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Introduction
Let E be an elliptic curve over the function field K = Fq(t).
The arithmetic of E is (or should be) encoded in three objects:

• E(K), its Mordell-Weil group: a finitely generated group equipped with the
canonical Néron-Tate height pairing 〈·, ·〉NT .

• X(E/K), its Shafarevich-Tate group: conjecturally a finite group.

• L(E/K, s), its L-function and the special value at s = 1, which appears in the
Birch & Swinnerton-Dyer conjecture:

L∗(E/K, 1) := lim
s→1

L(E/K, s)
(s− 1)ords=1L(E/K,s) .

Recall that the Néron-Tate regulator is defined as

Reg(E/K) := det (〈Pi, Pj〉NT )1≤i,j≤r
where P1, . . . , Pr denotes a basis of the free part of E(K).

General diophantine problem: bounding the size of E(K) and X(E/K) in terms of
the exponential differential height H(E/K) (or in terms of the conductor NE/K).
But individual bounds are hard to obtain: for example,

• Lang’s conjecture: Reg(E/K)� (logH(E/K))rk E(K).

• Szpiro’s conjecture: #X(E/K)�ε NE/K1/2+ε �ε H(E/K)1+ε.

Following [Hindry], we consider the Brauer-Siegel ratio of E/K:

Bs(E/K) :=
log
(

Reg(E/K) ·#X(E/K)
)

logH(E/K) .

In a sense, Bs(E/K) quantifies the difficulty of finding rational points on E and of
computing a basis for the Mordell-Weil group of E.

• What is the behaviour of Bs(E/K) when H(E/K)→∞ ?

• Is it always true that Bs(E/K)→ 1 ?

Remark 1: Bs(A/K) makes sense for any abelian variety A over a global field K (provided its
X is finite). What is the behaviour of Bs(A/K) when H(A/K) → ∞ with dimA
fixed ?

Remark 2: Note the analogy with the Brauer-Siegel theorem, which says that

Bs(K/Q) :=
log
(
Reg(O×K) ·#C`(OK)

)
log
√

∆K

−−−−−−−→
∆K→∞

[K:Q] fixed

1.

Analytic proof: (1) Link Bs(K/Q) with the residue ress=1ζK(s).
(2) Study the behaviour of ζK(s) around s = 1.

This analogy suggests to study the behaviour of L(E/K, s) around s = 1.

Previous results
Little is known about Bs(E/K). [Hindry & Pacheco] show (conditional to X being
finite) that

0 ≤ lim inf
E∈E

Bs(E/K) ≤ lim sup
E∈E

Bs(E/K) ≤ 1 as H(E/K)→ +∞

where E = {all elliptic curves over K}.
Example: For all n prime to q, let En/K : Y 2 +XY = X3 − tn. The finiteness of
X(En/K) is due to [Ulmer], and [Hindry & Pacheco] show that En/K satisfies

H(En/K) −−−−→
n→∞

∞, Bs(En/K) −−−−→
n→∞

1.

So the lim sup above is actually 1. What is the lim inf Bs(E/K) ? Is it < 1 ?

Theorem
Write K = Fq(t). We always assume char(Fq) > 3.
Let E0 : y2 = x3 + ax+ b be an elliptic curve over Fq; let E be the constant elliptic
curve E = E0 ×Fq

Fq(t). For d ∈ N∗, prime to q, let E(d)/K be the quadratic twist
of E by D(t) = td + 1:

E(d) : D(t) · Y 2 = X3 + aX + b.

One has H(E(d)/K) = qb
d−1

2 c+1.

Theorem (G.) Consider the family of quadratic twists of constant
elliptic curves over K by D(t) = td + 1 with d ∈ N∗ prime to q:

E :=
{
E(d), E/Fq(t) constant ell. curve & d ∈ N∗ with gcd(d, q) = 1

}
.

Then X(E(d)/K) is finite for all E(d) ∈ E and

o(1) ≤ Bs(E(d)/K) ≤ 1 + o(1) (d→∞). (∗)

Moreover, in the “supersingular case”, i.e. when d runs through the (in-

finite) set Dq :=
{
d ∈ N∗

∣∣∣ ∃n ∈ N∗ such that d divides qn + 1
}

, one has

Bs(E(d)/Fq(t)) −−−−−−−→
d∈Dq , d→∞

1.

Ingredients of the proof

Let Cd/Fq be the smooth hyperelliptic curve defined by

Cd : Y 2 = Xd + 1.

Put gd =
⌊
d−1

2
⌋

= genus(Cd) and write the L-function of E0 as

L(E0/Fq, T ) = (1− αT )(1− αT ), |α| = √q.

(1) [Milne] showed that the X of any twist E′ of a constant elliptic curve is finite
and that the full B&SD conjecture is true for E′:

L∗(E′/K, 1) = Reg(E′/K) ·#X(E′/K)
(#E′(K)tors)2 ·H(E′/K) · Tam(E′/K).

(2) Here, #E(d)(K)tors = O(1) and Tam(E(d)/K) = o(gd). Thus, when gd →∞,

Bs(E(d)/K) = 1 + log |L∗(E(d)/K, 1)|
gd · log q + o(1).

(3) Easy bounds for |L∗(E(d)/K, 1)| imply (∗):
−gd · log q ≤ log |L∗(E(d)/K, 1)| ≤ 2 log gd.

(4) [Milne] also proved that

L∗(E(d)/K, 1) = (log q)rk E(d)(K) · |L6=d (α−1)|2,

where L6=d (T ) ∈ Z[T ] is the numerator Ld(T ) of

Z(Cd/Fq, T ) =
∏2gd

j=1(1− βjT )
(1− T )(1− qT ) , |βj | =

√
q

with the factors vanishing at α−1 or ᾱ−1 removed.

(5) Using the explicit formulae, one can show that

rk E(d)(K) = O(d/ log d) = o(gd).

(6) It follows from computations of [Weil] that

Ld(T ) =
∏
m

(1− J(m)Tu(m)) (m ∈ (Z/dZ r {0, d/2})/〈q mod d〉),

where u(m) = order(q mod d/gcd(d,m)) and J(m) is a Jacobi sum.

(7) If d divides qn+1 for some n, [Shafarevich & Tate] proved that u(m) is even and

J(m) = −qu(m)/2. So Ld(T ) has the form Ld(T ) =
∏hd

j=1(1 + qvjT 2vj )mj .

(8) At some point, we use Baker-Wüstholz theorem. Write α = √q · eiθ, then for all
n ∈ N∗: either log | cos(nθ)| = 0 or log | cos(nθ)| �q log(n).

Comments & future works
This is a work in progress.

• Can we also compute limBs(E(d)/K) when d is not necessarily in the “supersin-
gular set”Dq ? Is it still true that Bs(E(d)/K)→ 1 ?

• One can also twist the constant curve E by any squarefree polynomial D(t) ∈ Fq[t]
instead of D(t) = td + 1. In which case, we can easily prove that

o(1) ≤ Bs(ED/K) ≤ 1 + o(1) (degD →∞).

For which families of such D can we explicitly compute limBs(ED/K) ?

Equivalently, can we compute the zeroes of the zeta-function of CD : Y 2 = D(X) ?

• For which families of non-constant elliptic curves over Fq(t) can we compute (un-
conditionally) the limit of the Brauer Siegel ratio ?

• Is there one such family of elliptic curves for which limBs(E/K) is < 1 ? is 0 ?

• In general, if B&SD is known for E/K, bounding Bs(E/K) is equivalent to finding
good upper and lower bounds for |L∗(E/K, 1)|. The size of |L∗(E/K, 1)| depends
on how the zeroes of L(E/K, s) are distributed on the line <(s) = 1. The main
contribution comes from the “small zeroes”.
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