

Corollary 5.4. For all γ ∈ F×q and all integers a ≥ 1, one has:

(1) The Mordell–Weil group Eγ,a(K) consists of the two points O and P0 = (0, 0).

(2) The Tate–Shafarevich group X(Eγ,a) is finite.

(3) The following identity holds:

L(Eγ,a, q−1) = |X(Eγ,a)|
q−1 ·H(Eγ,a) . (5.2)

That the elliptic curves Eγ,a satisfy the BSD conjecture is not new: as was already mentioned, it was
first proved by Pries and Ulmer in [PU16], where the proof relies on the geometry of the minimal regular
model of Eγ,a. Our proof appears to be largely independent of theirs. Pries and Ulmer have further shown
(also by a geometric argument) that Eγ,a(K) has rank 0 (see §6.2 in [PU16]).

Proof. By Theorem 1.1(1), the Mordell–Weil group Eγ,a(K) is finite, hence coincides with its torsion sub-
group. Theorem 2.5 then yields the first assertion. The second assertion is copied verbatim from the second
item of Theorem 1.1. As for identity (5.2), it suffices to plug the values |Eγ,a(K)| = 2 and τ(Eγ,a) = 4
(calculated in §2.3) into the BSD formula (1.3).
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6. Distribution of the sums Klγ(v)

In this section, we work in the following setting: we fix a finite field Fq of odd characteristic p, endowed
with a nontrivial additive character ψq; we also choose, once and for all, an embedding ι : Q ↪→ C. For any
γ ∈ F×q and any a ≥ 1, we consider the elliptic curves Eγ,a defined by (2.1).

In the next section, we will describe the asymptotic behaviour of L(Eγ,a, q−1) as a→∞. Doing so will
require some knowledge about the “angular distribution” in the complex plane of (the images under ι of)
the algebraic integers klγ(v), kl′γ(v), for v ∈ Pq(a). We therefore lay out, in this section, the relevant facts
about that distribution.

6.1. Angles of the sums. – For a place v ∈ Pq(a), the images under ι of the algebraic integers g(v),
klγ(v) and kl′γ(v) lie on the complex circle {z ∈ C : |z| = qdeg v/2} by the Weil bounds (Ga 3) and (Kl 4) for
Gauss and Kloosterman sums. We can therefore introduce the following angles:

Definition 6.1. For a place v ∈ Pq(a),

• We know from (Ga 4) that the algebraic number g(v)/qdeg v/2 is a 4th root of unity. Thus, there is a
unique ε(v) ∈ {0, π/2, π, 3π/2} such that

ι(g(v)) = qdeg v/2 · eiε(v).

• By (Kl 4), the complex number ι(Klγ(v)) is real with |ι(Klγ(v))| ≤ 2qdeg v/2. Hence there exists a
unique angle θγ(v) ∈ [0, π] such that

ι(Klγ(v)) = 2qdeg v/2 · cosθγ(v).

For all v ∈ Pq(a), we remark that one has
{
ι(klγ(v)), ι(kl′γ(v))

}
=
{
qdeg v/2 · eiθγ(v), qdeg v/2 · e−iθγ(v)}.

With this new notation, the expression for L(Eγ,a, T ) obtained in Theorem 4.1 becomes:

L(Eγ,a, T ) =
∏

v∈Pq(a)

(
1− ei(ε(v)+θγ(v)) · (qT )deg v

)(
1− ei(ε(v)−θγ(v)) · (qT )deg v

)
. (6.1)

Note that, even though the angles θγ(v) individually depend on the choice of ι, the set {θγ(v)}v∈Pq(a) does
not: a different choice of ι only permutes the various θγ(v), since L(Eγ,a, T ) has integral coefficients.

Evaluating both sides of the above equality at T = q−1 yields

L(Eγ,a, q−1) =
∏

v∈Pq(a)

(
1 + e2iε(v) − 2eiε(v) · cosθγ(v)

)
. (6.2)

Remark 6.2. (1) For any v ∈ Pq(a), Lemma 5.1 implies that the angle θγ(v) does not lie in {0, π/2, π}.
Indeed, were θγ(v) to hit one of 0, π/2 or π, the sum Klγ(v) would equal +2qdeg v/2, 0 or −2qdeg v/2,
respectively. This is incompatible with Lemma 5.1 since Klγ(v) would then not be a p-adic unit.
More generally, with the same construction as in Definition 6.1, one can associate an angle θF,ψ,α ∈ [0, π]
to any of the Kloosterman sums KlF(ψ;α) introduced in §3.1. A similar argument as the above then
shows that θF,ψ,α /∈ {0, π/2, π}. This directly implies the second assertion in (Kl 5).

(2) The previous item actually provides a second proof of the non-vanishing of the L-function L(Eγ,a, T )
at T = q−1, as follows. It is clear that, for a place v ∈ Pq(a), the factor indexed by v in the product (6.1)
vanishes at T = q−1 if and only if ε(v) ≡ ±θγ(v) mod 2π. By Definition 6.1 above, we know that
ε(v) ∈ {0, π/2, 3π/2, 2π}. What we have shown in item (1) proves that the v-th factor in (6.1) does not
vanish at T = q−1. Hence L(Eγ,a, q−1) is nonzero.

6.2. Angular distribution of the sums Klγ(v). – Let µ∞ denote the Sato–Tate measure on [0, π]: recall
that dµ∞ := 2

π sin2 θ dθ. Consider the set {θγ(v)}v∈Pq(a) of angles introduced in the previous subsection.
We denote by µa the discrete probability measure on [0, π] supported on {θγ(v)}v∈Pq(a). In other words,
we put

µa := 1
|Pq(a)|

∑
v∈Pq(a)

δ{θγ(v)},

where δ{x} denotes the Dirac delta measure at x ∈ [0, π]. Note that µa depends neither on the choice of
a non-trivial additive character ψq on Fq nor on that of an embedding ι : Q ↪→ C. The measure µa does
depend on Fq and γ though, but we chose not to reflect this in the notation for brevity.

In a previous work, the first-named author has proved that, as a→∞, the sequence of measures {µa}a≥1
converges weak-∗ to µ∞ in a quantitative way (see Theorem 6.6 in [Gri18]). More specifically, we have
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Theorem 6.3. In the above setting, given any continuously differentiable function g : [0, π] → C and
any γ ∈ F×q , as a ≥ 1 tends to +∞, one has∣∣∣∣∣

∫
[0,π]

g dµa −
∫

[0,π]
g dµ∞

∣∣∣∣∣�q
a1/2

qa/4
·
∫ π

0
|g′(t)|dt, (6.3)

where the implicit constant is effective and depends at most on q.

The reader is referred to section 6 of [Gri18] for a detailed proof of that statement. Note that µa is the
same measure as the one denoted by νa there.

6.3. ‘Small’ angles of Kloosterman sums. – As we have seen in Remark 6.2, the fact that L(Eγ,a, T )
does not vanish at T = q−1 is equivalent to the statement that none of the angles θγ(v) lies in {0, π/2, π}. In
this subsection, we obtain a quantitative version of the fact that the set {θγ(v)}v∈Pq(a) “avoids” {0, π/2, π}.

Theorem 6.4. There exists a positive constant σp, depending at most on p, such that the following holds.
Let Fq be a finite field of characteristic p endowed with a nontrivial additive character ψq, and fix an
embedding ι : Q ↪→ C. For any parameter γ ∈ F×q and any integer a ≥ 1, one has

{θγ(v)}v∈Pq(a) ⊂
[
εa,

π
2 − εa

]
∪
[
π
2 + εa, π − εa

]
where εa = (qa)−σp .

In other words, the measure µa is supported on
[
εa,

π
2 − εa

]
∪
[
π
2 + εa, π − εa

]
.

Corollary 5.5 in [Gri18] already shows that θγ(v) ∈
[
εa, π − εa] for all v ∈ Pq(a); so we actually only need

to prove that |θγ(v)− π/2| ≥ εa. However, for convenience, we give a complete proof of Theorem 6.4.
The main tool to prove this result is the following version of Liouville’s inequality, which is taken from

the introduction of [MW94]. Let P ∈ Z[X] be a polynomial of degree N . For any algebraic number κ ∈ Q,
let ht(κ) denote its absolute logarithmic Weil height. If P (κ) 6= 0, then

log |P (κ)|
[Q(κ) : Q] ≥ − log ‖P‖1 −N · ht(κ), (6.4)

in any complex embedding of Q(κ). Here we have denoted by ‖P‖1 the sum of the absolute values of the
coefficients of P . The reader is referred to [MW94] for this statement and its proof.

Proof of Theorem 6.4. In the setting of the theorem, we claim that there exists a constant σp > 0 such that,
for all v ∈ Pq(a), one has

min{θγ(v), |θγ(v)− π/2|, π − θγ(v)} ≥ (qdeg v)−σp .

Since deg v divides a for all v ∈ Pq(a), the theorem clearly follows from this claim.
To prove the claim, we consider the algebraic number κ := klγ(v) · q− deg v/2. Up to replacing klγ(v) by

kl′γ(v), we can assume that ι(κ) = eiθγ(v). It is relatively easy to show that [Q(κ) : Q] ≤ 2(p− 1) and that
ht(κ) ≤ log(qdeg v/2), see [Gri18, Lem. 5.3] for details. Let us now apply Liouville’s inequality to κ with the
following three polynomials: P1 = X − 1, P2 = X + 1 and P3 = X4 − 1.

By (Kl 5) or Remark 6.2, we know that κ /∈ {1, i,−1}, so that Pj(κ) 6= 0 for j ∈ {1, 2, 3}. Combined
with our estimates of the degree and of the height of κ, Liouville’s inequality (6.4) yields that

∀j ∈ {1, 2, 3}, log |ι(Pj(κ))| ≥ −[Q(κ) : Q] · (log 2 + 4 · ht(κ)) ≥ −2(p− 1) · (log 2 + 2 log qdeg v)
≥ −6(p− 1) · log qdeg v. (6.5)

Besides, a quick analysis shows that, for any θ ∈ [0, π], one has

|P1(eiθ)| = |eiθ − 1| ≤ |θ| = θ, |P2(eiθ)| = |eiθ + 1| = |ei(θ−π) − 1| ≤ |θ − π| = π − θ,
and |P3(eiθ)| = |e4iθ − 1| = |eiθ − i| · |eiθ + i| · |e2iθ − 1| ≤ 4|eiθ − i| = 4|ei(θ−π/2) − 1| ≤ 4|θ − π/2|.

Applying these inequalities to θ = θγ(v) and using (6.5), we directly obtain that

θγ(v) ≥ |P1(κ)| ≥ (qdeg v)−6(p−1), and that π − θγ(v) ≥ |P2(κ)| ≥ (qdeg v)−6(p−1).

By further noting that q2 deg v ≥ 4, we also get that

|π/2− θγ(v)| ≥ |P3(κ)|/4 ≥ (qdeg v)−6(p−1)/4 ≥ (qdeg v)−(6p−4).

The claim now follows immediately, with σp = 6p− 4 > 0 being a suitable choice of constant.
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7. Estimates of the central value L(Eγ,a, q−1)

The goal of this section is to prove a precise asymptotic estimate on the central value L(Eγ,a, q−1) as a→∞.
This will provide the crucial input for our bounds on the size of X(Eγ,a) in the next section.

The result is as follows:

Theorem 7.1. Let Fq be a finite field of odd characteristic, and K = Fq(t). There are positive constants
c1, c2 (depending at most on q) such that: for any γ ∈ F×q and any a ≥ 1, the central value L(Eγ,a, q−1) of
the L-function of the elliptic curve Eγ,a satisfies:

− c1
a
≤ log |L(Eγ,a, q−1)|

logH(Eγ,a) ≤ c2
a
. (7.1)

The proof of this theorem will be given in §7.2 after proving an intermediate result in the following
subsection. The upper bound in (7.1) provides a slight improvement on the generic upper bound on the
central value: for any non-isotrivial elliptic curve E over K with L(E, q−1) 6= 0, it is known that

logL(E, q−1)
logH(E) ≤ c3 ·

log log logH(E)
log logH(E) (as H(E)→∞),

for some constant c3 > 0. This can be proved by using the fact that the zeros of L(E, T ) become uniformly
equidistributed on the circle {z ∈ C : |z| = q−1} as H(E) → ∞ (see [HP16, Thm. 7.5]). For easier
comparison, note that log logH(Eγ,a) here has the same order of magnitude as a, as was shown in (2.3).

The lower bound in (7.1) is, on the other hand, much stronger than the generic lower bound on the
central value. For a non-isotrivial elliptic curve E with L(E, q−1) 6= 0, the latter only yields that

−1 + c4
logH(E) ≤

logL(E, q−1)
logH(E) (as H(E)→∞),

for some c4 < 0. Via the BSD formula, this translates into a lower bound on the order of X(E) which is
weaker than the one we require to prove Theorem C(3).

7.1. Convergence of a certain sequence. – Let a ≥ 1 be an integer and γ ∈ F×q . We keep the notation
introduced in section 6. Consider the non-negative function W : [0, π]→ R defined by

W (θ) :=
{
− log

(
sin2 θ · cos2 θ

)
if θ ∈ [0, π] r {0, π/2, π},

0 if θ ∈ {0, π/2, π}.

The function θ 7→W (θ) is continuously differentiable on (0, π/2)∪ (π/2, π) and, for all θ ∈ [0, π], it satisfies
W (π − θ) = W (θ). A routine check shows that W is integrable on [0, π] for the Lebesgue measure as well
as for the Sato–Tate measure µ∞. By Remark 6.2, the function W is also integrable for the measure µa
introduced in §6.2: it thus makes sense to consider the sequence

(∫
[0,π]W dµa

)
a≥1

. Even though we know
that µa converges weak-∗ to µ∞ as a→∞ by Theorem 6.3, we cannot directly conclude that this sequence
converges because W is not continuous on [0, π].

Nonetheless, the goal of this subsection is to show the following:

Proposition 7.2. In the above setting, the sequence
(∫

[0,π]W dµa
)
a≥1

converges to
∫

[0,π]W dµ∞. More
precisely, one has ∣∣∣∣∣

∫
[0,π]

W dµa −
∫

[0,π]
W dµ∞

∣∣∣∣∣�q
a3/2

qa/4
(as a→∞),

where the implicit constant is effective and depends at most on q.

Even though the exact value of the limit is of little importance to us, one can actually compute that∫
[0,π]W dµ∞ = log(16). By definition of the measure µa, the result above can thus be rewritten as

1
|Pq(a)|

∑
v∈Pq(a)

log
(

sin2 θγ(v) · cos2 θγ(v)
)

= − log(16) +O

(
a3/2

qa/4

)
, (as a→∞).
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Proof. We pick, once and for all, a nondecreasing continuously differentiable function β0 : [0, 1]→ [0, 1] such
that β0(x) = 0 for all x ∈ [0, 1/3], and β0(x) = 1 for all x ∈ [2/3, 1]. For a small enough ε > 0, we define a
“smoothing” function βε : [0, π]→ [0, 1] as follows: define βε on [0, π/2] by

βε(θ) :=


β0(θ/ε) if θ ∈ [0, ε],
1 if θ ∈ [ε, π/2− ε],
β0((π/2− θ)/ε) if θ ∈ [π/2− ε, π/2],

and extend it to [0, π] by requiring that βε(π − θ) = βε(θ) for all θ ∈ [0, π].
For any ε > 0, we put Wε := W ·βε. The function Wε : [0, π]→ R is continuously differentiable on [0, π],

it coincides with W on [ε, π/2 − ε] ∪ [π/2 + ε, π − ε], and it satisfies Wε(π − θ) = Wε(θ) for all θ ∈ [0, π].
Let us also record the following estimates:

Lemma 7.3. For all ε ∈ (0, 1/4), one has

(a)
∫ π

0
|W ′ε(t)|dt = O

(
| log ε|

)
, (b)

∫
[0,π]
|W −Wε|dµ∞ = O

(
ε| log ε|

)
.

We postpone proving these two bounds until the end of the section, and carry on with the proof of Propo-
sition 7.2. In the notation introduced above, the triangle inequality yields that∣∣∣∣∣
∫

[0,π]
W dµa −

∫
[0,π]

W dµ∞

∣∣∣∣∣ ≤
∫

[0,π]
|W −Wε|dµa

+

∣∣∣∣∣
∫

[0,π]
Wε dµa −

∫
[0,π]

Wε dµ∞

∣∣∣∣∣+
∫

[0,π]
|W −Wε|dµ∞. (7.2)

We treat separately each of the three terms appearing in the right-hand side of this inequality.
The third term

∫
[0,π] |W −Wε|dµ∞ can be directly bounded with the help of Lemma 7.3(b).

To show that the middle term is small when a→∞, we apply Theorem 6.3 to Wε. This is permissible
since Wε is continuously differentiable on [0, π]. We obtain that∣∣∣∣∣

∫
[0,π]

Wε dµa −
∫

[0,π]
Wε dµ∞

∣∣∣∣∣�q
a1/2

qa/4
·
∫ π

0
|W ′ε(t)|dt�q

a1/2

qa/4
· | log ε|,

where the last inequality follows from Lemma 7.3(a).
Finally, we claim that the first term

∫
[0,π] |W −Wε|dµa on the right-hand side of (7.2) vanishes provided

that ε > 0 is small enough. Indeed, we know by Theorem 6.4 that the support of µa is contained in
[εa, π/2 − εa] ∪ [π/2 + εa, π − εa] where εa = (qa)−σp for some constant σp > 0. By the proof of that
theorem, one can take σp = 6p− 4. On the other hand, as was noted in a previous paragraph, W and Wε

coincide on [ε, π/2− ε] ∪ [π/2 + ε, π − ε]. Hence, choosing ε < εa, we have
∫

[0,π] |W −Wε|dµa = 0.
Summing up these three contributions, inequality (7.2) yields that∣∣∣∣∣

∫
[0,π]

W dµa −
∫

[0,π]
W dµ∞

∣∣∣∣∣�q 0 + a1/2

qa/4
· | log ε|+ ε| log ε|,

for all ε < εa. Note that (qa)−6q < εa because 6q > 6p− 4 = σp. We may therefore take ε = (qa)−6q, and
this choice provides the desired bound.

Proof of Lemma 7.3. Both W and Wε are periodic of period π/2 and are symmetric around π/4 (i.e.,
W (π/2− θ) = W (θ) for all θ ∈ [0, π/2], and similarly for Wε). The same holds for |W ′ε| and |W −Wε|. We
are thus reduced to proving the following two bounds:

(a’)
∫ π/4

0
|W ′ε(t)|dt = O(| log ε|) and (b’)

∫
[0,π/2]

|W −Wε|dµ∞ = O
(
ε| log ε|

)
.

To that end, we first gather a few useful remarks:

(i) Since Wε = W · βε and since 0 ≤ βε(t) ≤ 1, we have |W ′ε(t)| ≤ |W ′(t)|+ |β′ε(t)| ·W (t) for all t ∈ [0, π].

(ii) We have |β′ε(t)| = 0 for all t ∈ [ε, π/4] and |β′ε(t)| ≤M/ε for t ∈ [0, ε], where M := supx∈[0,1] |β′0(x)|.

(iii) The function Wε is constant (equal to 0) on [0, ε/3], so that W ′ε(t) = 0 for all t ∈ (0, ε/3).
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(iv) The functions W and Wε are symmetric around π/4, and they coincide on [ε, π/2 − ε]. Moreover,
|W (t)−Wε(t)| = (1− βε(t)) ·W (t) ≤W (t) for all t ∈ [0, π/2].

(v) For all t ∈ (0, π/4], it is classical that (sin t)−1 ≤ π/(2t) and (cos t)−1 ≤ π/(π − 2t). We deduce that

W (t) = 2 log
(
(sin t)−1 · (cos t)−1) ≤ 2 log

(
π2

2t(π − 2t)

)
≤ 2 log π

t
,

for all t in this interval. In particular, this yields that
∫ ε

0 W (t) dt ≤ −2
∫ ε

0 log t
π dt� ε| log ε|.

(vi) For all t ∈ (0, π/4], a simple calculation shows that W ′(t) = 2
(

sin t
cos t −

cos t
sin t

)
= − 2 cos(2t)

sin t · cos t . Thus,

using the same classical inequalities as in the preceding item, we obtain that, for all t ∈ (0, π/4],

|W ′(t)| ≤ 2
sin t · cos t ≤

2π2

2t(π − 2t) ≤
2π
t
.

We can now combine the above items to prove the desired inequalities. First, we have∫ ε

0
|W ′ε(t)|dt

by (iii)=
∫ ε

ε/3
|W ′ε(t)|dt

by (i)
≤

∫ ε

ε/3
|W ′(t)|dt+

∫ ε

ε/3
W (t)|β′ε(t)|dt

by (vi), (ii)
≤

∫ ε

ε/3

2π
t

dt+
∫ ε

ε/3
W (t) · M

ε
dt

by (v)
� | log ε|.

Furthermore, we have∫ π/4

ε

|W ′ε(t)|dt
by (i)
≤

∫ π/4

ε

|W ′(t)|dt+
∫ π/4

ε

W (t)|β′ε(t)|dt
by (vi), (ii)
≤

∫ π/4

ε

2π
t

dt� | log ε|.

Summing the last two displays proves (a’). Finally, we notice that∫
[0,π/2]

|W −Wε|dµ∞ ≤
2
π

∫ π/2

0
|W (t)−Wε(t)|dt

by (iv)
≤ 4

π

∫ ε

0
W (t) dt

by (v)
� ε| log ε|,

which proves (b’) and concludes the proof of the lemma.

7.2. Proof of Theorem 7.1. – With Proposition 7.2 at hand, we can now prove Theorem 7.1. In the
notation introduced in the previous sections, we begin by taking the logarithm of identity (6.2):

logL(Eγ,a, q−1) = log |L(Eγ,a, q−1)| =
∑

v∈Pq(a)

log
∣∣1 + e2iε(v) − 2 · eiε(v) · cosθγ(v)

∣∣
=

∑
v∈Pq(a)

log |Fv(θγ(v))|, (7.3)

where the functions Fv : [0, π]→ R are defined as follows:

∀v ∈ Pq(a), Fv : θ 7→


2− 2 cos θ if ε(v) = 0,
−2i cos θ if ε(v) = π/2,
2 + 2 cos θ if ε(v) = π,

2i cos θ if ε(v) = 3π/2.

Note that |Fv(θγ(v))| > 0 for all v ∈ Pq(a) because θγ(v) /∈ {0, π/2, π} by (Kl 5) (see Remark 6.2).
Straightforward analytic estimates show that, for any place v ∈ Pq(a), one has

∀θ ∈ [0, π], sin2 θ · cos2 θ ≤ |Fv(θ)| ≤ 4.

In particular, writing W (θ) = − log
(

sin2 θ · cos2 θ
)
as in §7.1, we obtain that

∀v ∈ Pq(a), −W (θγ(v)) ≤ log |Fv(θγ(v))| ≤ log 4.

Summing this chain of inequalities over all v ∈ Pq(a), equality (7.3) leads to

1
logH(Eγ,a) ·

∑
v∈Pq(a)

−W (θγ(v)) ≤ logL(Eγ,a, q−1)
logH(Eγ,a) ≤ log 4 · |Pq(a)|

logH(Eγ,a) .

It is clear from these inequalities that Theorem 7.1 will be proved once we show the following two assertions:
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(C1) There exists a constant c1 > 0 such that 1
logH(Eγ,a)

∑
v∈Pq(a)

W (θγ(v)) ≤ c1 · a−1,

(C2) There exists a constant c2 > 0 such that |Pq(a)|
logH(Eγ,a) ≤ c2 · a

−1.

We thus now prove these two claims, starting with the second one.
We know from (2.3) that logH(Eγ,a) �q q

a, and from (3.2) that |Pq(a)| �q q
a/a. The second claim

(C2) follows from these two estimates. Next we turn to the proof of (C1): by Proposition 7.2, we have

1
|Pq(a)|

∑
v∈Pq(a)

W (θγ(v)) =
∫

[0,π]
W dµ∞ +Oq

(
a3/2

qa/4

)
,

as a→∞, where the implicit constant depends at most on q. Therefore, making use of the estimate in (C2)
which we have just proved, we obtain that

0 ≤ 1
logH(Eγ,a)

∑
v∈Pq(a)

W (θγ(v)) = |Pq(a)|
logH(Eγ,a) ·

1
|Pq(a)|

∑
v∈Pq(a)

W (θγ(v))

≤ c2
a
·

(∫
[0,π]

W dµ∞ +Oq

(
a3/2

qa/4

))
≤ c1

a
,

for some constant c1 > 0, depending at most on q. This proves the first claim (C1) and concludes the proof
of Theorem 7.1. �

8. Proof of Theorem C

In this section, we gather our results so far to prove our main result (Theorem C in the introduction).
We have already proved assertions (1) and (2) of that theorem: see Proposition 2.4 and Corollary 5.4(2),
respectively. In the following two subsections, we prove assertions (4) and (3) of Theorem C, in this order.

8.1. The p-primary part of X(Eγ,a). – Let us first prove assertion (4) of Theorem C concerning the
p-primary part of X(Eγ,a). That is to say,

Theorem 8.1. Let Fq be a finite field of odd characteristic p, and K = Fq(t). For any γ ∈ F×q and any
integer a ≥ 1, consider the elliptic curve Eγ,a defined over K by (2.1). Then the p-primary part of X(Eγ,a)
is trivial. In other words, the integer |X(Eγ,a)| is relatively prime to p.

Proof. Recall from §5.1 that ordP : Q× → Q denotes an extension of the p-adic value to Q, normalised so
that ordP(q) = 1. Taking P-adic valuation of both sides of the BSD formula (5.2), we obtain that

ordP |X(Eγ,a)| = ordP L(Eγ,a, q−1) + ordPH(Eγ,a)− 1. (8.1)

Our formula (2.3) for the height of Eγ,a implies that ordPH(Eγ,a) − 1 = (qa − 1)/2. To conclude the
proof, it therefore suffices to prove that ordP L(Eγ,a, q−1) = −(qa − 1)/2. Indeed one would then have
ordP |X(Eγ,a)| = 0, and (8.1) would directly show thatX(Eγ,a) has trivial p-primary part (by the structure
theorem for finite abelian groups).

We now proceed to compute ordP L(Eγ,a, q−1). Evaluating at T = q−1 the expression for L(Eγ,a, T )
obtained in Theorem 4.1, and taking P-adic valuations on both sides of the resulting identity yields that

ordP L(Eγ,a, q−1) =
∑

v∈Pq(a)

ordP

(
1− g(v)klγ(v)

qdeg v

)
+ ordP

(
1−

g(v)kl′γ(v)
qdeg v

)
.

The results proved in §5.1 imply that, for all places v ∈ Pq(a), we have{
ordP

(
g(v)klγ(v)q− deg v) , ordP

(
g(v)kl′γ(v)q− deg v)} =

{
−deg v

2 ,
deg v

2

}
.

Using the cases of equality in the non-archimedean triangle inequality, we then obtain that

ordP L(Eγ,a, q−1) =
∑

v∈Pq(a)

min
{

0,−deg v
2

}
+ min

{
0, deg v

2

}
= −1

2
∑

v∈Pq(a)

deg v.

As has already been observed, we have
∑
v∈Pq(a) deg v = |Gm(Fqa)| = qa − 1. We therefore conclude that

ordP L(Eγ,a, q−1) = −(qa − 1)/2, as was to be shown.
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Remark 8.2. (1) In a very recent paper [Ulm19], Ulmer introduces the notion of dimension of X for abelian
varieties over Fq(t) whose Tate–Shafarevich group is finite. In the special case of Eγ,a, this invariant is
defined as follows: for all integers n ≥ 1, let Kn := Fqn(t) and consider

dimX(Eγ,a) := lim
n→∞

log
∣∣X(

Eγ,a ×K Kn

/
Kn

)
[p∞]

∣∣
log qn .

Proposition 4.1 of [Ulm19] shows that the limit indeed exists and is a nonnegative integer: it is called
the dimension of X of Eγ,a. Furthermore, [Ulm19, Prop. 4.2] provides an expression for dimX(Eγ,a)
in terms of the p-adic slopes of the L-function of Eγ,a. Using that expression and our Theorem 5.2, an
easy calculation yields that dimX(Eγ,a) = 0.

(2) The previous item show that the order of the p-primary part of the Tate–Shafarevich group of the
base-changed elliptic curve Eγ,a ×K Kn over Kn grows slowly with n (its log is o(n)). By replacing q
by qn in the proof of Theorem 8.1, one can actually prove the stronger statement that, for all n ≥ 1,

|X(Eγ,a ×K Kn/Kn)[p∞]| = 1.

8.2. The size of X(Eγ,a). – Finally, we prove assertion (3) of Theorem C about the size of X(Eγ,a). We
actually show a slightly more precise result:

Theorem 8.3. Let Fq be a finite field of odd characteristic and K = Fq(t). For any γ ∈ F×q and any integer
a ≥ 1, consider the elliptic curve Eγ,a defined over K by (2.1). Then, as a→∞, we have

|X(Eγ,a)| = H(Eγ,a)1+O(1/a),

where the implicit constant is effective and depends at most on q.

We know by (2.3) that H(Eγ,a) = N(Eγ,a)1/4. Hence, we deduce from the above that

Corollary 8.4. In the same setting, as a→∞, we have

|X(Eγ,a)| = N(Eγ,a)1/4+O(1/a).

Proof (of Theorem 8.3). We note that, by (2.3), log logH(Eγ,a) and a have the same order of magnitude
when a → ∞, the involved constants depending at most on q. The elliptic curve Eγ,a satisfies the BSD
conjecture (see Corollary 5.4). Taking the logarithm of both sides of the BSD formula (5.2) and reordering
terms yields that

log |X(Eγ,a)|
logH(Eγ,a) = 1− log q

logH(Eγ,a) + logL(Eγ,a, q−1)
logH(Eγ,a) . (8.2)

The term log q/logH(Eγ,a) is clearly o
(
1/ log logH(Eγ,a)

)
as a → ∞. To control the right-most term, we

put to use our bound on the central value L(Eγ,a, q−1): we deduce from Theorem 7.1 that∣∣ logL(Eγ,a, q−1)
∣∣

logH(Eγ,a) = O
(
1/ log logH(Eγ,a)

)
,

as a → ∞, where the implicit constant depends at most on q. The proof is now completed by plugging
these two estimates into (8.2).

Remark 8.5. Theorem 8.3 can be interpreted as an analogue of the Brauer–Siegel theorem for the se-
quences {Eγ,a}a≥1. We refer the reader to [HP16, Hin19] for a detailed description of the analogue we
have in mind: let us simply recall that Hindry and Pacheco have introduced the Brauer–Siegel ratio of an
abelian variety with finite Tate–Shafarevich group and that, in the case at hand, the Brauer–Siegel ratio
is given by Bs(Eγ,a) = log |X(Eγ,a)|

/
logH(Eγ,a). For an elliptic curve with positive Mordell–Weil rank,

the Brauer–Siegel ratio also includes the Néron–Tate regulator. With this notation, Theorem 8.3 can be
rewritten in a compact form:

Bs(Eγ,a) = 1 +O
(
1/a
)

(as a→∞). (8.3)

There are only a handful of sequences of elliptic curves over K for which one can prove that the Brauer–
Siegel ratio has a limit and that this limit is 1 (see [HP16, Gri16, Gri18, Hin19] and references therein).
The families studied in the present paper therefore provide further examples of that behaviour. However, it
seems interesting to remark that the sequences {Eγ,a}a≥1 consist of rank 0 elliptic curves, whereas previous
articles considered sequences with unbounded rank.
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